
1

Yosys Application Note 010:
Converting Verilog to BLIF

Clifford Wolf
November 2013

Abstract—Verilog-2005 is a powerful Hardware Description Language
(HDL) that can be used to easily create complex designs from small HDL
code. It is the preferred method of design entry for many designers1.

The Berkeley Logic Interchange Format (BLIF) [6] is a simple file
format for exchanging sequential logic between programs. It is easy to
generate and easy to parse and is therefore the preferred method of
design entry for many authors of logic synthesis tools.

Yosys [1] is a feature-rich Open-Source Verilog synthesis tool that can
be used to bridge the gap between the two file formats. It implements
most of Verilog-2005 and thus can be used to import modern behavioral
Verilog designs into BLIF-based design flows without dependencies on
proprietary synthesis tools.

The scope of Yosys goes of course far beyond Verilog logic synthesis.
But it is a useful and important feature and this Application Note will
focus on this aspect of Yosys.

I. INSTALLATION

Yosys written in C++ (using features from C++11) and is tested on
modern Linux. It should compile fine on most UNIX systems with a
C++11 compiler. The README file contains useful information on
building Yosys and its prerequisites.

Yosys is a large and feature-rich program with a couple of
dependencies. It is, however, possible to deactivate some of the
dependencies in the Makefile, resulting in features in Yosys becoming
unavailable. When problems with building Yosys are encountered, a
user who is only interested in the features of Yosys that are discussed
in this Application Note may deactivate TCL, Qt and MiniSAT support
in the Makefile and may opt against building yosys-abc.

This Application Note is based on GIT Rev. e216e0e from 2013-
11-23 of Yosys [1]. The Verilog sources used for the examples are
taken from yosys-bigsim [2], a collection of real-world designs used
for regression testing Yosys.

II. GETTING STARTED

We start our tour with the Navré processor from yosys-bigsim.
The Navré processor [3] is an Open Source AVR clone. It is a single
module (softusb_navre) in a single design file (softusb_navre.v).
It also is using only features that map nicely to the BLIF format, for
example it only uses synchronous resets.

Converting softusb_navre.v to softusb_navre.blif could not be
easier:

1 yosys -o softusb_navre.blif -S softusb_navre.v

Listing 1. Calling Yosys without script file

Behind the scenes Yosys is controlled by synthesis scripts that exe-
cute commands that operate on Yosys’ internal state. For example, the
-o softusb_navre.blif option just adds the command write_blif

softusb_navre.blif to the end of the script. Likewise a file on the
command line – softusb_navre.v in this case – adds the command
read_verilog softusb_navre.v to the beginning of the synthesis
script. In both cases the file type is detected from the file extension.

1The other half prefers VHDL, a very different but – of course – equally
powerful language.

Finally the option -S instantiates a built-in default synthesis script.
Instead of using -S one could also specify the synthesis commands
for the script on the command line using the -p option, either using
individual options for each command or by passing one big command
string with a semicolon-separated list of commands. But in most cases
it is more convenient to use an actual script file.

III. USING A SYNTHESIS SCRIPT

With a script file we have better control over Yosys. The following
script file replicates what the command from the last section did:

1 read_verilog softusb_navre.v

2 hierarchy

3 proc; opt; memory; opt; techmap; opt

4 write_blif softusb_navre.blif

Listing 2. softusb_navre.ys

The first and last line obviously read the Verilog file and write the
BLIF file.

The 2nd line checks the design hierarchy and instantiates
parametrized versions of the modules in the design, if necessary. In
the case of this simple design this is a no-op. However, as a general
rule a synthesis script should always contain this command as first
command after reading the input files.

The 3rd line does most of the actual work:
• The command opt is the Yosys’ built-in optimizer. It can

perform some simple optimizations such as const-folding and
removing unconnected parts of the design. It is common practice
to call opt after each major step in the synthesis procedure.
In cases where too much optimization is not appreciated (for
example when analyzing a design), it is recommended to call
clean instead of opt.

• The command proc converts processes (Yosys’ internal repre-
sentation of Verilog always- and initial-blocks) to circuits of
multiplexers and storage elements (various types of flip-flops).

• The command memory converts Yosys’ internal representations
of arrays and array accesses to multi-port block memories, and
then maps this block memories to address decoders and flip-
flops, unless the option -nomap is used, in which case the
multi-port block memories stay in the design and can then be
mapped to architecture-specific memory primitives using other
commands.

• The command techmap turns a high-level circuit with coarse
grain cells such as wide adders and multipliers to a fine-grain
circuit of simple logic primitives and single-bit storage elements.
The command does that by substituting the complex cells by
circuits of simpler cells. It is possible to provide a custom set
of rules for this process in the form of a Verilog source file, as
we will see in the next section.

Now Yosys can be run with the filename of the synthesis script as
argument:

1 yosys softusb_navre.ys

Listing 3. Calling Yosys with script file

Now that we are using a synthesis script we can easily modify how
Yosys synthesizes the design. The first thing we should customize is
the call to the hierarchy command:

2

Whenever it is known that there are no implicit blackboxes in
the design, i.e. modules that are referenced but are not defined, the
hierarchy command should be called with the -check option. This
will then cause synthesis to fail when implicit blackboxes are found
in the design.

The 2nd thing we can improve regarding the hierarchy command
is that we can tell it the name of the top level module of the design
hierarchy. It will then automatically remove all modules that are not
referenced from this top level module.

For many designs it is also desired to optimize the encodings for
the finite state machines (FSMs) in the design. The fsm command
finds FSMs, extracts them, performs some basic optimizations and
then generate a circuit from the extracted and optimized description.
It would also be possible to tell the fsm command to leave the FSMs
in their extracted form, so they can be further processed using custom
commands. But in this case we don’t want that.

So now we have the final synthesis script for generating a BLIF
file for the Navré CPU:

1 read_verilog softusb_navre.v

2 hierarchy -check -top softusb_navre

3 proc; opt; memory; opt; fsm; opt; techmap; opt

4 write_blif softusb_navre.blif

Listing 4. softusb_navre.ys (improved)

IV. ADVANCED EXAMPLE: THE AMBER23 ARMV2A CPU

Our 2nd example is the Amber23 [4] ARMv2a CPU. Once again
we base our example on the Verilog code that is included in yosys-
bigsim [2].

The problem with this core is that it contains no dedicated reset
logic. Instead the coding techniques shown in Listing 6 are used to
define reset values for the global asynchronous reset in an FPGA
implementation. This design can not be expressed in BLIF as it is.
Instead we need to use a synthesis script that transforms this form to
synchronous resets that can be expressed in BLIF.

1 read_verilog a23_alu.v

2 read_verilog a23_barrel_shift_fpga.v

3 read_verilog a23_barrel_shift.v

4 read_verilog a23_cache.v

5 read_verilog a23_coprocessor.v

6 read_verilog a23_core.v

7 read_verilog a23_decode.v

8 read_verilog a23_execute.v

9 read_verilog a23_fetch.v

10 read_verilog a23_multiply.v

11 read_verilog a23_ram_register_bank.v

12 read_verilog a23_register_bank.v

13 read_verilog a23_wishbone.v

14 read_verilog generic_sram_byte_en.v

15 read_verilog generic_sram_line_en.v

16 hierarchy -check -top a23_core

17 add -global_input globrst 1

18 proc -global_arst globrst

19 techmap -map adff2dff.v

20 opt; memory; opt; fsm; opt; techmap

21 write_blif amber23.blif

Listing 5. amber23.ys

1 reg [7:0] a = 13, b;

2 initial b = 37;

Listing 6. Implicit coding of global asynchronous resets

(Note that there is no problem if this coding techniques are used
to model ROM, where the register is initialized using this syntax but
is never updated otherwise.)

Listing 5 shows the synthesis script for the Amber23 core. In
line 17 the add command is used to add a 1-bit wide global input
signal with the name globrst. That means that an input with that
name is added to each module in the design hierarchy and then all
module instantiations are altered so that this new signal is connected
throughout the whole design hierarchy.

In line 18 the proc command is called. But in this script the signal
name globrst is passed to the command as a global reset signal for
resetting the registers to their assigned initial values.

Finally in line 19 the techmap command is used to replace all
instances of flip-flops with asynchronous resets with flip-flops with
synchronous resets. The map file used for this is shown in Listing 7.
Note how the techmap_celltype attribute is used in line 1 to tell
the techmap command which cells to replace in the design, how
the _TECHMAP_FAIL_ wire in lines 15 and 16 (which evaluates to a
constant value) determines if the parameter set is compatible with
this replacement circuit, and how the _TECHMAP_DO_ wire in line 13
provides a mini synthesis-script to be used to process this cell.

V. VERIFICATION OF THE AMBER23 CPU

The BLIF file for the Amber23 core, generated using Listings 5
and 7 and the version of the Amber23 RTL source that is bundled
with yosys-bigsim, was verified using the test-bench from yosys-
bigsim. It successfully executed the program shown in Listing 8 in
the test-bench.

1 (* techmap_celltype = "$adff" *)

2 module adff2dff (CLK, ARST, D, Q);

3
4 parameter WIDTH = 1;

5 parameter CLK_POLARITY = 1;

6 parameter ARST_POLARITY = 1;

7 parameter ARST_VALUE = 0;

8
9 input CLK, ARST;

10 input [WIDTH-1:0] D;

11 output reg [WIDTH-1:0] Q;

12
13 wire [1023:0] _TECHMAP_DO_ = "proc";

14
15 wire _TECHMAP_FAIL_ =

16 !CLK_POLARITY || !ARST_POLARITY;

17
18 always @(posedge CLK)

19 if (ARST)

20 Q <= ARST_VALUE;

21 else

22 Q <= D;

23
24 endmodule

Listing 7. adff2dff.v

3

1 #include <stdint.h>

2 #include <stdbool.h>

3
4 #define BITMAP_SIZE 64

5 #define OUTPORT 0x10000000

6
7 static uint32_t bitmap[BITMAP_SIZE/32];

8
9 static void bitmap_set(uint32_t idx) { bitmap[idx/32] |= 1 << (idx % 32); }

10 static bool bitmap_get(uint32_t idx) { return (bitmap[idx/32] & (1 << (idx % 32))) != 0; }

11 static void output(uint32_t val) { *((volatile uint32_t*)OUTPORT) = val; }

12
13 int main() {

14 uint32_t i, j, k;

15 output(2);

16 for (i = 0; i < BITMAP_SIZE; i++) {

17 if (bitmap_get(i)) continue;

18 output(3+2*i);

19 for (j = 2*(3+2*i);; j += 3+2*i) {

20 if (j%2 == 0) continue;

21 k = (j-3)/2;

22 if (k >= BITMAP_SIZE) break;

23 bitmap_set(k);

24 }

25 }

26 output(0);

27 return 0;

28 }

Listing 8. Test program for the Amber23 CPU (Sieve of Eratosthenes). Compiled using GCC 4.6.3 for ARM with -Os -marm -march=armv2a
-mno-thumb-interwork -ffreestanding, linked with --fix-v4bx set and booted with a custom setup routine written in ARM assembler.

For simulation the BLIF file was converted back to Verilog using
ABC [5]. So this test includes the successful transformation of the
BLIF file into ABC’s internal format as well.

The only thing left to write about the simulation itself is that it
probably was one of the most energy inefficient and time consuming
ways of successfully calculating the first 31 primes the author has
ever conducted.

VI. LIMITATIONS

At the time of this writing Yosys does not support multi-
dimensional memories, does not support writing to individual bits
of array elements, does not support initialization of arrays with
$readmemb and $readmemh, and has only limited support for tristate
logic, to name just a few limitations.

That being said, Yosys can synthesize an overwhelming majority
of real-world Verilog RTL code. The remaining cases can usually be
modified to be compatible with Yosys quite easily.

The various designs in yosys-bigsim are a good place to look for
examples of what is within the capabilities of Yosys.

VII. CONCLUSION

Yosys is a feature-rich Verilog-2005 synthesis tool. It has many
uses, but one is to provide an easy gateway from high-level Verilog
code to low-level logic circuits.

The command line option -S can be used to quickly synthesize
Verilog code to BLIF files without a hassle.

With custom synthesis scripts it becomes possible to easily perform
high-level optimizations, such as re-encoding FSMs. In some extreme
cases, such as the Amber23 ARMv2 CPU, the more advanced Yosys

features can be used to change a design to fit a certain need without
actually touching the RTL code.

REFERENCES

[1] Clifford Wolf. The Yosys Open SYnthesis Suite.
http://www.clifford.at/yosys/

[2] yosys-bigsim, a collection of real-world Verilog designs for regression
testing purposes.
https://github.com/cliffordwolf/yosys-bigsim

[3] Sebastien Bourdeauducq. Navré AVR clone (8-bit RISC).
http://opencores.org/project,navre

[4] Conor Santifort. Amber ARM-compatible core.
http://opencores.org/project,amber

[5] Berkeley Logic Synthesis and Verification Group. ABC: A System for
Sequential Synthesis and Verification.
http://www.eecs.berkeley.edu/~alanmi/abc/

[6] Berkeley Logic Interchange Format (BLIF)
http://vlsi.colorado.edu/~vis/blif.ps

http://www.clifford.at/yosys/
https://github.com/cliffordwolf/yosys-bigsim
http://opencores.org/project,navre
http://opencores.org/project,amber
http://www.eecs.berkeley.edu/~alanmi/abc/
http://vlsi.colorado.edu/~vis/blif.ps

