/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/register.h" #include "kernel/celltypes.h" #include "kernel/consteval.h" #include "kernel/sigtools.h" #include "kernel/log.h" #include "kernel/satgen.h" #include #include #include #include USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN bool inv_mode; int verbose_level, reduce_counter, reduce_stop_at; typedef std::map>> drivers_t; std::string dump_prefix; struct equiv_bit_t { int depth; bool inverted; RTLIL::Cell *drv; RTLIL::SigBit bit; bool operator<(const equiv_bit_t &other) const { if (depth != other.depth) return depth < other.depth; if (inverted != other.inverted) return inverted < other.inverted; if (drv != other.drv) return drv < other.drv; return bit < other.bit; } }; struct CountBitUsage { SigMap &sigmap; std::map &cache; CountBitUsage(SigMap &sigmap, std::map &cache) : sigmap(sigmap), cache(cache) { } void operator()(RTLIL::SigSpec &sig) { std::vector vec = sigmap(sig).to_sigbit_vector(); for (auto &bit : vec) cache[bit]++; } }; struct FindReducedInputs { SigMap &sigmap; drivers_t &drivers; ezSatPtr ez; std::set ez_cells; SatGen satgen; std::map sat_pi; std::vector sat_pi_uniq_bitvec; FindReducedInputs(SigMap &sigmap, drivers_t &drivers) : sigmap(sigmap), drivers(drivers), satgen(ez.get(), &sigmap) { satgen.model_undef = true; } int get_bits(int val) { int bits = 0; for (int i = 8*sizeof(int); val; i = i >> 1) if (val >> (i-1)) { bits += i; val = val >> i; } return bits; } void register_pi_bit(RTLIL::SigBit bit) { if (sat_pi.count(bit) != 0) return; satgen.setContext(&sigmap, "A"); int sat_a = satgen.importSigSpec(bit).front(); ez->assume(ez->NOT(satgen.importUndefSigSpec(bit).front())); satgen.setContext(&sigmap, "B"); int sat_b = satgen.importSigSpec(bit).front(); ez->assume(ez->NOT(satgen.importUndefSigSpec(bit).front())); int idx = sat_pi.size(); size_t idx_bits = get_bits(idx); if (sat_pi_uniq_bitvec.size() != idx_bits) { sat_pi_uniq_bitvec.push_back(ez->frozen_literal(stringf("uniq_%d", int(idx_bits)-1))); for (auto &it : sat_pi) ez->assume(ez->OR(ez->NOT(it.second), ez->NOT(sat_pi_uniq_bitvec.back()))); } log_assert(sat_pi_uniq_bitvec.size() == idx_bits); sat_pi[bit] = ez->frozen_literal(stringf("p, falsei_%s", log_signal(bit))); ez->assume(ez->IFF(ez->XOR(sat_a, sat_b), sat_pi[bit])); for (size_t i = 0; i < idx_bits; i++) if ((idx & (1 << i)) == 0) ez->assume(ez->OR(ez->NOT(sat_pi[bit]), ez->NOT(sat_pi_uniq_bitvec[i]))); else ez->assume(ez->OR(ez->NOT(sat_pi[bit]), sat_pi_uniq_bitvec[i])); } void register_cone_worker(std::set &pi, std::set &sigdone, RTLIL::SigBit out) { if (out.wire == NULL) return; if (sigdone.count(out) != 0) return; sigdone.insert(out); if (drivers.count(out) != 0) { std::pair> &drv = drivers.at(out); if (ez_cells.count(drv.first) == 0) { satgen.setContext(&sigmap, "A"); if (!satgen.importCell(drv.first)) log_error("Can't create SAT model for cell %s (%s)!\n", RTLIL::id2cstr(drv.first->name), RTLIL::id2cstr(drv.first->type)); satgen.setContext(&sigmap, "B"); if (!satgen.importCell(drv.first)) log_abort(); ez_cells.insert(drv.first); } for (auto &bit : drv.second) register_cone_worker(pi, sigdone, bit); } else { register_pi_bit(out); pi.insert(out); } } void register_cone(std::vector &pi, RTLIL::SigBit out) { std::set pi_set, sigdone; register_cone_worker(pi_set, sigdone, out); pi.clear(); pi.insert(pi.end(), pi_set.begin(), pi_set.end()); } void analyze(std::vector &reduced_inputs, RTLIL::SigBit output, int prec) { if (verbose_level >= 1) log("[%2d%%] Analyzing input cone for signal %s:\n", prec, log_signal(output)); std::vector pi; register_cone(pi, output); if (verbose_level >= 1) log(" Found %d input signals and %d cells.\n", int(pi.size()), int(ez_cells.size())); satgen.setContext(&sigmap, "A"); int output_a = satgen.importSigSpec(output).front(); int output_undef_a = satgen.importUndefSigSpec(output).front(); satgen.setContext(&sigmap, "B"); int output_b = satgen.importSigSpec(output).front(); int output_undef_b = satgen.importUndefSigSpec(output).front(); std::set unused_pi_idx; for (size_t i = 0; i < pi.size(); i++) unused_pi_idx.insert(i); while (1) { std::vector model_pi_idx; std::vector model_expr; std::vector model; for (size_t i = 0; i < pi.size(); i++) if (unused_pi_idx.count(i) != 0) { model_pi_idx.push_back(i); model_expr.push_back(sat_pi.at(pi[i])); } if (!ez->solve(model_expr, model, ez->expression(ezSAT::OpOr, model_expr), ez->XOR(output_a, output_b), ez->NOT(output_undef_a), ez->NOT(output_undef_b))) break; int found_count = 0; for (size_t i = 0; i < model_pi_idx.size(); i++) if (model[i]) { if (verbose_level >= 2) log(" Found relevant input: %s\n", log_signal(pi[model_pi_idx[i]])); unused_pi_idx.erase(model_pi_idx[i]); found_count++; } log_assert(found_count == 1); } for (size_t i = 0; i < pi.size(); i++) if (unused_pi_idx.count(i) == 0) reduced_inputs.push_back(pi[i]); if (verbose_level >= 1) log(" Reduced input cone contains %d inputs.\n", int(reduced_inputs.size())); } }; struct PerformReduction { SigMap &sigmap; drivers_t &drivers; std::set> &inv_pairs; pool recursion_guard; ezSatPtr ez; SatGen satgen; std::vector sat_pi, sat_out, sat_def; std::vector out_bits, pi_bits; std::vector out_inverted; std::vector out_depth; int cone_size; int register_cone_worker(std::set &celldone, std::map &sigdepth, RTLIL::SigBit out) { if (out.wire == NULL) return 0; if (sigdepth.count(out) != 0) return sigdepth.at(out); if (recursion_guard.count(out)) { string loop_signals; for (auto loop_bit : recursion_guard) loop_signals += string(" ") + log_signal(loop_bit); log_error("Found logic loop:%s\n", loop_signals.c_str()); } recursion_guard.insert(out); if (drivers.count(out) != 0) { std::pair> &drv = drivers.at(out); if (celldone.count(drv.first) == 0) { if (!satgen.importCell(drv.first)) log_error("Can't create SAT model for cell %s (%s)!\n", RTLIL::id2cstr(drv.first->name), RTLIL::id2cstr(drv.first->type)); celldone.insert(drv.first); } int max_child_depth = 0; for (auto &bit : drv.second) max_child_depth = max(register_cone_worker(celldone, sigdepth, bit), max_child_depth); sigdepth[out] = max_child_depth + 1; } else { pi_bits.push_back(out); sat_pi.push_back(satgen.importSigSpec(out).front()); ez->assume(ez->NOT(satgen.importUndefSigSpec(out).front())); sigdepth[out] = 0; } recursion_guard.erase(out); return sigdepth.at(out); } PerformReduction(SigMap &sigmap, drivers_t &drivers, std::set> &inv_pairs, std::vector &bits, int cone_size) : sigmap(sigmap), drivers(drivers), inv_pairs(inv_pairs), satgen(ez.get(), &sigmap), out_bits(bits), cone_size(cone_size) { satgen.model_undef = true; std::set celldone; std::map sigdepth; for (auto &bit : bits) { out_depth.push_back(register_cone_worker(celldone, sigdepth, bit)); sat_out.push_back(satgen.importSigSpec(bit).front()); sat_def.push_back(ez->NOT(satgen.importUndefSigSpec(bit).front())); } if (inv_mode && cone_size > 0) { if (!ez->solve(sat_out, out_inverted, ez->expression(ezSAT::OpAnd, sat_def))) log_error("Solving for initial model failed!\n"); for (size_t i = 0; i < sat_out.size(); i++) if (out_inverted.at(i)) sat_out[i] = ez->NOT(sat_out[i]); } else out_inverted = std::vector(sat_out.size(), false); } void analyze_const(std::vector> &results, int idx) { if (verbose_level == 1) log(" Finding const value for %s.\n", log_signal(out_bits[idx])); bool can_be_set = ez->solve(ez->AND(sat_out[idx], sat_def[idx])); bool can_be_clr = ez->solve(ez->AND(ez->NOT(sat_out[idx]), sat_def[idx])); log_assert(!can_be_set || !can_be_clr); RTLIL::SigBit value(RTLIL::State::Sx); if (can_be_set) value = RTLIL::State::S1; if (can_be_clr) value = RTLIL::State::S0; if (verbose_level == 1) log(" Constant value for this signal: %s\n", log_signal(value)); int result_idx = -1; for (size_t i = 0; i < results.size(); i++) { if (results[i].front().bit == value) { result_idx = i; break; } } if (result_idx == -1) { result_idx = results.size(); results.push_back(std::vector()); equiv_bit_t bit; bit.depth = 0; bit.inverted = false; bit.drv = NULL; bit.bit = value; results.back().push_back(bit); } equiv_bit_t bit; bit.depth = 1; bit.inverted = false; bit.drv = drivers.count(out_bits[idx]) ? drivers.at(out_bits[idx]).first : NULL; bit.bit = out_bits[idx]; results[result_idx].push_back(bit); } void analyze(std::vector> &results, std::map &results_map, std::vector &bucket, std::string indent1, std::string indent2) { std::string indent = indent1 + indent2; const char *indt = indent.c_str(); if (bucket.size() <= 1) return; if (verbose_level == 1) log("%s Trying to shatter bucket with %d signals.\n", indt, int(bucket.size())); if (verbose_level > 1) { std::vector bucket_sigbits; for (int idx : bucket) bucket_sigbits.push_back(out_bits[idx]); log("%s Trying to shatter bucket with %d signals: %s\n", indt, int(bucket.size()), log_signal(bucket_sigbits)); } std::vector sat_set_list, sat_clr_list; for (int idx : bucket) { sat_set_list.push_back(ez->AND(sat_out[idx], sat_def[idx])); sat_clr_list.push_back(ez->AND(ez->NOT(sat_out[idx]), sat_def[idx])); } std::vector modelVars = sat_out; std::vector model; modelVars.insert(modelVars.end(), sat_def.begin(), sat_def.end()); if (verbose_level >= 2) modelVars.insert(modelVars.end(), sat_pi.begin(), sat_pi.end()); if (ez->solve(modelVars, model, ez->expression(ezSAT::OpOr, sat_set_list), ez->expression(ezSAT::OpOr, sat_clr_list))) { int iter_count = 1; while (1) { sat_set_list.clear(); sat_clr_list.clear(); std::vector sat_def_list; for (int idx : bucket) if (!model[sat_out.size() + idx]) { sat_set_list.push_back(ez->AND(sat_out[idx], sat_def[idx])); sat_clr_list.push_back(ez->AND(ez->NOT(sat_out[idx]), sat_def[idx])); } else { sat_def_list.push_back(sat_def[idx]); } if (!ez->solve(modelVars, model, ez->expression(ezSAT::OpOr, sat_set_list), ez->expression(ezSAT::OpOr, sat_clr_list), ez->expression(ezSAT::OpAnd, sat_def_list))) break; iter_count++; } if (verbose_level >= 1) { int count_set = 0, count_clr = 0, count_undef = 0; for (int idx : bucket) if (!model[sat_out.size() + idx]) count_undef++; else if (model[idx]) count_set++; else count_clr++; log("%s After %d iterations: %d set vs. %d clr vs %d undef\n", indt, iter_count, count_set, count_clr, count_undef); } if (verbose_level >= 2) { for (size_t i = 0; i < pi_bits.size(); i++) log("%s -> PI %c == %s\n", indt, model[2*sat_out.size() + i] ? '1' : '0', log_signal(pi_bits[i])); for (int idx : bucket) log("%s -> OUT %c == %s%s\n", indt, model[sat_out.size() + idx] ? model[idx] ? '1' : '0' : 'x', out_inverted.at(idx) ? "~" : "", log_signal(out_bits[idx])); } std::vector buckets_a; std::vector buckets_b; for (int idx : bucket) { if (!model[sat_out.size() + idx] || model[idx]) buckets_a.push_back(idx); if (!model[sat_out.size() + idx] || !model[idx]) buckets_b.push_back(idx); } analyze(results, results_map, buckets_a, indent1 + ".", indent2 + " "); analyze(results, results_map, buckets_b, indent1 + "x", indent2 + " "); } else { std::vector undef_slaves; for (int idx : bucket) { std::vector sat_def_list; for (int idx2 : bucket) if (idx != idx2) sat_def_list.push_back(sat_def[idx2]); if (ez->solve(ez->NOT(sat_def[idx]), ez->expression(ezSAT::OpOr, sat_def_list))) undef_slaves.push_back(idx); } if (undef_slaves.size() == bucket.size()) { if (verbose_level >= 1) log("%s Complex undef overlap. None of the signals covers the others.\n", indt); // FIXME: We could try to further shatter a group with complex undef overlaps return; } for (int idx : undef_slaves) out_depth[idx] = std::numeric_limits::max(); if (verbose_level >= 1) { log("%s Found %d equivalent signals:", indt, int(bucket.size())); for (int idx : bucket) log("%s%s%s", idx == bucket.front() ? " " : ", ", out_inverted[idx] ? "~" : "", log_signal(out_bits[idx])); log("\n"); } int result_idx = -1; for (int idx : bucket) { if (results_map.count(idx) == 0) continue; if (result_idx == -1) { result_idx = results_map.at(idx); continue; } int result_idx2 = results_map.at(idx); results[result_idx].insert(results[result_idx2].begin(), results[result_idx2].end()); for (int idx2 : results[result_idx2]) results_map[idx2] = result_idx; results[result_idx2].clear(); } if (result_idx == -1) { result_idx = results.size(); results.push_back(std::set()); } results[result_idx].insert(bucket.begin(), bucket.end()); } } void analyze(std::vector> &results, int perc) { std::vector bucket; for (size_t i = 0; i < sat_out.size(); i++) bucket.push_back(i); std::vector> results_buf; std::map results_map; analyze(results_buf, results_map, bucket, stringf("[%2d%%] %d ", perc, cone_size), ""); for (auto &r : results_buf) { if (r.size() <= 1) continue; if (verbose_level >= 1) { std::vector r_sigbits; for (int idx : r) r_sigbits.push_back(out_bits[idx]); log(" Found group of %d equivalent signals: %s\n", int(r.size()), log_signal(r_sigbits)); } std::vector undef_slaves; for (int idx : r) { std::vector sat_def_list; for (int idx2 : r) if (idx != idx2) sat_def_list.push_back(sat_def[idx2]); if (ez->solve(ez->NOT(sat_def[idx]), ez->expression(ezSAT::OpOr, sat_def_list))) undef_slaves.push_back(idx); } if (undef_slaves.size() == bucket.size()) { if (verbose_level >= 1) log(" Complex undef overlap. None of the signals covers the others.\n"); // FIXME: We could try to further shatter a group with complex undef overlaps return; } for (int idx : undef_slaves) out_depth[idx] = std::numeric_limits::max(); std::vector result; for (int idx : r) { equiv_bit_t bit; bit.depth = out_depth[idx]; bit.inverted = out_inverted[idx]; bit.drv = drivers.count(out_bits[idx]) ? drivers.at(out_bits[idx]).first : NULL; bit.bit = out_bits[idx]; result.push_back(bit); } std::sort(result.begin(), result.end()); if (result.front().inverted) for (auto &bit : result) bit.inverted = !bit.inverted; for (size_t i = 1; i < result.size(); i++) { std::pair p(result[0].bit, result[i].bit); if (inv_pairs.count(p) != 0) result.erase(result.begin() + i); } if (result.size() > 1) results.push_back(result); } } }; struct FreduceWorker { RTLIL::Design *design; RTLIL::Module *module; SigMap sigmap; drivers_t drivers; std::set> inv_pairs; FreduceWorker(RTLIL::Design *design, RTLIL::Module *module) : design(design), module(module), sigmap(module) { } bool find_bit_in_cone(std::set &celldone, RTLIL::SigBit needle, RTLIL::SigBit haystack) { if (needle == haystack) return true; if (haystack.wire == NULL || needle.wire == NULL || drivers.count(haystack) == 0) return false; std::pair> &drv = drivers.at(haystack); if (celldone.count(drv.first)) return false; celldone.insert(drv.first); for (auto &bit : drv.second) if (find_bit_in_cone(celldone, needle, bit)) return true; return false; } bool find_bit_in_cone(RTLIL::SigBit needle, RTLIL::SigBit haystack) { std::set celldone; return find_bit_in_cone(celldone, needle, haystack); } void dump() { std::string filename = stringf("%s_%s_%05d.il", dump_prefix.c_str(), RTLIL::id2cstr(module->name), reduce_counter); log("%s Writing dump file `%s'.\n", reduce_counter ? " " : "", filename.c_str()); Pass::call(design, stringf("dump -outfile %s %s", filename.c_str(), design->selected_active_module.empty() ? module->name.c_str() : "")); } int run() { log("Running functional reduction on module %s:\n", RTLIL::id2cstr(module->name)); CellTypes ct; ct.setup_internals(); ct.setup_stdcells(); int bits_full_total = 0; std::vector> batches; for (auto w : module->wires()) if (w->port_input) { batches.push_back(sigmap(w).to_sigbit_set()); bits_full_total += w->width; } for (auto cell : module->cells()) { if (ct.cell_known(cell->type)) { std::set inputs, outputs; for (auto &port : cell->connections()) { std::vector bits = sigmap(port.second).to_sigbit_vector(); if (ct.cell_output(cell->type, port.first)) outputs.insert(bits.begin(), bits.end()); else inputs.insert(bits.begin(), bits.end()); } std::pair> drv(cell, inputs); for (auto &bit : outputs) drivers[bit] = drv; batches.push_back(outputs); bits_full_total += outputs.size(); } if (inv_mode && cell->type == "$_NOT_") inv_pairs.insert(std::pair(sigmap(cell->getPort("\\A")), sigmap(cell->getPort("\\Y")))); } int bits_count = 0; int bits_full_count = 0; std::map, std::vector> buckets; for (auto &batch : batches) { for (auto &bit : batch) if (bit.wire != NULL && design->selected(module, bit.wire)) goto found_selected_wire; bits_full_count += batch.size(); continue; found_selected_wire: log(" Finding reduced input cone for signal batch %s%c\n", log_signal(batch), verbose_level ? ':' : '.'); FindReducedInputs infinder(sigmap, drivers); for (auto &bit : batch) { std::vector inputs; infinder.analyze(inputs, bit, 100 * bits_full_count / bits_full_total); buckets[inputs].push_back(bit); bits_full_count++; bits_count++; } } log(" Sorted %d signal bits into %d buckets.\n", bits_count, int(buckets.size())); int bucket_count = 0; std::vector> equiv; for (auto &bucket : buckets) { bucket_count++; if (bucket.second.size() == 1) continue; if (bucket.first.size() == 0) { log(" Finding const values for bucket %s%c\n", log_signal(bucket.second), verbose_level ? ':' : '.'); PerformReduction worker(sigmap, drivers, inv_pairs, bucket.second, bucket.first.size()); for (size_t idx = 0; idx < bucket.second.size(); idx++) worker.analyze_const(equiv, idx); } else { log(" Trying to shatter bucket %s%c\n", log_signal(bucket.second), verbose_level ? ':' : '.'); PerformReduction worker(sigmap, drivers, inv_pairs, bucket.second, bucket.first.size()); worker.analyze(equiv, 100 * bucket_count / (buckets.size() + 1)); } } std::map bitusage; CountBitUsage bitusage_worker(sigmap, bitusage); module->rewrite_sigspecs(bitusage_worker); if (!dump_prefix.empty()) dump(); log(" Rewiring %d equivalent groups:\n", int(equiv.size())); int rewired_sigbits = 0; for (auto &grp : equiv) { log(" [%05d] Using as master for group: %s\n", ++reduce_counter, log_signal(grp.front().bit)); RTLIL::SigSpec inv_sig; for (size_t i = 1; i < grp.size(); i++) { if (!design->selected(module, grp[i].bit.wire)) { log(" Skipping not-selected slave: %s\n", log_signal(grp[i].bit)); continue; } if (grp[i].bit.wire->port_id == 0 && bitusage[grp[i].bit] <= 1) { log(" Skipping unused slave: %s\n", log_signal(grp[i].bit)); continue; } if (find_bit_in_cone(grp[i].bit, grp.front().bit)) { log(" Skipping dependency of master: %s\n", log_signal(grp[i].bit)); continue; } log(" Connect slave%s: %s\n", grp[i].inverted ? " using inverter" : "", log_signal(grp[i].bit)); RTLIL::Cell *drv = drivers.at(grp[i].bit).first; RTLIL::Wire *dummy_wire = module->addWire(NEW_ID); for (auto &port : drv->connections_) if (ct.cell_output(drv->type, port.first)) sigmap(port.second).replace(grp[i].bit, dummy_wire, &port.second); if (grp[i].inverted) { if (inv_sig.size() == 0) { inv_sig = module->addWire(NEW_ID); RTLIL::Cell *inv_cell = module->addCell(NEW_ID, "$_NOT_"); inv_cell->setPort("\\A", grp[0].bit); inv_cell->setPort("\\Y", inv_sig); } module->connect(RTLIL::SigSig(grp[i].bit, inv_sig)); } else module->connect(RTLIL::SigSig(grp[i].bit, grp[0].bit)); rewired_sigbits++; } if (!dump_prefix.empty()) dump(); if (reduce_counter == reduce_stop_at) { log(" Reached limit passed using -stop option. Skipping all further reductions.\n"); break; } } log(" Rewired a total of %d signal bits in module %s.\n", rewired_sigbits, RTLIL::id2cstr(module->name)); return rewired_sigbits; } }; struct FreducePass : public Pass { FreducePass() : Pass("freduce", "perform functional reduction") { } void help() YS_OVERRIDE { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" freduce [options] [selection]\n"); log("\n"); log("This pass performs functional reduction in the circuit. I.e. if two nodes are\n"); log("equivalent, they are merged to one node and one of the redundant drivers is\n"); log("disconnected. A subsequent call to 'clean' will remove the redundant drivers.\n"); log("\n"); log(" -v, -vv\n"); log(" enable verbose or very verbose output\n"); log("\n"); log(" -inv\n"); log(" enable explicit handling of inverted signals\n"); log("\n"); log(" -stop \n"); log(" stop after reduction operations. this is mostly used for\n"); log(" debugging the freduce command itself.\n"); log("\n"); log(" -dump \n"); log(" dump the design to __.il after each reduction\n"); log(" operation. this is mostly used for debugging the freduce command.\n"); log("\n"); log("This pass is undef-aware, i.e. it considers don't-care values for detecting\n"); log("equivalent nodes.\n"); log("\n"); log("All selected wires are considered for rewiring. The selected cells cover the\n"); log("circuit that is analyzed.\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) YS_OVERRIDE { reduce_counter = 0; reduce_stop_at = 0; verbose_level = 0; inv_mode = false; dump_prefix = std::string(); log_header(design, "Executing FREDUCE pass (perform functional reduction).\n"); size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-v") { verbose_level = 1; continue; } if (args[argidx] == "-vv") { verbose_level = 2; continue; } if (args[argidx] == "-inv") { inv_mode = true; continue; } if (args[argidx] == "-stop" && argidx+1 < args.size()) { reduce_stop_at = atoi(args[++argidx].c_str()); continue; } if (args[argidx] == "-dump" && argidx+1 < args.size()) { dump_prefix = args[++argidx]; continue; } break; } extra_args(args, argidx, design); int bitcount = 0; for (auto module : design->selected_modules()) { bitcount += FreduceWorker(design, module).run(); } log("Rewired a total of %d signal bits.\n", bitcount); } } FreducePass; PRIVATE_NAMESPACE_END