/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ // See Xilinx UG953 and UG474 for a description of the cell types below. // http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf // http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug953-vivado-7series-libraries.pdf module VCC(output P); assign P = 1; endmodule module GND(output G); assign G = 0; endmodule module IBUF( output O, (* iopad_external_pin *) input I); parameter IOSTANDARD = "default"; parameter IBUF_LOW_PWR = 0; assign O = I; specify (I => O) = 0; endspecify endmodule module IBUFG( output O, (* iopad_external_pin *) input I); parameter CAPACITANCE = "DONT_CARE"; parameter IBUF_DELAY_VALUE = "0"; parameter IBUF_LOW_PWR = "TRUE"; parameter IOSTANDARD = "DEFAULT"; assign O = I; endmodule module OBUF( (* iopad_external_pin *) output O, input I); parameter IOSTANDARD = "default"; parameter DRIVE = 12; parameter SLEW = "SLOW"; assign O = I; specify (I => O) = 0; endspecify endmodule module IOBUF ( (* iopad_external_pin *) inout IO, output O, input I, input T ); parameter integer DRIVE = 12; parameter IBUF_LOW_PWR = "TRUE"; parameter IOSTANDARD = "DEFAULT"; parameter SLEW = "SLOW"; assign IO = T ? 1'bz : I; assign O = IO; specify (I => IO) = 0; (IO => O) = 0; endspecify endmodule module OBUFT ( (* iopad_external_pin *) output O, input I, input T ); parameter CAPACITANCE = "DONT_CARE"; parameter integer DRIVE = 12; parameter IOSTANDARD = "DEFAULT"; parameter SLEW = "SLOW"; assign O = T ? 1'bz : I; specify (I => O) = 0; endspecify endmodule module BUFG( (* clkbuf_driver *) output O, input I); assign O = I; specify // https://github.com/SymbiFlow/prjxray-db/blob/4bc6385ab300b1819848371f508185f57b649a0e/artix7/timings/CLK_BUFG_TOP_R.sdf#L11 (I => O) = 96; endspecify endmodule module BUFGCTRL( (* clkbuf_driver *) output O, input I0, input I1, (* invertible_pin = "IS_S0_INVERTED" *) input S0, (* invertible_pin = "IS_S1_INVERTED" *) input S1, (* invertible_pin = "IS_CE0_INVERTED" *) input CE0, (* invertible_pin = "IS_CE1_INVERTED" *) input CE1, (* invertible_pin = "IS_IGNORE0_INVERTED" *) input IGNORE0, (* invertible_pin = "IS_IGNORE1_INVERTED" *) input IGNORE1); parameter [0:0] INIT_OUT = 1'b0; parameter PRESELECT_I0 = "FALSE"; parameter PRESELECT_I1 = "FALSE"; parameter [0:0] IS_CE0_INVERTED = 1'b0; parameter [0:0] IS_CE1_INVERTED = 1'b0; parameter [0:0] IS_S0_INVERTED = 1'b0; parameter [0:0] IS_S1_INVERTED = 1'b0; parameter [0:0] IS_IGNORE0_INVERTED = 1'b0; parameter [0:0] IS_IGNORE1_INVERTED = 1'b0; wire I0_internal = ((CE0 ^ IS_CE0_INVERTED) ? I0 : INIT_OUT); wire I1_internal = ((CE1 ^ IS_CE1_INVERTED) ? I1 : INIT_OUT); wire S0_true = (S0 ^ IS_S0_INVERTED); wire S1_true = (S1 ^ IS_S1_INVERTED); assign O = S0_true ? I0_internal : (S1_true ? I1_internal : INIT_OUT); endmodule module BUFHCE( (* clkbuf_driver *) output O, input I, (* invertible_pin = "IS_CE_INVERTED" *) input CE); parameter [0:0] INIT_OUT = 1'b0; parameter CE_TYPE = "SYNC"; parameter [0:0] IS_CE_INVERTED = 1'b0; assign O = ((CE ^ IS_CE_INVERTED) ? I : INIT_OUT); endmodule // module OBUFT(output O, input I, T); // assign O = T ? 1'bz : I; // endmodule // module IOBUF(inout IO, output O, input I, T); // assign O = IO, IO = T ? 1'bz : I; // endmodule module INV( (* clkbuf_inv = "I" *) output O, input I ); assign O = !I; specify (I => O) = 127; endspecify endmodule (* abc9_lut=1 *) module LUT1(output O, input I0); parameter [1:0] INIT = 0; assign O = I0 ? INIT[1] : INIT[0]; specify (I0 => O) = 127; endspecify endmodule (* abc9_lut=2 *) module LUT2(output O, input I0, I1); parameter [3:0] INIT = 0; wire [ 1: 0] s1 = I1 ? INIT[ 3: 2] : INIT[ 1: 0]; assign O = I0 ? s1[1] : s1[0]; specify (I0 => O) = 238; (I1 => O) = 127; endspecify endmodule (* abc9_lut=3 *) module LUT3(output O, input I0, I1, I2); parameter [7:0] INIT = 0; wire [ 3: 0] s2 = I2 ? INIT[ 7: 4] : INIT[ 3: 0]; wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0]; assign O = I0 ? s1[1] : s1[0]; specify (I0 => O) = 407; (I1 => O) = 238; (I2 => O) = 127; endspecify endmodule (* abc9_lut=3 *) module LUT4(output O, input I0, I1, I2, I3); parameter [15:0] INIT = 0; wire [ 7: 0] s3 = I3 ? INIT[15: 8] : INIT[ 7: 0]; wire [ 3: 0] s2 = I2 ? s3[ 7: 4] : s3[ 3: 0]; wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0]; assign O = I0 ? s1[1] : s1[0]; specify (I0 => O) = 472; (I1 => O) = 407; (I2 => O) = 238; (I3 => O) = 127; endspecify endmodule (* abc9_lut=3 *) module LUT5(output O, input I0, I1, I2, I3, I4); parameter [31:0] INIT = 0; wire [15: 0] s4 = I4 ? INIT[31:16] : INIT[15: 0]; wire [ 7: 0] s3 = I3 ? s4[15: 8] : s4[ 7: 0]; wire [ 3: 0] s2 = I2 ? s3[ 7: 4] : s3[ 3: 0]; wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0]; assign O = I0 ? s1[1] : s1[0]; specify (I0 => O) = 631; (I1 => O) = 472; (I2 => O) = 407; (I3 => O) = 238; (I4 => O) = 127; endspecify endmodule // This is a placeholder for ABC9 to extract the area/delay // cost of 3-input LUTs and is not intended to be instantiated (* abc9_lut=5 *) module LUT6(output O, input I0, I1, I2, I3, I4, I5); parameter [63:0] INIT = 0; wire [31: 0] s5 = I5 ? INIT[63:32] : INIT[31: 0]; wire [15: 0] s4 = I4 ? s5[31:16] : s5[15: 0]; wire [ 7: 0] s3 = I3 ? s4[15: 8] : s4[ 7: 0]; wire [ 3: 0] s2 = I2 ? s3[ 7: 4] : s3[ 3: 0]; wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0]; assign O = I0 ? s1[1] : s1[0]; specify (I0 => O) = 642; (I1 => O) = 631; (I2 => O) = 472; (I3 => O) = 407; (I4 => O) = 238; (I5 => O) = 127; endspecify endmodule module LUT6_2(output O6, output O5, input I0, I1, I2, I3, I4, I5); parameter [63:0] INIT = 0; wire [31: 0] s5 = I5 ? INIT[63:32] : INIT[31: 0]; wire [15: 0] s4 = I4 ? s5[31:16] : s5[15: 0]; wire [ 7: 0] s3 = I3 ? s4[15: 8] : s4[ 7: 0]; wire [ 3: 0] s2 = I2 ? s3[ 7: 4] : s3[ 3: 0]; wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0]; assign O6 = I0 ? s1[1] : s1[0]; wire [15: 0] s5_4 = I4 ? INIT[31:16] : INIT[15: 0]; wire [ 7: 0] s5_3 = I3 ? s5_4[15: 8] : s5_4[ 7: 0]; wire [ 3: 0] s5_2 = I2 ? s5_3[ 7: 4] : s5_3[ 3: 0]; wire [ 1: 0] s5_1 = I1 ? s5_2[ 3: 2] : s5_2[ 1: 0]; assign O5 = I0 ? s5_1[1] : s5_1[0]; endmodule // This is a placeholder for ABC9 to extract the area/delay // cost of 3-input LUTs and is not intended to be instantiated (* abc9_lut=10 *) module \$__ABC9_LUT7 (output O, input I0, I1, I2, I3, I4, I5, I6); `ifndef __ICARUS__ specify // https://github.com/SymbiFlow/prjxray-db/blob/1c85daf1b115da4d27ca83c6b89f53a94de39748/artix7/timings/slicel.sdf#L867 (I0 => O) = 642 + 223 /* to cross F7BMUX */ + 174 /* CMUX */; (I1 => O) = 631 + 223 /* to cross F7BMUX */ + 174 /* CMUX */; (I2 => O) = 472 + 223 /* to cross F7BMUX */ + 174 /* CMUX */; (I3 => O) = 407 + 223 /* to cross F7BMUX */ + 174 /* CMUX */; (I4 => O) = 238 + 223 /* to cross F7BMUX */ + 174 /* CMUX */; (I5 => O) = 127 + 223 /* to cross F7BMUX */ + 174 /* CMUX */; (I6 => O) = 0 + 296 /* to select F7BMUX */ + 174 /* CMUX */; endspecify `endif endmodule // This is a placeholder for ABC9 to extract the area/delay // cost of 3-input LUTs and is not intended to be instantiated (* abc9_lut=20 *) module \$__ABC9_LUT8 (output O, input I0, I1, I2, I3, I4, I5, I6, I7); `ifndef __ICARUS__ specify // https://github.com/SymbiFlow/prjxray-db/blob/1c85daf1b115da4d27ca83c6b89f53a94de39748/artix7/timings/slicel.sdf#L716 (I0 => O) = 642 + 223 /* to cross F7BMUX */ + 104 /* to cross F8MUX */ + 192 /* BMUX */; (I1 => O) = 631 + 223 /* to cross F7BMUX */ + 104 /* to cross F8MUX */ + 192 /* BMUX */; (I2 => O) = 472 + 223 /* to cross F7BMUX */ + 104 /* to cross F8MUX */ + 192 /* BMUX */; (I3 => O) = 407 + 223 /* to cross F7BMUX */ + 104 /* to cross F8MUX */ + 192 /* BMUX */; (I4 => O) = 238 + 223 /* to cross F7BMUX */ + 104 /* to cross F8MUX */ + 192 /* BMUX */; (I5 => O) = 127 + 223 /* to cross F7BMUX */ + 104 /* to cross F8MUX */ + 192 /* BMUX */; (I6 => O) = 0 + 296 /* to select F7BMUX */ + 104 /* to cross F8MUX */ + 192 /* BMUX */; (I7 => O) = 0 + 0 + 273 /* to select F8MUX */ + 192 /* BMUX */; endspecify `endif endmodule module MUXCY(output O, input CI, DI, S); assign O = S ? CI : DI; endmodule module MUXF5(output O, input I0, I1, S); assign O = S ? I1 : I0; endmodule module MUXF6(output O, input I0, I1, S); assign O = S ? I1 : I0; endmodule (* abc9_box, lib_whitebox *) module MUXF7(output O, input I0, I1, S); assign O = S ? I1 : I0; specify // https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf#L451-L453 (I0 => O) = 217; (I1 => O) = 223; (S => O) = 296; endspecify endmodule (* abc9_box, lib_whitebox *) module MUXF8(output O, input I0, I1, S); assign O = S ? I1 : I0; specify // Max delays from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf#L462-L464 (I0 => O) = 104; (I1 => O) = 94; (S => O) = 273; endspecify endmodule module MUXF9(output O, input I0, I1, S); assign O = S ? I1 : I0; endmodule module XORCY(output O, input CI, LI); assign O = CI ^ LI; endmodule (* abc9_box, lib_whitebox *) module CARRY4( (* abc9_carry *) output [3:0] CO, output [3:0] O, (* abc9_carry *) input CI, input CYINIT, input [3:0] DI, S ); assign O = S ^ {CO[2:0], CI | CYINIT}; assign CO[0] = S[0] ? CI | CYINIT : DI[0]; assign CO[1] = S[1] ? CO[0] : DI[1]; assign CO[2] = S[2] ? CO[1] : DI[2]; assign CO[3] = S[3] ? CO[2] : DI[3]; specify // https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf#L11-L46 (CYINIT => O[0]) = 482; (S[0] => O[0]) = 223; (CI => O[0]) = 222; (CYINIT => O[1]) = 598; (DI[0] => O[1]) = 407; (S[0] => O[1]) = 400; (S[1] => O[1]) = 205; (CI => O[1]) = 334; (CYINIT => O[2]) = 584; (DI[0] => O[2]) = 556; (DI[1] => O[2]) = 537; (S[0] => O[2]) = 523; (S[1] => O[2]) = 558; (S[2] => O[2]) = 226; (CI => O[2]) = 239; (CYINIT => O[3]) = 642; (DI[0] => O[3]) = 615; (DI[1] => O[3]) = 596; (DI[2] => O[3]) = 438; (S[0] => O[3]) = 582; (S[1] => O[3]) = 618; (S[2] => O[3]) = 330; (S[3] => O[3]) = 227; (CI => O[3]) = 313; (CYINIT => CO[0]) = 536; (DI[0] => CO[0]) = 379; (S[0] => CO[0]) = 340; (CI => CO[0]) = 271; (CYINIT => CO[1]) = 494; (DI[0] => CO[1]) = 465; (DI[1] => CO[1]) = 445; (S[0] => CO[1]) = 433; (S[1] => CO[1]) = 469; (CI => CO[1]) = 157; (CYINIT => CO[2]) = 592; (DI[0] => CO[2]) = 540; (DI[1] => CO[2]) = 520; (DI[2] => CO[2]) = 356; (S[0] => CO[2]) = 512; (S[1] => CO[2]) = 548; (S[2] => CO[2]) = 292; (CI => CO[2]) = 228; (CYINIT => CO[3]) = 580; (DI[0] => CO[3]) = 526; (DI[1] => CO[3]) = 507; (DI[2] => CO[3]) = 398; (DI[3] => CO[3]) = 385; (S[0] => CO[3]) = 508; (S[1] => CO[3]) = 528; (S[2] => CO[3]) = 378; (S[3] => CO[3]) = 380; (CI => CO[3]) = 114; endspecify endmodule module CARRY8( output [7:0] CO, output [7:0] O, input CI, input CI_TOP, input [7:0] DI, S ); parameter CARRY_TYPE = "SINGLE_CY8"; wire CI4 = (CARRY_TYPE == "DUAL_CY4" ? CI_TOP : CO[3]); assign O = S ^ {CO[6:4], CI4, CO[2:0], CI}; assign CO[0] = S[0] ? CI : DI[0]; assign CO[1] = S[1] ? CO[0] : DI[1]; assign CO[2] = S[2] ? CO[1] : DI[2]; assign CO[3] = S[3] ? CO[2] : DI[3]; assign CO[4] = S[4] ? CI4 : DI[4]; assign CO[5] = S[5] ? CO[4] : DI[5]; assign CO[6] = S[6] ? CO[5] : DI[6]; assign CO[7] = S[7] ? CO[6] : DI[7]; endmodule `ifdef _EXPLICIT_CARRY module CARRY0(output CO_CHAIN, CO_FABRIC, O, input CI, CI_INIT, DI, S); parameter CYINIT_FABRIC = 0; wire CI_COMBINE; if(CYINIT_FABRIC) begin assign CI_COMBINE = CI_INIT; end else begin assign CI_COMBINE = CI; end assign CO_CHAIN = S ? CI_COMBINE : DI; assign CO_FABRIC = S ? CI_COMBINE : DI; assign O = S ^ CI_COMBINE; endmodule module CARRY(output CO_CHAIN, CO_FABRIC, O, input CI, DI, S); assign CO_CHAIN = S ? CI : DI; assign CO_FABRIC = S ? CI : DI; assign O = S ^ CI; endmodule `endif module ORCY (output O, input CI, I); assign O = CI | I; endmodule module MULT_AND (output LO, input I0, I1); assign LO = I0 & I1; endmodule // Flip-flops and latches. // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf#L238-L250 (* abc9_flop, lib_whitebox *) module FDRE ( output reg Q, (* clkbuf_sink *) (* invertible_pin = "IS_C_INVERTED" *) input C, input CE, (* invertible_pin = "IS_D_INVERTED" *) input D, (* invertible_pin = "IS_R_INVERTED" *) input R ); parameter [0:0] INIT = 1'b0; parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_R_INVERTED = 1'b0; initial Q <= INIT; generate case (|IS_C_INVERTED) 1'b0: always @(posedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; 1'b1: always @(negedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; endcase endgenerate specify // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L249 $setup(D , posedge C &&& CE && !IS_C_INVERTED , /*-46*/ 0); // Negative times not currently supported $setup(D , negedge C &&& CE && IS_C_INVERTED , /*-46*/ 0); // Negative times not currently supported // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L248 $setup(CE, posedge C &&& !IS_C_INVERTED, 109); $setup(CE, negedge C &&& IS_C_INVERTED, 109); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L274 $setup(R , posedge C &&& !IS_C_INVERTED, 404); $setup(R , negedge C &&& IS_C_INVERTED, 404); // https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf#L243 if (!IS_C_INVERTED && R != IS_R_INVERTED) (posedge C => (Q : 1'b0)) = 303; if ( IS_C_INVERTED && R != IS_R_INVERTED) (negedge C => (Q : 1'b0)) = 303; if (!IS_C_INVERTED && R == IS_R_INVERTED && CE) (posedge C => (Q : D ^ IS_D_INVERTED)) = 303; if ( IS_C_INVERTED && R == IS_R_INVERTED && CE) (negedge C => (Q : D ^ IS_D_INVERTED)) = 303; endspecify endmodule (* abc9_flop, lib_whitebox *) module FDRE_1 ( output reg Q, (* clkbuf_sink *) input C, input CE, input D, input R ); parameter [0:0] INIT = 1'b0; initial Q <= INIT; always @(negedge C) if (R) Q <= 1'b0; else if (CE) Q <= D; specify // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L249 $setup(D , negedge C &&& CE, /*-46*/ 0); // Negative times not currently supported // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L248 $setup(CE, negedge C, 109); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L274 $setup(R , negedge C, 404); // https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf#L243 if (R) (negedge C => (Q : 1'b0)) = 303; if (!R && CE) (negedge C => (Q : D)) = 303; endspecify endmodule (* abc9_flop, lib_whitebox *) module FDSE ( output reg Q, (* clkbuf_sink *) (* invertible_pin = "IS_C_INVERTED" *) input C, input CE, (* invertible_pin = "IS_D_INVERTED" *) input D, (* invertible_pin = "IS_S_INVERTED" *) input S ); parameter [0:0] INIT = 1'b1; parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_S_INVERTED = 1'b0; initial Q <= INIT; generate case (|IS_C_INVERTED) 1'b0: always @(posedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; 1'b1: always @(negedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; endcase endgenerate specify // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L249 $setup(D , posedge C &&& !IS_C_INVERTED && CE, /*-46*/ 0); // Negative times not currently supported $setup(D , negedge C &&& IS_C_INVERTED && CE, /*-46*/ 0); // Negative times not currently supported // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L248 $setup(CE, posedge C &&& !IS_C_INVERTED, 109); $setup(CE, negedge C &&& IS_C_INVERTED, 109); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L274 $setup(S , posedge C &&& !IS_C_INVERTED, 404); $setup(S , negedge C &&& IS_C_INVERTED, 404); // https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf#L243 if (!IS_C_INVERTED && S != IS_S_INVERTED) (posedge C => (Q : 1'b1)) = 303; if ( IS_C_INVERTED && S != IS_S_INVERTED) (negedge C => (Q : 1'b1)) = 303; if (!IS_C_INVERTED && S == IS_S_INVERTED && CE) (posedge C => (Q : D ^ IS_D_INVERTED)) = 303; if ( IS_C_INVERTED && S == IS_S_INVERTED && CE) (negedge C => (Q : D ^ IS_D_INVERTED)) = 303; endspecify endmodule (* abc9_flop, lib_whitebox *) module FDSE_1 ( output reg Q, (* clkbuf_sink *) input C, input CE, input D, input S ); parameter [0:0] INIT = 1'b1; initial Q <= INIT; always @(negedge C) if (S) Q <= 1'b1; else if (CE) Q <= D; specify // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L249 $setup(D , negedge C &&& CE, /*-46*/ 0); // Negative times not currently supported // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L248 $setup(CE, negedge C, 109); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L274 $setup(S , negedge C, 404); // https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf#L243 if (S) (negedge C => (Q : 1'b1)) = 303; if (!S && CE) (negedge C => (Q : D)) = 303; endspecify endmodule module FDRSE ( output reg Q, (* clkbuf_sink *) (* invertible_pin = "IS_C_INVERTED" *) input C, (* invertible_pin = "IS_CE_INVERTED" *) input CE, (* invertible_pin = "IS_D_INVERTED" *) input D, (* invertible_pin = "IS_R_INVERTED" *) input R, (* invertible_pin = "IS_S_INVERTED" *) input S ); parameter [0:0] INIT = 1'b0; parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_CE_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_R_INVERTED = 1'b0; parameter [0:0] IS_S_INVERTED = 1'b0; initial Q <= INIT; wire c = C ^ IS_C_INVERTED; wire ce = CE ^ IS_CE_INVERTED; wire d = D ^ IS_D_INVERTED; wire r = R ^ IS_R_INVERTED; wire s = S ^ IS_S_INVERTED; always @(posedge c) if (r) Q <= 0; else if (s) Q <= 1; else if (ce) Q <= d; endmodule (* abc9_box, lib_whitebox *) module FDCE ( output reg Q, (* clkbuf_sink *) (* invertible_pin = "IS_C_INVERTED" *) input C, input CE, (* invertible_pin = "IS_CLR_INVERTED" *) input CLR, (* invertible_pin = "IS_D_INVERTED" *) input D ); parameter [0:0] INIT = 1'b0; parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_CLR_INVERTED = 1'b0; initial Q <= INIT; generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED}) 2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; 2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; 2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; 2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; endcase endgenerate specify // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L249 $setup(D , posedge C &&& !IS_C_INVERTED && CE, /*-46*/ 0); // Negative times not currently supported $setup(D , negedge C &&& IS_C_INVERTED && CE, /*-46*/ 0); // Negative times not currently supported // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L248 $setup(CE , posedge C &&& !IS_C_INVERTED, 109); $setup(CE , negedge C &&& IS_C_INVERTED, 109); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L274 $setup(CLR, posedge C &&& !IS_C_INVERTED, 404); $setup(CLR, negedge C &&& IS_C_INVERTED, 404); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L270 `ifndef YOSYS if (!IS_CLR_INVERTED) (posedge CLR => (Q : 1'b0)) = 764; if ( IS_CLR_INVERTED) (negedge CLR => (Q : 1'b0)) = 764; `else if (IS_CLR_INVERTED != CLR) (CLR => Q) = 764; // Technically, this should be an edge sensitive path // but for facilitating a bypass box, let's pretend it's // a simple path `endif if (!IS_C_INVERTED && CLR == IS_CLR_INVERTED && CE) (posedge C => (Q : D ^ IS_D_INVERTED)) = 303; if ( IS_C_INVERTED && CLR == IS_CLR_INVERTED && CE) (negedge C => (Q : D ^ IS_D_INVERTED)) = 303; endspecify endmodule (* abc9_box, lib_whitebox *) module FDCE_1 ( output reg Q, (* clkbuf_sink *) input C, input CE, input CLR, input D ); parameter [0:0] INIT = 1'b0; initial Q <= INIT; always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D; specify // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L249 $setup(D , negedge C &&& CE, /*-46*/ 0); // Negative times not currently supported // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L248 $setup(CE , negedge C, 109); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L274 $setup(CLR, negedge C, 404); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L270 `ifndef YOSYS (posedge CLR => (Q : 1'b0)) = 764; `else if (CLR) (CLR => Q) = 764; // Technically, this should be an edge sensitive path // but for facilitating a bypass box, let's pretend it's // a simple path `endif if (!CLR && CE) (negedge C => (Q : D)) = 303; endspecify endmodule (* abc9_box, lib_whitebox *) module FDPE ( output reg Q, (* clkbuf_sink *) (* invertible_pin = "IS_C_INVERTED" *) input C, input CE, (* invertible_pin = "IS_D_INVERTED" *) input D, (* invertible_pin = "IS_PRE_INVERTED" *) input PRE ); parameter [0:0] INIT = 1'b1; parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_PRE_INVERTED = 1'b0; initial Q <= INIT; generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED}) 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; endcase endgenerate specify // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L249 $setup(D , posedge C &&& !IS_C_INVERTED && CE, /*-46*/ 0); // Negative times not currently supported $setup(D , negedge C &&& IS_C_INVERTED && CE, /*-46*/ 0); // Negative times not currently supported // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L248 $setup(CE , posedge C &&& !IS_C_INVERTED, 109); $setup(CE , negedge C &&& IS_C_INVERTED, 109); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L274 $setup(PRE, posedge C &&& !IS_C_INVERTED, 404); $setup(PRE, negedge C &&& IS_C_INVERTED, 404); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L270 `ifndef YOSYS if (!IS_PRE_INVERTED) (posedge PRE => (Q : 1'b1)) = 764; if ( IS_PRE_INVERTED) (negedge PRE => (Q : 1'b1)) = 764; `else if (IS_PRE_INVERTED != PRE) (PRE => Q) = 764; // Technically, this should be an edge sensitive path // but for facilitating a bypass box, let's pretend it's // a simple path `endif if (!IS_C_INVERTED && PRE == IS_PRE_INVERTED && CE) (posedge C => (Q : D ^ IS_D_INVERTED)) = 303; if ( IS_C_INVERTED && PRE == IS_PRE_INVERTED && CE) (negedge C => (Q : D ^ IS_D_INVERTED)) = 303; endspecify endmodule (* abc9_box, lib_whitebox *) module FDPE_1 ( output reg Q, (* clkbuf_sink *) input C, input CE, input D, input PRE ); parameter [0:0] INIT = 1'b1; initial Q <= INIT; always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D; specify // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L249 $setup(D , negedge C &&& CE, /*-46*/ 0); // Negative times not currently supported // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L248 $setup(CE , negedge C, 109); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L274 $setup(PRE, negedge C, 404); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L270 `ifndef YOSYS (posedge PRE => (Q : 1'b1)) = 764; `else if (PRE) (PRE => Q) = 764; // Technically, this should be an edge sensitive path // but for facilitating a bypass box, let's pretend it's // a simple path `endif if (!PRE && CE) (negedge C => (Q : D)) = 303; endspecify endmodule module FDCPE ( output wire Q, (* clkbuf_sink *) (* invertible_pin = "IS_C_INVERTED" *) input C, input CE, (* invertible_pin = "IS_CLR_INVERTED" *) input CLR, input D, (* invertible_pin = "IS_PRE_INVERTED" *) input PRE ); parameter [0:0] INIT = 1'b0; parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_CLR_INVERTED = 1'b0; parameter [0:0] IS_PRE_INVERTED = 1'b0; wire c = C ^ IS_C_INVERTED; wire clr = CLR ^ IS_CLR_INVERTED; wire pre = PRE ^ IS_PRE_INVERTED; // Hacky model to avoid simulation-synthesis mismatches. reg qc, qp, qs; initial qc = INIT; initial qp = INIT; initial qs = 0; always @(posedge c, posedge clr) begin if (clr) qc <= 0; else if (CE) qc <= D; end always @(posedge c, posedge pre) begin if (pre) qp <= 1; else if (CE) qp <= D; end always @* begin if (clr) qs <= 0; else if (pre) qs <= 1; end assign Q = qs ? qp : qc; endmodule module LDCE ( output reg Q, (* invertible_pin = "IS_CLR_INVERTED" *) input CLR, input D, (* invertible_pin = "IS_G_INVERTED" *) input G, input GE ); parameter [0:0] INIT = 1'b0; parameter [0:0] IS_CLR_INVERTED = 1'b0; parameter [0:0] IS_G_INVERTED = 1'b0; parameter MSGON = "TRUE"; parameter XON = "TRUE"; initial Q = INIT; wire clr = CLR ^ IS_CLR_INVERTED; wire g = G ^ IS_G_INVERTED; always @* if (clr) Q <= 1'b0; else if (GE && g) Q <= D; endmodule module LDPE ( output reg Q, input D, (* invertible_pin = "IS_G_INVERTED" *) input G, input GE, (* invertible_pin = "IS_PRE_INVERTED" *) input PRE ); parameter [0:0] INIT = 1'b1; parameter [0:0] IS_G_INVERTED = 1'b0; parameter [0:0] IS_PRE_INVERTED = 1'b0; parameter MSGON = "TRUE"; parameter XON = "TRUE"; initial Q = INIT; wire g = G ^ IS_G_INVERTED; wire pre = PRE ^ IS_PRE_INVERTED; always @* if (pre) Q <= 1'b1; else if (GE && g) Q <= D; endmodule module LDCPE ( output reg Q, (* invertible_pin = "IS_CLR_INVERTED" *) input CLR, (* invertible_pin = "IS_D_INVERTED" *) input D, (* invertible_pin = "IS_G_INVERTED" *) input G, (* invertible_pin = "IS_GE_INVERTED" *) input GE, (* invertible_pin = "IS_PRE_INVERTED" *) input PRE ); parameter [0:0] INIT = 1'b1; parameter [0:0] IS_CLR_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_G_INVERTED = 1'b0; parameter [0:0] IS_GE_INVERTED = 1'b0; parameter [0:0] IS_PRE_INVERTED = 1'b0; initial Q = INIT; wire d = D ^ IS_D_INVERTED; wire g = G ^ IS_G_INVERTED; wire ge = GE ^ IS_GE_INVERTED; wire clr = CLR ^ IS_CLR_INVERTED; wire pre = PRE ^ IS_PRE_INVERTED; always @* if (clr) Q <= 1'b0; else if (pre) Q <= 1'b1; else if (ge && g) Q <= d; endmodule module AND2B1L ( output O, input DI, (* invertible_pin = "IS_SRI_INVERTED" *) input SRI ); parameter [0:0] IS_SRI_INVERTED = 1'b0; assign O = DI & ~(SRI ^ IS_SRI_INVERTED); endmodule module OR2L ( output O, input DI, (* invertible_pin = "IS_SRI_INVERTED" *) input SRI ); parameter [0:0] IS_SRI_INVERTED = 1'b0; assign O = DI | (SRI ^ IS_SRI_INVERTED); endmodule // LUTRAM. // Single port. module RAM16X1S ( output O, input A0, A1, A2, A3, input D, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE ); parameter [15:0] INIT = 16'h0000; parameter [0:0] IS_WCLK_INVERTED = 1'b0; wire [3:0] a = {A3, A2, A1, A0}; reg [15:0] mem = INIT; assign O = mem[a]; wire clk = WCLK ^ IS_WCLK_INVERTED; always @(posedge clk) if (WE) mem[a] <= D; endmodule module RAM16X1S_1 ( output O, input A0, A1, A2, A3, input D, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE ); parameter [15:0] INIT = 16'h0000; parameter [0:0] IS_WCLK_INVERTED = 1'b0; wire [3:0] a = {A3, A2, A1, A0}; reg [15:0] mem = INIT; assign O = mem[a]; wire clk = WCLK ^ IS_WCLK_INVERTED; always @(negedge clk) if (WE) mem[a] <= D; endmodule module RAM32X1S ( output O, input A0, A1, A2, A3, A4, input D, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE ); parameter [31:0] INIT = 32'h00000000; parameter [0:0] IS_WCLK_INVERTED = 1'b0; wire [4:0] a = {A4, A3, A2, A1, A0}; reg [31:0] mem = INIT; assign O = mem[a]; wire clk = WCLK ^ IS_WCLK_INVERTED; always @(posedge clk) if (WE) mem[a] <= D; endmodule module RAM32X1S_1 ( output O, input A0, A1, A2, A3, A4, input D, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE ); parameter [31:0] INIT = 32'h00000000; parameter [0:0] IS_WCLK_INVERTED = 1'b0; wire [4:0] a = {A4, A3, A2, A1, A0}; reg [31:0] mem = INIT; assign O = mem[a]; wire clk = WCLK ^ IS_WCLK_INVERTED; always @(negedge clk) if (WE) mem[a] <= D; endmodule module RAM64X1S ( output O, input A0, A1, A2, A3, A4, A5, input D, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE ); parameter [63:0] INIT = 64'h0000000000000000; parameter [0:0] IS_WCLK_INVERTED = 1'b0; wire [5:0] a = {A5, A4, A3, A2, A1, A0}; reg [63:0] mem = INIT; assign O = mem[a]; wire clk = WCLK ^ IS_WCLK_INVERTED; always @(posedge clk) if (WE) mem[a] <= D; endmodule module RAM64X1S_1 ( output O, input A0, A1, A2, A3, A4, A5, input D, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE ); parameter [63:0] INIT = 64'h0000000000000000; parameter [0:0] IS_WCLK_INVERTED = 1'b0; wire [5:0] a = {A5, A4, A3, A2, A1, A0}; reg [63:0] mem = INIT; assign O = mem[a]; wire clk = WCLK ^ IS_WCLK_INVERTED; always @(negedge clk) if (WE) mem[a] <= D; endmodule module RAM128X1S ( output O, input A0, A1, A2, A3, A4, A5, A6, input D, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE ); parameter [127:0] INIT = 128'h00000000000000000000000000000000; parameter [0:0] IS_WCLK_INVERTED = 1'b0; wire [6:0] a = {A6, A5, A4, A3, A2, A1, A0}; reg [127:0] mem = INIT; assign O = mem[a]; wire clk = WCLK ^ IS_WCLK_INVERTED; always @(posedge clk) if (WE) mem[a] <= D; endmodule module RAM128X1S_1 ( output O, input A0, A1, A2, A3, A4, A5, A6, input D, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE ); parameter [127:0] INIT = 128'h00000000000000000000000000000000; parameter [0:0] IS_WCLK_INVERTED = 1'b0; wire [6:0] a = {A6, A5, A4, A3, A2, A1, A0}; reg [127:0] mem = INIT; assign O = mem[a]; wire clk = WCLK ^ IS_WCLK_INVERTED; always @(negedge clk) if (WE) mem[a] <= D; endmodule module RAM256X1S ( output O, input [7:0] A, input D, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE ); parameter [255:0] INIT = 256'h0; parameter [0:0] IS_WCLK_INVERTED = 1'b0; reg [255:0] mem = INIT; assign O = mem[A]; wire clk = WCLK ^ IS_WCLK_INVERTED; always @(posedge clk) if (WE) mem[A] <= D; endmodule module RAM512X1S ( output O, input [8:0] A, input D, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE ); parameter [511:0] INIT = 512'h0; parameter [0:0] IS_WCLK_INVERTED = 1'b0; reg [511:0] mem = INIT; assign O = mem[A]; wire clk = WCLK ^ IS_WCLK_INVERTED; always @(posedge clk) if (WE) mem[A] <= D; endmodule // Single port, wide. module RAM16X2S ( output O0, O1, input A0, A1, A2, A3, input D0, D1, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE ); parameter [15:0] INIT_00 = 16'h0000; parameter [15:0] INIT_01 = 16'h0000; parameter [0:0] IS_WCLK_INVERTED = 1'b0; wire [3:0] a = {A3, A2, A1, A0}; wire clk = WCLK ^ IS_WCLK_INVERTED; reg [15:0] mem0 = INIT_00; reg [15:0] mem1 = INIT_01; assign O0 = mem0[a]; assign O1 = mem1[a]; always @(posedge clk) if (WE) begin mem0[a] <= D0; mem1[a] <= D1; end endmodule module RAM32X2S ( output O0, O1, input A0, A1, A2, A3, A4, input D0, D1, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE ); parameter [31:0] INIT_00 = 32'h00000000; parameter [31:0] INIT_01 = 32'h00000000; parameter [0:0] IS_WCLK_INVERTED = 1'b0; wire [4:0] a = {A4, A3, A2, A1, A0}; wire clk = WCLK ^ IS_WCLK_INVERTED; reg [31:0] mem0 = INIT_00; reg [31:0] mem1 = INIT_01; assign O0 = mem0[a]; assign O1 = mem1[a]; always @(posedge clk) if (WE) begin mem0[a] <= D0; mem1[a] <= D1; end endmodule module RAM64X2S ( output O0, O1, input A0, A1, A2, A3, A4, A5, input D0, D1, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE ); parameter [63:0] INIT_00 = 64'h0000000000000000; parameter [63:0] INIT_01 = 64'h0000000000000000; parameter [0:0] IS_WCLK_INVERTED = 1'b0; wire [5:0] a = {A5, A3, A2, A1, A0}; wire clk = WCLK ^ IS_WCLK_INVERTED; reg [63:0] mem0 = INIT_00; reg [63:0] mem1 = INIT_01; assign O0 = mem0[a]; assign O1 = mem1[a]; always @(posedge clk) if (WE) begin mem0[a] <= D0; mem1[a] <= D1; end endmodule module RAM16X4S ( output O0, O1, O2, O3, input A0, A1, A2, A3, input D0, D1, D2, D3, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE ); parameter [15:0] INIT_00 = 16'h0000; parameter [15:0] INIT_01 = 16'h0000; parameter [15:0] INIT_02 = 16'h0000; parameter [15:0] INIT_03 = 16'h0000; parameter [0:0] IS_WCLK_INVERTED = 1'b0; wire [3:0] a = {A3, A2, A1, A0}; wire clk = WCLK ^ IS_WCLK_INVERTED; reg [15:0] mem0 = INIT_00; reg [15:0] mem1 = INIT_01; reg [15:0] mem2 = INIT_02; reg [15:0] mem3 = INIT_03; assign O0 = mem0[a]; assign O1 = mem1[a]; assign O2 = mem2[a]; assign O3 = mem3[a]; always @(posedge clk) if (WE) begin mem0[a] <= D0; mem1[a] <= D1; mem2[a] <= D2; mem3[a] <= D3; end endmodule module RAM32X4S ( output O0, O1, O2, O3, input A0, A1, A2, A3, A4, input D0, D1, D2, D3, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE ); parameter [31:0] INIT_00 = 32'h00000000; parameter [31:0] INIT_01 = 32'h00000000; parameter [31:0] INIT_02 = 32'h00000000; parameter [31:0] INIT_03 = 32'h00000000; parameter [0:0] IS_WCLK_INVERTED = 1'b0; wire [4:0] a = {A4, A3, A2, A1, A0}; wire clk = WCLK ^ IS_WCLK_INVERTED; reg [31:0] mem0 = INIT_00; reg [31:0] mem1 = INIT_01; reg [31:0] mem2 = INIT_02; reg [31:0] mem3 = INIT_03; assign O0 = mem0[a]; assign O1 = mem1[a]; assign O2 = mem2[a]; assign O3 = mem3[a]; always @(posedge clk) if (WE) begin mem0[a] <= D0; mem1[a] <= D1; mem2[a] <= D2; mem3[a] <= D3; end endmodule module RAM16X8S ( output [7:0] O, input A0, A1, A2, A3, input [7:0] D, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE ); parameter [15:0] INIT_00 = 16'h0000; parameter [15:0] INIT_01 = 16'h0000; parameter [15:0] INIT_02 = 16'h0000; parameter [15:0] INIT_03 = 16'h0000; parameter [15:0] INIT_04 = 16'h0000; parameter [15:0] INIT_05 = 16'h0000; parameter [15:0] INIT_06 = 16'h0000; parameter [15:0] INIT_07 = 16'h0000; parameter [0:0] IS_WCLK_INVERTED = 1'b0; wire [3:0] a = {A3, A2, A1, A0}; wire clk = WCLK ^ IS_WCLK_INVERTED; reg [15:0] mem0 = INIT_00; reg [15:0] mem1 = INIT_01; reg [15:0] mem2 = INIT_02; reg [15:0] mem3 = INIT_03; reg [15:0] mem4 = INIT_04; reg [15:0] mem5 = INIT_05; reg [15:0] mem6 = INIT_06; reg [15:0] mem7 = INIT_07; assign O[0] = mem0[a]; assign O[1] = mem1[a]; assign O[2] = mem2[a]; assign O[3] = mem3[a]; assign O[4] = mem4[a]; assign O[5] = mem5[a]; assign O[6] = mem6[a]; assign O[7] = mem7[a]; always @(posedge clk) if (WE) begin mem0[a] <= D[0]; mem1[a] <= D[1]; mem2[a] <= D[2]; mem3[a] <= D[3]; mem4[a] <= D[4]; mem5[a] <= D[5]; mem6[a] <= D[6]; mem7[a] <= D[7]; end endmodule module RAM32X8S ( output [7:0] O, input A0, A1, A2, A3, A4, input [7:0] D, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE ); parameter [31:0] INIT_00 = 32'h00000000; parameter [31:0] INIT_01 = 32'h00000000; parameter [31:0] INIT_02 = 32'h00000000; parameter [31:0] INIT_03 = 32'h00000000; parameter [31:0] INIT_04 = 32'h00000000; parameter [31:0] INIT_05 = 32'h00000000; parameter [31:0] INIT_06 = 32'h00000000; parameter [31:0] INIT_07 = 32'h00000000; parameter [0:0] IS_WCLK_INVERTED = 1'b0; wire [4:0] a = {A4, A3, A2, A1, A0}; wire clk = WCLK ^ IS_WCLK_INVERTED; reg [31:0] mem0 = INIT_00; reg [31:0] mem1 = INIT_01; reg [31:0] mem2 = INIT_02; reg [31:0] mem3 = INIT_03; reg [31:0] mem4 = INIT_04; reg [31:0] mem5 = INIT_05; reg [31:0] mem6 = INIT_06; reg [31:0] mem7 = INIT_07; assign O[0] = mem0[a]; assign O[1] = mem1[a]; assign O[2] = mem2[a]; assign O[3] = mem3[a]; assign O[4] = mem4[a]; assign O[5] = mem5[a]; assign O[6] = mem6[a]; assign O[7] = mem7[a]; always @(posedge clk) if (WE) begin mem0[a] <= D[0]; mem1[a] <= D[1]; mem2[a] <= D[2]; mem3[a] <= D[3]; mem4[a] <= D[4]; mem5[a] <= D[5]; mem6[a] <= D[6]; mem7[a] <= D[7]; end endmodule // Dual port. module RAM16X1D ( output DPO, SPO, input D, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE, input A0, A1, A2, A3, input DPRA0, DPRA1, DPRA2, DPRA3 ); parameter INIT = 16'h0; parameter IS_WCLK_INVERTED = 1'b0; wire [3:0] a = {A3, A2, A1, A0}; wire [3:0] dpra = {DPRA3, DPRA2, DPRA1, DPRA0}; reg [15:0] mem = INIT; assign SPO = mem[a]; assign DPO = mem[dpra]; wire clk = WCLK ^ IS_WCLK_INVERTED; always @(posedge clk) if (WE) mem[a] <= D; endmodule module RAM16X1D_1 ( output DPO, SPO, input D, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE, input A0, A1, A2, A3, input DPRA0, DPRA1, DPRA2, DPRA3 ); parameter INIT = 16'h0; parameter IS_WCLK_INVERTED = 1'b0; wire [3:0] a = {A3, A2, A1, A0}; wire [3:0] dpra = {DPRA3, DPRA2, DPRA1, DPRA0}; reg [15:0] mem = INIT; assign SPO = mem[a]; assign DPO = mem[dpra]; wire clk = WCLK ^ IS_WCLK_INVERTED; always @(negedge clk) if (WE) mem[a] <= D; endmodule (* abc9_box, lib_whitebox *) module RAM32X1D ( output DPO, SPO, input D, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE, input A0, A1, A2, A3, A4, input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4 ); parameter INIT = 32'h0; parameter IS_WCLK_INVERTED = 1'b0; wire [4:0] a = {A4, A3, A2, A1, A0}; wire [4:0] dpra = {DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}; reg [31:0] mem = INIT; assign SPO = mem[a]; assign DPO = mem[dpra]; wire clk = WCLK ^ IS_WCLK_INVERTED; always @(posedge clk) if (WE) mem[a] <= D; specify // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L986 $setup(D , posedge WCLK &&& !IS_WCLK_INVERTED && WE, 453); $setup(D , negedge WCLK &&& IS_WCLK_INVERTED && WE, 453); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L834 $setup(WE, posedge WCLK &&& !IS_WCLK_INVERTED, 654); $setup(WE, negedge WCLK &&& IS_WCLK_INVERTED, 654); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L800 $setup(A0, posedge WCLK &&& !IS_WCLK_INVERTED && WE, 245); $setup(A0, negedge WCLK &&& IS_WCLK_INVERTED && WE, 245); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L798 $setup(A1, posedge WCLK &&& !IS_WCLK_INVERTED && WE, 208); $setup(A1, negedge WCLK &&& IS_WCLK_INVERTED && WE, 208); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L796 $setup(A2, posedge WCLK &&& !IS_WCLK_INVERTED && WE, 147); $setup(A2, negedge WCLK &&& IS_WCLK_INVERTED && WE, 147); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L794 $setup(A3, posedge WCLK &&& !IS_WCLK_INVERTED && WE, 68); $setup(A3, negedge WCLK &&& IS_WCLK_INVERTED && WE, 68); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L792 $setup(A4, posedge WCLK &&& !IS_WCLK_INVERTED && WE, 66); $setup(A4, posedge WCLK &&& IS_WCLK_INVERTED && WE, 66); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L981 if (!IS_WCLK_INVERTED) (posedge WCLK => (SPO : D)) = 1153; if (!IS_WCLK_INVERTED) (posedge WCLK => (DPO : 1'bx)) = 1153; if ( IS_WCLK_INVERTED) (posedge WCLK => (SPO : D)) = 1153; if ( IS_WCLK_INVERTED) (negedge WCLK => (DPO : 1'bx)) = 1153; (A0 => SPO) = 642; (DPRA0 => DPO) = 642; (A1 => SPO) = 632; (DPRA1 => DPO) = 631; (A2 => SPO) = 472; (DPRA2 => DPO) = 472; (A3 => SPO) = 407; (DPRA3 => DPO) = 407; (A4 => SPO) = 238; (DPRA4 => DPO) = 238; endspecify endmodule (* abc9_box, lib_whitebox *) module RAM32X1D_1 ( output DPO, SPO, input D, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE, input A0, input A1, input A2, input A3, input A4, input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4 ); parameter INIT = 32'h0; parameter IS_WCLK_INVERTED = 1'b0; wire [4:0] a = {A4, A3, A2, A1, A0}; wire [4:0] dpra = {DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}; reg [31:0] mem = INIT; assign SPO = mem[a]; assign DPO = mem[dpra]; wire clk = WCLK ^ IS_WCLK_INVERTED; always @(negedge clk) if (WE) mem[a] <= D; specify // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L986 $setup(D , negedge WCLK &&& WE, 453); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L834 $setup(WE, negedge WCLK, 654); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L800 $setup(A0, negedge WCLK &&& WE, 245); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L798 $setup(A1, negedge WCLK &&& WE, 208); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L796 $setup(A2, negedge WCLK &&& WE, 147); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L794 $setup(A3, negedge WCLK &&& WE, 68); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L792 $setup(A4, negedge WCLK &&& WE, 66); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L981 if (WE) (negedge WCLK => (SPO : D)) = 1153; if (WE) (negedge WCLK => (DPO : 1'bx)) = 1153; (A0 => SPO) = 642; (DPRA0 => DPO) = 642; (A1 => SPO) = 632; (DPRA1 => DPO) = 631; (A2 => SPO) = 472; (DPRA2 => DPO) = 472; (A3 => SPO) = 407; (DPRA3 => DPO) = 407; (A4 => SPO) = 238; (DPRA4 => DPO) = 238; endspecify endmodule (* abc9_box, lib_whitebox *) module RAM64X1D ( output DPO, SPO, input D, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE, input A0, A1, A2, A3, A4, A5, input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4, DPRA5 ); parameter INIT = 64'h0; parameter IS_WCLK_INVERTED = 1'b0; wire [5:0] a = {A5, A4, A3, A2, A1, A0}; wire [5:0] dpra = {DPRA5, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}; reg [63:0] mem = INIT; assign SPO = mem[a]; assign DPO = mem[dpra]; wire clk = WCLK ^ IS_WCLK_INVERTED; always @(posedge clk) if (WE) mem[a] <= D; specify // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L986 $setup(D , posedge WCLK &&& !IS_WCLK_INVERTED && WE, 453); $setup(D , negedge WCLK &&& IS_WCLK_INVERTED && WE, 453); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L834 $setup(WE, posedge WCLK &&& !IS_WCLK_INVERTED, 654); $setup(WE, negedge WCLK &&& IS_WCLK_INVERTED, 654); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L828 $setup(A0, posedge WCLK &&& !IS_WCLK_INVERTED && WE, 362); $setup(A0, negedge WCLK &&& IS_WCLK_INVERTED && WE, 362); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L826 $setup(A1, posedge WCLK &&& !IS_WCLK_INVERTED && WE, 245); $setup(A1, negedge WCLK &&& IS_WCLK_INVERTED && WE, 245); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L824 $setup(A2, posedge WCLK &&& !IS_WCLK_INVERTED && WE, 208); $setup(A2, negedge WCLK &&& IS_WCLK_INVERTED && WE, 208); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L822 $setup(A3, posedge WCLK &&& !IS_WCLK_INVERTED && WE, 147); $setup(A3, negedge WCLK &&& IS_WCLK_INVERTED && WE, 147); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L820 $setup(A4, posedge WCLK &&& !IS_WCLK_INVERTED && WE, 68); $setup(A4, negedge WCLK &&& IS_WCLK_INVERTED && WE, 68); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L818 $setup(A5, posedge WCLK &&& !IS_WCLK_INVERTED && WE, 66); $setup(A5, negedge WCLK &&& IS_WCLK_INVERTED && WE, 66); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L981 if (!IS_WCLK_INVERTED && WE) (posedge WCLK => (SPO : D)) = 1153; if (!IS_WCLK_INVERTED && WE) (posedge WCLK => (DPO : 1'bx)) = 1153; if ( IS_WCLK_INVERTED && WE) (negedge WCLK => (SPO : D)) = 1153; if ( IS_WCLK_INVERTED && WE) (negedge WCLK => (DPO : 1'bx)) = 1153; (A0 => SPO) = 642; (DPRA0 => DPO) = 642; (A1 => SPO) = 632; (DPRA1 => DPO) = 631; (A2 => SPO) = 472; (DPRA2 => DPO) = 472; (A3 => SPO) = 407; (DPRA3 => DPO) = 407; (A4 => SPO) = 238; (DPRA4 => DPO) = 238; (A5 => SPO) = 127; (DPRA5 => DPO) = 127; endspecify endmodule module RAM64X1D_1 ( output DPO, SPO, input D, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE, input A0, A1, A2, A3, A4, A5, input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4, DPRA5 ); parameter INIT = 64'h0; parameter IS_WCLK_INVERTED = 1'b0; wire [5:0] a = {A5, A4, A3, A2, A1, A0}; wire [5:0] dpra = {DPRA5, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}; reg [63:0] mem = INIT; assign SPO = mem[a]; assign DPO = mem[dpra]; wire clk = WCLK ^ IS_WCLK_INVERTED; always @(negedge clk) if (WE) mem[a] <= D; specify // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L986 $setup(D , negedge WCLK &&& WE, 453); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L834 $setup(WE, negedge WCLK, 654); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L828 $setup(A0, negedge WCLK &&& WE, 362); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L826 $setup(A1, negedge WCLK &&& WE, 245); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L824 $setup(A2, negedge WCLK &&& WE, 208); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L822 $setup(A3, negedge WCLK &&& WE, 147); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L820 $setup(A4, negedge WCLK &&& WE, 68); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L818 $setup(A5, negedge WCLK &&& WE, 66); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L981 if (WE) (negedge WCLK => (SPO : D)) = 1153; if (WE) (negedge WCLK => (DPO : 1'bx)) = 1153; (A0 => SPO) = 642; (DPRA0 => DPO) = 642; (A1 => SPO) = 632; (DPRA1 => DPO) = 631; (A2 => SPO) = 472; (DPRA2 => DPO) = 472; (A3 => SPO) = 407; (DPRA3 => DPO) = 407; (A4 => SPO) = 238; (DPRA4 => DPO) = 238; (A5 => SPO) = 127; (DPRA5 => DPO) = 127; endspecify endmodule (* abc9_box, lib_whitebox *) module RAM128X1D ( output DPO, SPO, input D, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE, input [6:0] A, input [6:0] DPRA ); parameter INIT = 128'h0; parameter IS_WCLK_INVERTED = 1'b0; reg [127:0] mem = INIT; assign SPO = mem[A]; assign DPO = mem[DPRA]; wire clk = WCLK ^ IS_WCLK_INVERTED; always @(posedge clk) if (WE) mem[A] <= D; specify // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L986 $setup(D , posedge WCLK &&& !IS_WCLK_INVERTED && WE, 453); $setup(D , negedge WCLK &&& IS_WCLK_INVERTED && WE, 453); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L834 $setup(WE, posedge WCLK &&& !IS_WCLK_INVERTED, 654); $setup(WE, negedge WCLK &&& IS_WCLK_INVERTED, 654); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L818-830 $setup(A[0], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 616); $setup(A[0], negedge WCLK &&& IS_WCLK_INVERTED && WE, 616); $setup(A[1], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 362); $setup(A[1], negedge WCLK &&& IS_WCLK_INVERTED && WE, 362); $setup(A[2], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 245); $setup(A[2], negedge WCLK &&& IS_WCLK_INVERTED && WE, 245); $setup(A[3], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 208); $setup(A[3], negedge WCLK &&& IS_WCLK_INVERTED && WE, 208); $setup(A[4], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 147); $setup(A[4], negedge WCLK &&& IS_WCLK_INVERTED && WE, 147); $setup(A[5], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 68); $setup(A[5], negedge WCLK &&& IS_WCLK_INVERTED && WE, 68); $setup(A[6], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 66); $setup(A[6], negedge WCLK &&& IS_WCLK_INVERTED && WE, 66); `ifndef __ICARUS__ // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L981 if (!IS_WCLK_INVERTED && WE) (posedge WCLK => (SPO : D)) = 1153 + 217 /* to cross F7AMUX */ + 175 /* AMUX */; if ( IS_WCLK_INVERTED && WE) (negedge WCLK => (DPO : 1'bx)) = 1153 + 223 /* to cross F7BMUX */ + 174 /* CMUX */; (A[0] => SPO) = 642 + 193 /* to cross F7AMUX */ + 175 /* AMUX */; (A[1] => SPO) = 631 + 193 /* to cross F7AMUX */ + 175 /* AMUX */; (A[2] => SPO) = 472 + 193 /* to cross F7AMUX */ + 175 /* AMUX */; (A[3] => SPO) = 407 + 193 /* to cross F7AMUX */ + 175 /* AMUX */; (A[4] => SPO) = 238 + 193 /* to cross F7AMUX */ + 175 /* AMUX */; (A[5] => SPO) = 127 + 193 /* to cross F7AMUX */ + 175 /* AMUX */; (A[6] => SPO) = 0 + 276 /* to select F7AMUX */ + 175 /* AMUX */; (DPRA[0] => DPO) = 642 + 223 /* to cross MUXF7 */ + 174 /* CMUX */; (DPRA[1] => DPO) = 631 + 223 /* to cross MUXF7 */ + 174 /* CMUX */; (DPRA[2] => DPO) = 472 + 223 /* to cross MUXF7 */ + 174 /* CMUX */; (DPRA[3] => DPO) = 407 + 223 /* to cross MUXF7 */ + 174 /* CMUX */; (DPRA[4] => DPO) = 238 + 223 /* to cross MUXF7 */ + 174 /* CMUX */; (DPRA[5] => DPO) = 127 + 223 /* to cross MUXF7 */ + 174 /* CMUX */; (DPRA[6] => DPO) = 0 + 296 /* to select MUXF7 */ + 174 /* CMUX */; `endif endspecify endmodule module RAM256X1D ( output DPO, SPO, input D, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE, input [7:0] A, DPRA ); parameter INIT = 256'h0; parameter IS_WCLK_INVERTED = 1'b0; reg [255:0] mem = INIT; assign SPO = mem[A]; assign DPO = mem[DPRA]; wire clk = WCLK ^ IS_WCLK_INVERTED; always @(posedge clk) if (WE) mem[A] <= D; endmodule // Multi port. (* abc9_box, lib_whitebox *) module RAM32M ( output [1:0] DOA, output [1:0] DOB, output [1:0] DOC, output [1:0] DOD, input [4:0] ADDRA, ADDRB, ADDRC, input [4:0] ADDRD, input [1:0] DIA, input [1:0] DIB, input [1:0] DIC, input [1:0] DID, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE ); parameter [63:0] INIT_A = 64'h0000000000000000; parameter [63:0] INIT_B = 64'h0000000000000000; parameter [63:0] INIT_C = 64'h0000000000000000; parameter [63:0] INIT_D = 64'h0000000000000000; parameter [0:0] IS_WCLK_INVERTED = 1'b0; reg [63:0] mem_a = INIT_A; reg [63:0] mem_b = INIT_B; reg [63:0] mem_c = INIT_C; reg [63:0] mem_d = INIT_D; assign DOA = mem_a[2*ADDRA+:2]; assign DOB = mem_b[2*ADDRB+:2]; assign DOC = mem_c[2*ADDRC+:2]; assign DOD = mem_d[2*ADDRD+:2]; wire clk = WCLK ^ IS_WCLK_INVERTED; always @(posedge clk) if (WE) begin mem_a[2*ADDRD+:2] <= DIA; mem_b[2*ADDRD+:2] <= DIB; mem_c[2*ADDRD+:2] <= DIC; mem_d[2*ADDRD+:2] <= DID; end specify // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L986 $setup(ADDRD[0], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 245); $setup(ADDRD[0], negedge WCLK &&& IS_WCLK_INVERTED && WE, 245); $setup(ADDRD[1], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 208); $setup(ADDRD[1], negedge WCLK &&& IS_WCLK_INVERTED && WE, 208); $setup(ADDRD[2], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 147); $setup(ADDRD[2], negedge WCLK &&& IS_WCLK_INVERTED && WE, 147); $setup(ADDRD[3], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 68); $setup(ADDRD[3], negedge WCLK &&& IS_WCLK_INVERTED && WE, 68); $setup(ADDRD[4], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 66); $setup(ADDRD[4], negedge WCLK &&& IS_WCLK_INVERTED && WE, 66); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L986-L988 $setup(DIA[0], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 453); $setup(DIA[0], negedge WCLK &&& IS_WCLK_INVERTED && WE, 453); $setup(DIA[1], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 384); $setup(DIA[1], negedge WCLK &&& IS_WCLK_INVERTED && WE, 384); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L1054-L1056 $setup(DIB[0], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 461); $setup(DIB[0], negedge WCLK &&& IS_WCLK_INVERTED && WE, 461); $setup(DIB[1], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 354); $setup(DIB[1], negedge WCLK &&& IS_WCLK_INVERTED && WE, 354); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L1122-L1124 $setup(DIC[0], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 457); $setup(DIC[0], negedge WCLK &&& IS_WCLK_INVERTED && WE, 457); $setup(DIC[1], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 375); $setup(DIC[1], negedge WCLK &&& IS_WCLK_INVERTED && WE, 375); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L1190-L1192 $setup(DID[0], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 310); $setup(DID[0], negedge WCLK &&& IS_WCLK_INVERTED && WE, 310); $setup(DID[1], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 334); $setup(DID[1], negedge WCLK &&& IS_WCLK_INVERTED && WE, 334); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L834 $setup(WE, posedge WCLK &&& !IS_WCLK_INVERTED, 654); $setup(WE, negedge WCLK &&& IS_WCLK_INVERTED, 654); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L889 if (!IS_WCLK_INVERTED && WE) (posedge WCLK => (DOA[0] : DIA[0])) = 1153; if ( IS_WCLK_INVERTED && WE) (negedge WCLK => (DOA[0] : DIA[0])) = 1153; // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L857 if (!IS_WCLK_INVERTED && WE) (posedge WCLK => (DOA[1] : DIA[1])) = 1188; if ( IS_WCLK_INVERTED && WE) (negedge WCLK => (DOA[1] : DIA[1])) = 1188; // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957 if (!IS_WCLK_INVERTED && WE) (posedge WCLK => (DOB[0] : DIB[0])) = 1161; if ( IS_WCLK_INVERTED && WE) (negedge WCLK => (DOB[0] : DIB[0])) = 1161; // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L925 if (!IS_WCLK_INVERTED && WE) (posedge WCLK => (DOB[1] : DIB[1])) = 1187; if ( IS_WCLK_INVERTED && WE) (negedge WCLK => (DOB[1] : DIB[1])) = 1187; // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L993 if (!IS_WCLK_INVERTED && WE) (posedge WCLK => (DOC[0] : DIC[0])) = 1158; if ( IS_WCLK_INVERTED && WE) (negedge WCLK => (DOC[0] : DIC[0])) = 1158; // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L1025 if (!IS_WCLK_INVERTED && WE) (posedge WCLK => (DOC[1] : DIC[1])) = 1180; if ( IS_WCLK_INVERTED && WE) (negedge WCLK => (DOC[1] : DIC[1])) = 1180; // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L1093 if (!IS_WCLK_INVERTED && WE) (posedge WCLK => (DOD[0] : DID[0])) = 1163; if ( IS_WCLK_INVERTED && WE) (negedge WCLK => (DOD[0] : DID[0])) = 1163; // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L1061 if (!IS_WCLK_INVERTED && WE) (posedge WCLK => (DOD[1] : DID[1])) = 1190; if ( IS_WCLK_INVERTED && WE) (negedge WCLK => (DOD[1] : DID[1])) = 1190; (ADDRA[0] *> DOA) = 642; (ADDRB[0] *> DOB) = 642; (ADDRC[0] *> DOC) = 642; (ADDRD[0] *> DOD) = 642; (ADDRA[1] *> DOA) = 631; (ADDRB[1] *> DOB) = 631; (ADDRC[1] *> DOC) = 631; (ADDRD[1] *> DOD) = 631; (ADDRA[2] *> DOA) = 472; (ADDRB[2] *> DOB) = 472; (ADDRC[2] *> DOC) = 472; (ADDRD[2] *> DOD) = 472; (ADDRA[3] *> DOA) = 407; (ADDRB[3] *> DOB) = 407; (ADDRC[3] *> DOC) = 407; (ADDRD[3] *> DOD) = 407; (ADDRA[4] *> DOA) = 238; (ADDRB[4] *> DOB) = 238; (ADDRC[4] *> DOC) = 238; (ADDRD[4] *> DOD) = 238; endspecify endmodule module RAM32M16 ( output [1:0] DOA, output [1:0] DOB, output [1:0] DOC, output [1:0] DOD, output [1:0] DOE, output [1:0] DOF, output [1:0] DOG, output [1:0] DOH, input [4:0] ADDRA, input [4:0] ADDRB, input [4:0] ADDRC, input [4:0] ADDRD, input [4:0] ADDRE, input [4:0] ADDRF, input [4:0] ADDRG, input [4:0] ADDRH, input [1:0] DIA, input [1:0] DIB, input [1:0] DIC, input [1:0] DID, input [1:0] DIE, input [1:0] DIF, input [1:0] DIG, input [1:0] DIH, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE ); parameter [63:0] INIT_A = 64'h0000000000000000; parameter [63:0] INIT_B = 64'h0000000000000000; parameter [63:0] INIT_C = 64'h0000000000000000; parameter [63:0] INIT_D = 64'h0000000000000000; parameter [63:0] INIT_E = 64'h0000000000000000; parameter [63:0] INIT_F = 64'h0000000000000000; parameter [63:0] INIT_G = 64'h0000000000000000; parameter [63:0] INIT_H = 64'h0000000000000000; parameter [0:0] IS_WCLK_INVERTED = 1'b0; reg [63:0] mem_a = INIT_A; reg [63:0] mem_b = INIT_B; reg [63:0] mem_c = INIT_C; reg [63:0] mem_d = INIT_D; reg [63:0] mem_e = INIT_E; reg [63:0] mem_f = INIT_F; reg [63:0] mem_g = INIT_G; reg [63:0] mem_h = INIT_H; assign DOA = mem_a[2*ADDRA+:2]; assign DOB = mem_b[2*ADDRB+:2]; assign DOC = mem_c[2*ADDRC+:2]; assign DOD = mem_d[2*ADDRD+:2]; assign DOE = mem_e[2*ADDRE+:2]; assign DOF = mem_f[2*ADDRF+:2]; assign DOG = mem_g[2*ADDRG+:2]; assign DOH = mem_h[2*ADDRH+:2]; wire clk = WCLK ^ IS_WCLK_INVERTED; always @(posedge clk) if (WE) begin mem_a[2*ADDRH+:2] <= DIA; mem_b[2*ADDRH+:2] <= DIB; mem_c[2*ADDRH+:2] <= DIC; mem_d[2*ADDRH+:2] <= DID; mem_e[2*ADDRH+:2] <= DIE; mem_f[2*ADDRH+:2] <= DIF; mem_g[2*ADDRH+:2] <= DIG; mem_h[2*ADDRH+:2] <= DIH; end endmodule (* abc9_box, lib_whitebox *) module RAM64M ( output DOA, output DOB, output DOC, output DOD, input [5:0] ADDRA, ADDRB, ADDRC, input [5:0] ADDRD, input DIA, input DIB, input DIC, input DID, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE ); parameter [63:0] INIT_A = 64'h0000000000000000; parameter [63:0] INIT_B = 64'h0000000000000000; parameter [63:0] INIT_C = 64'h0000000000000000; parameter [63:0] INIT_D = 64'h0000000000000000; parameter [0:0] IS_WCLK_INVERTED = 1'b0; reg [63:0] mem_a = INIT_A; reg [63:0] mem_b = INIT_B; reg [63:0] mem_c = INIT_C; reg [63:0] mem_d = INIT_D; assign DOA = mem_a[ADDRA]; assign DOB = mem_b[ADDRB]; assign DOC = mem_c[ADDRC]; assign DOD = mem_d[ADDRD]; wire clk = WCLK ^ IS_WCLK_INVERTED; always @(posedge clk) if (WE) begin mem_a[ADDRD] <= DIA; mem_b[ADDRD] <= DIB; mem_c[ADDRD] <= DIC; mem_d[ADDRD] <= DID; end specify // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L818-L830 $setup(ADDRD[0], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 362); $setup(ADDRD[0], negedge WCLK &&& IS_WCLK_INVERTED && WE, 362); $setup(ADDRD[1], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 245); $setup(ADDRD[1], negedge WCLK &&& IS_WCLK_INVERTED && WE, 245); $setup(ADDRD[2], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 208); $setup(ADDRD[2], negedge WCLK &&& IS_WCLK_INVERTED && WE, 208); $setup(ADDRD[3], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 147); $setup(ADDRD[3], negedge WCLK &&& IS_WCLK_INVERTED && WE, 147); $setup(ADDRD[4], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 68); $setup(ADDRD[4], negedge WCLK &&& IS_WCLK_INVERTED && WE, 68); $setup(ADDRD[5], posedge WCLK &&& !IS_WCLK_INVERTED && WE, 66); $setup(ADDRD[5], negedge WCLK &&& IS_WCLK_INVERTED && WE, 66); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L986-L988 $setup(DIA, posedge WCLK &&& !IS_WCLK_INVERTED && WE, 384); $setup(DIA, negedge WCLK &&& IS_WCLK_INVERTED && WE, 384); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L1054-L1056 $setup(DIB, posedge WCLK &&& !IS_WCLK_INVERTED && WE, 354); $setup(DIB, negedge WCLK &&& IS_WCLK_INVERTED && WE, 354); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L1122-L1124 $setup(DIC, posedge WCLK &&& !IS_WCLK_INVERTED && WE, 375); $setup(DIC, negedge WCLK &&& IS_WCLK_INVERTED && WE, 375); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L1190-L1192 $setup(DID, posedge WCLK &&& !IS_WCLK_INVERTED && WE, 310); $setup(DID, negedge WCLK &&& IS_WCLK_INVERTED && WE, 310); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/31f51ac5ec7448dd6f79a8267f147123e4413c21/artix7/timings/CLBLM_R.sdf#L834 $setup(WE, posedge WCLK &&& !IS_WCLK_INVERTED && WE, 654); $setup(WE, negedge WCLK &&& IS_WCLK_INVERTED && WE, 654); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L889 if (!IS_WCLK_INVERTED && WE) (posedge WCLK => (DOA : DIA)) = 1153; if ( IS_WCLK_INVERTED && WE) (negedge WCLK => (DOA : DIA)) = 1153; // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957 if (!IS_WCLK_INVERTED && WE) (posedge WCLK => (DOB : DIB)) = 1161; if ( IS_WCLK_INVERTED && WE) (negedge WCLK => (DOB : DIB)) = 1161; // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L1025 if (!IS_WCLK_INVERTED && WE) (posedge WCLK => (DOC : DIC)) = 1158; if ( IS_WCLK_INVERTED && WE) (negedge WCLK => (DOC : DIC)) = 1158; // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L1093 if (!IS_WCLK_INVERTED && WE) (posedge WCLK => (DOD : DID)) = 1163; if ( IS_WCLK_INVERTED && WE) (negedge WCLK => (DOD : DID)) = 1163; (ADDRA[0] => DOA) = 642; (ADDRB[0] => DOB) = 642; (ADDRC[0] => DOC) = 642; (ADDRD[0] => DOD) = 642; (ADDRA[1] => DOA) = 631; (ADDRB[1] => DOB) = 631; (ADDRC[1] => DOC) = 631; (ADDRD[1] => DOD) = 631; (ADDRA[2] => DOA) = 472; (ADDRB[2] => DOB) = 472; (ADDRC[2] => DOC) = 472; (ADDRD[2] => DOD) = 472; (ADDRA[3] => DOA) = 407; (ADDRB[3] => DOB) = 407; (ADDRC[3] => DOC) = 407; (ADDRD[3] => DOD) = 407; (ADDRA[4] => DOA) = 238; (ADDRB[4] => DOB) = 238; (ADDRC[4] => DOC) = 238; (ADDRD[4] => DOD) = 238; endspecify endmodule module RAM64M8 ( output DOA, output DOB, output DOC, output DOD, output DOE, output DOF, output DOG, output DOH, input [5:0] ADDRA, input [5:0] ADDRB, input [5:0] ADDRC, input [5:0] ADDRD, input [5:0] ADDRE, input [5:0] ADDRF, input [5:0] ADDRG, input [5:0] ADDRH, input DIA, input DIB, input DIC, input DID, input DIE, input DIF, input DIG, input DIH, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE ); parameter [63:0] INIT_A = 64'h0000000000000000; parameter [63:0] INIT_B = 64'h0000000000000000; parameter [63:0] INIT_C = 64'h0000000000000000; parameter [63:0] INIT_D = 64'h0000000000000000; parameter [63:0] INIT_E = 64'h0000000000000000; parameter [63:0] INIT_F = 64'h0000000000000000; parameter [63:0] INIT_G = 64'h0000000000000000; parameter [63:0] INIT_H = 64'h0000000000000000; parameter [0:0] IS_WCLK_INVERTED = 1'b0; reg [63:0] mem_a = INIT_A; reg [63:0] mem_b = INIT_B; reg [63:0] mem_c = INIT_C; reg [63:0] mem_d = INIT_D; reg [63:0] mem_e = INIT_E; reg [63:0] mem_f = INIT_F; reg [63:0] mem_g = INIT_G; reg [63:0] mem_h = INIT_H; assign DOA = mem_a[ADDRA]; assign DOB = mem_b[ADDRB]; assign DOC = mem_c[ADDRC]; assign DOD = mem_d[ADDRD]; assign DOE = mem_e[ADDRE]; assign DOF = mem_f[ADDRF]; assign DOG = mem_g[ADDRG]; assign DOH = mem_h[ADDRH]; wire clk = WCLK ^ IS_WCLK_INVERTED; always @(posedge clk) if (WE) begin mem_a[ADDRH] <= DIA; mem_b[ADDRH] <= DIB; mem_c[ADDRH] <= DIC; mem_d[ADDRH] <= DID; mem_e[ADDRH] <= DIE; mem_f[ADDRH] <= DIF; mem_g[ADDRH] <= DIG; mem_h[ADDRH] <= DIH; end endmodule // ROM. module ROM16X1 ( output O, input A0, A1, A2, A3 ); parameter [15:0] INIT = 16'h0; assign O = INIT[{A3, A2, A1, A0}]; endmodule module ROM32X1 ( output O, input A0, A1, A2, A3, A4 ); parameter [31:0] INIT = 32'h0; assign O = INIT[{A4, A3, A2, A1, A0}]; endmodule module ROM64X1 ( output O, input A0, A1, A2, A3, A4, A5 ); parameter [63:0] INIT = 64'h0; assign O = INIT[{A5, A4, A3, A2, A1, A0}]; endmodule module ROM128X1 ( output O, input A0, A1, A2, A3, A4, A5, A6 ); parameter [127:0] INIT = 128'h0; assign O = INIT[{A6, A5, A4, A3, A2, A1, A0}]; endmodule module ROM256X1 ( output O, input A0, A1, A2, A3, A4, A5, A6, A7 ); parameter [255:0] INIT = 256'h0; assign O = INIT[{A7, A6, A5, A4, A3, A2, A1, A0}]; endmodule // Shift registers. (* abc9_box, lib_whitebox *) module SRL16 ( output Q, input A0, A1, A2, A3, (* clkbuf_sink *) input CLK, input D ); parameter [15:0] INIT = 16'h0000; reg [15:0] r = INIT; assign Q = r[{A3,A2,A1,A0}]; always @(posedge CLK) r <= { r[14:0], D }; specify // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L905 (posedge CLK => (Q : 1'bx)) = 1472; // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L912 $setup(D , posedge CLK, 173); (A0 => Q) = 631; (A1 => Q) = 472; (A2 => Q) = 407; (A3 => Q) = 238; endspecify endmodule (* abc9_box, lib_whitebox *) module SRL16E ( output Q, input A0, A1, A2, A3, CE, (* clkbuf_sink *) (* invertible_pin = "IS_CLK_INVERTED" *) input CLK, input D ); parameter [15:0] INIT = 16'h0000; parameter [0:0] IS_CLK_INVERTED = 1'b0; reg [15:0] r = INIT; assign Q = r[{A3,A2,A1,A0}]; generate if (IS_CLK_INVERTED) begin always @(negedge CLK) if (CE) r <= { r[14:0], D }; end else always @(posedge CLK) if (CE) r <= { r[14:0], D }; endgenerate specify // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L912 $setup(D , posedge CLK &&& !IS_CLK_INVERTED, 173); $setup(D , negedge CLK &&& IS_CLK_INVERTED, 173); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L905 if (!IS_CLK_INVERTED && CE) (posedge CLK => (Q : D)) = 1472; if ( IS_CLK_INVERTED && CE) (negedge CLK => (Q : D)) = 1472; // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L905 if (!IS_CLK_INVERTED && CE) (posedge CLK => (Q : 1'bx)) = 1472; if ( IS_CLK_INVERTED && CE) (negedge CLK => (Q : 1'bx)) = 1472; (A0 => Q) = 631; (A1 => Q) = 472; (A2 => Q) = 407; (A3 => Q) = 238; endspecify endmodule (* abc9_box, lib_whitebox *) module SRLC16 ( output Q, output Q15, input A0, A1, A2, A3, (* clkbuf_sink *) input CLK, input D ); parameter [15:0] INIT = 16'h0000; reg [15:0] r = INIT; assign Q15 = r[15]; assign Q = r[{A3,A2,A1,A0}]; always @(posedge CLK) r <= { r[14:0], D }; specify // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L912 $setup(D , posedge CLK, 173); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L905 (posedge CLK => (Q : 1'bx)) = 1472; // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L904 (posedge CLK => (Q15 : 1'bx)) = 1114; (A0 => Q) = 631; (A1 => Q) = 472; (A2 => Q) = 407; (A3 => Q) = 238; endspecify endmodule (* abc9_box, lib_whitebox *) module SRLC16E ( output Q, output Q15, input A0, A1, A2, A3, CE, (* clkbuf_sink *) (* invertible_pin = "IS_CLK_INVERTED" *) input CLK, input D ); parameter [15:0] INIT = 16'h0000; parameter [0:0] IS_CLK_INVERTED = 1'b0; reg [15:0] r = INIT; assign Q15 = r[15]; assign Q = r[{A3,A2,A1,A0}]; generate if (IS_CLK_INVERTED) begin always @(negedge CLK) if (CE) r <= { r[14:0], D }; end else always @(posedge CLK) if (CE) r <= { r[14:0], D }; endgenerate specify // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L912 $setup(D , posedge CLK &&& !IS_CLK_INVERTED, 173); $setup(D , negedge CLK &&& IS_CLK_INVERTED, 173); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L248 $setup(CE, posedge CLK &&& !IS_CLK_INVERTED, 109); $setup(CE, negedge CLK &&& IS_CLK_INVERTED, 109); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L905 if (!IS_CLK_INVERTED && CE) (posedge CLK => (Q : D)) = 1472; if ( IS_CLK_INVERTED && CE) (negedge CLK => (Q : D)) = 1472; // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L904 if (!IS_CLK_INVERTED && CE) (posedge CLK => (Q15 : 1'bx)) = 1114; if ( IS_CLK_INVERTED && CE) (negedge CLK => (Q15 : 1'bx)) = 1114; (A0 => Q) = 631; (A1 => Q) = 472; (A2 => Q) = 407; (A3 => Q) = 238; endspecify endmodule (* abc9_box, lib_whitebox *) module SRLC32E ( output Q, output Q31, input [4:0] A, input CE, (* clkbuf_sink *) (* invertible_pin = "IS_CLK_INVERTED" *) input CLK, input D ); parameter [31:0] INIT = 32'h00000000; parameter [0:0] IS_CLK_INVERTED = 1'b0; reg [31:0] r = INIT; assign Q31 = r[31]; assign Q = r[A]; generate if (IS_CLK_INVERTED) begin always @(negedge CLK) if (CE) r <= { r[30:0], D }; end else always @(posedge CLK) if (CE) r <= { r[30:0], D }; endgenerate specify // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L912 $setup(D , posedge CLK &&& !IS_CLK_INVERTED, 173); $setup(D , negedge CLK &&& IS_CLK_INVERTED, 173); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/slicel.sdf#L248 $setup(CE, posedge CLK &&& !IS_CLK_INVERTED, 109); $setup(CE, negedge CLK &&& IS_CLK_INVERTED, 109); // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L905 if (!IS_CLK_INVERTED && CE) (posedge CLK => (Q : 1'bx)) = 1472; if ( IS_CLK_INVERTED && CE) (negedge CLK => (Q : 1'bx)) = 1472; // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L904 if (!IS_CLK_INVERTED && CE) (posedge CLK => (Q31 : 1'bx)) = 1114; if ( IS_CLK_INVERTED && CE) (negedge CLK => (Q31 : 1'bx)) = 1114; (A[0] => Q) = 642; (A[1] => Q) = 631; (A[2] => Q) = 472; (A[3] => Q) = 407; (A[4] => Q) = 238; endspecify endmodule module CFGLUT5 ( output CDO, output O5, output O6, input I4, input I3, input I2, input I1, input I0, input CDI, input CE, (* clkbuf_sink *) (* invertible_pin = "IS_CLK_INVERTED" *) input CLK ); parameter [31:0] INIT = 32'h00000000; parameter [0:0] IS_CLK_INVERTED = 1'b0; wire clk = CLK ^ IS_CLK_INVERTED; reg [31:0] r = INIT; assign CDO = r[31]; assign O5 = r[{1'b0, I3, I2, I1, I0}]; assign O6 = r[{I4, I3, I2, I1, I0}]; always @(posedge clk) if (CE) r <= {r[30:0], CDI}; endmodule // DSP // Virtex 2, Virtex 2 Pro, Spartan 3. // Asynchronous mode. module MULT18X18 ( input signed [17:0] A, input signed [17:0] B, output signed [35:0] P ); assign P = A * B; endmodule // Synchronous mode. module MULT18X18S ( input signed [17:0] A, input signed [17:0] B, output reg signed [35:0] P, (* clkbuf_sink *) input C, input CE, input R ); always @(posedge C) if (R) P <= 0; else if (CE) P <= A * B; endmodule // Spartan 3E, Spartan 3A. module MULT18X18SIO ( input signed [17:0] A, input signed [17:0] B, output signed [35:0] P, (* clkbuf_sink *) input CLK, input CEA, input CEB, input CEP, input RSTA, input RSTB, input RSTP, input signed [17:0] BCIN, output signed [17:0] BCOUT ); parameter integer AREG = 1; parameter integer BREG = 1; parameter B_INPUT = "DIRECT"; parameter integer PREG = 1; // The multiplier. wire signed [35:0] P_MULT; assign P_MULT = A_MULT * B_MULT; // The cascade output. assign BCOUT = B_MULT; // The B input multiplexer. wire signed [17:0] B_MUX; assign B_MUX = (B_INPUT == "DIRECT") ? B : BCIN; // The registers. reg signed [17:0] A_REG; reg signed [17:0] B_REG; reg signed [35:0] P_REG; initial begin A_REG = 0; B_REG = 0; P_REG = 0; end always @(posedge CLK) begin if (RSTA) A_REG <= 0; else if (CEA) A_REG <= A; if (RSTB) B_REG <= 0; else if (CEB) B_REG <= B_MUX; if (RSTP) P_REG <= 0; else if (CEP) P_REG <= P_MULT; end // The register enables. wire signed [17:0] A_MULT; wire signed [17:0] B_MULT; assign A_MULT = (AREG == 1) ? A_REG : A; assign B_MULT = (BREG == 1) ? B_REG : B_MUX; assign P = (PREG == 1) ? P_REG : P_MULT; endmodule // Spartan 3A DSP. module DSP48A ( input signed [17:0] A, input signed [17:0] B, input signed [47:0] C, input signed [17:0] D, input signed [47:0] PCIN, input CARRYIN, input [7:0] OPMODE, output signed [47:0] P, output signed [17:0] BCOUT, output signed [47:0] PCOUT, output CARRYOUT, (* clkbuf_sink *) input CLK, input CEA, input CEB, input CEC, input CED, input CEM, input CECARRYIN, input CEOPMODE, input CEP, input RSTA, input RSTB, input RSTC, input RSTD, input RSTM, input RSTCARRYIN, input RSTOPMODE, input RSTP ); parameter integer A0REG = 0; parameter integer A1REG = 1; parameter integer B0REG = 0; parameter integer B1REG = 1; parameter integer CREG = 1; parameter integer DREG = 1; parameter integer MREG = 1; parameter integer CARRYINREG = 1; parameter integer OPMODEREG = 1; parameter integer PREG = 1; parameter CARRYINSEL = "CARRYIN"; parameter RSTTYPE = "SYNC"; // This is a strict subset of Spartan 6 -- reuse its model. /* verilator lint_off PINMISSING */ DSP48A1 #( .A0REG(A0REG), .A1REG(A1REG), .B0REG(B0REG), .B1REG(B1REG), .CREG(CREG), .DREG(DREG), .MREG(MREG), .CARRYINREG(CARRYINREG), .CARRYOUTREG(0), .OPMODEREG(OPMODEREG), .PREG(PREG), .CARRYINSEL(CARRYINSEL), .RSTTYPE(RSTTYPE) ) upgrade ( .A(A), .B(B), .C(C), .D(D), .PCIN(PCIN), .CARRYIN(CARRYIN), .OPMODE(OPMODE), // M unconnected .P(P), .BCOUT(BCOUT), .PCOUT(PCOUT), .CARRYOUT(CARRYOUT), // CARRYOUTF unconnected .CLK(CLK), .CEA(CEA), .CEB(CEB), .CEC(CEC), .CED(CED), .CEM(CEM), .CECARRYIN(CECARRYIN), .CEOPMODE(CEOPMODE), .CEP(CEP), .RSTA(RSTA), .RSTB(RSTB), .RSTC(RSTC), .RSTD(RSTD), .RSTM(RSTM), .RSTCARRYIN(RSTCARRYIN), .RSTOPMODE(RSTOPMODE), .RSTP(RSTP) ); /* verilator lint_on PINMISSING */ endmodule // Spartan 6. module DSP48A1 ( input signed [17:0] A, input signed [17:0] B, input signed [47:0] C, input signed [17:0] D, input signed [47:0] PCIN, input CARRYIN, input [7:0] OPMODE, output signed [35:0] M, output signed [47:0] P, output signed [17:0] BCOUT, output signed [47:0] PCOUT, output CARRYOUT, output CARRYOUTF, (* clkbuf_sink *) input CLK, input CEA, input CEB, input CEC, input CED, input CEM, input CECARRYIN, input CEOPMODE, input CEP, input RSTA, input RSTB, input RSTC, input RSTD, input RSTM, input RSTCARRYIN, input RSTOPMODE, input RSTP ); parameter integer A0REG = 0; parameter integer A1REG = 1; parameter integer B0REG = 0; parameter integer B1REG = 1; parameter integer CREG = 1; parameter integer DREG = 1; parameter integer MREG = 1; parameter integer CARRYINREG = 1; parameter integer CARRYOUTREG = 1; parameter integer OPMODEREG = 1; parameter integer PREG = 1; parameter CARRYINSEL = "OPMODE5"; parameter RSTTYPE = "SYNC"; wire signed [35:0] M_MULT; wire signed [47:0] P_IN; wire signed [17:0] A0_OUT; wire signed [17:0] B0_OUT; wire signed [17:0] A1_OUT; wire signed [17:0] B1_OUT; wire signed [17:0] B1_IN; wire signed [47:0] C_OUT; wire signed [17:0] D_OUT; wire signed [7:0] OPMODE_OUT; wire CARRYIN_OUT; wire CARRYOUT_IN; wire CARRYIN_IN; reg signed [47:0] XMUX; reg signed [47:0] ZMUX; // The registers. reg signed [17:0] A0_REG; reg signed [17:0] A1_REG; reg signed [17:0] B0_REG; reg signed [17:0] B1_REG; reg signed [47:0] C_REG; reg signed [17:0] D_REG; reg signed [35:0] M_REG; reg signed [47:0] P_REG; reg [7:0] OPMODE_REG; reg CARRYIN_REG; reg CARRYOUT_REG; initial begin A0_REG = 0; A1_REG = 0; B0_REG = 0; B1_REG = 0; C_REG = 0; D_REG = 0; M_REG = 0; P_REG = 0; OPMODE_REG = 0; CARRYIN_REG = 0; CARRYOUT_REG = 0; end generate if (RSTTYPE == "SYNC") begin always @(posedge CLK) begin if (RSTA) begin A0_REG <= 0; A1_REG <= 0; end else if (CEA) begin A0_REG <= A; A1_REG <= A0_OUT; end end always @(posedge CLK) begin if (RSTB) begin B0_REG <= 0; B1_REG <= 0; end else if (CEB) begin B0_REG <= B; B1_REG <= B1_IN; end end always @(posedge CLK) begin if (RSTC) begin C_REG <= 0; end else if (CEC) begin C_REG <= C; end end always @(posedge CLK) begin if (RSTD) begin D_REG <= 0; end else if (CED) begin D_REG <= D; end end always @(posedge CLK) begin if (RSTM) begin M_REG <= 0; end else if (CEM) begin M_REG <= M_MULT; end end always @(posedge CLK) begin if (RSTP) begin P_REG <= 0; end else if (CEP) begin P_REG <= P_IN; end end always @(posedge CLK) begin if (RSTOPMODE) begin OPMODE_REG <= 0; end else if (CEOPMODE) begin OPMODE_REG <= OPMODE; end end always @(posedge CLK) begin if (RSTCARRYIN) begin CARRYIN_REG <= 0; CARRYOUT_REG <= 0; end else if (CECARRYIN) begin CARRYIN_REG <= CARRYIN_IN; CARRYOUT_REG <= CARRYOUT_IN; end end end else begin always @(posedge CLK, posedge RSTA) begin if (RSTA) begin A0_REG <= 0; A1_REG <= 0; end else if (CEA) begin A0_REG <= A; A1_REG <= A0_OUT; end end always @(posedge CLK, posedge RSTB) begin if (RSTB) begin B0_REG <= 0; B1_REG <= 0; end else if (CEB) begin B0_REG <= B; B1_REG <= B1_IN; end end always @(posedge CLK, posedge RSTC) begin if (RSTC) begin C_REG <= 0; end else if (CEC) begin C_REG <= C; end end always @(posedge CLK, posedge RSTD) begin if (RSTD) begin D_REG <= 0; end else if (CED) begin D_REG <= D; end end always @(posedge CLK, posedge RSTM) begin if (RSTM) begin M_REG <= 0; end else if (CEM) begin M_REG <= M_MULT; end end always @(posedge CLK, posedge RSTP) begin if (RSTP) begin P_REG <= 0; end else if (CEP) begin P_REG <= P_IN; end end always @(posedge CLK, posedge RSTOPMODE) begin if (RSTOPMODE) begin OPMODE_REG <= 0; end else if (CEOPMODE) begin OPMODE_REG <= OPMODE; end end always @(posedge CLK, posedge RSTCARRYIN) begin if (RSTCARRYIN) begin CARRYIN_REG <= 0; CARRYOUT_REG <= 0; end else if (CECARRYIN) begin CARRYIN_REG <= CARRYIN_IN; CARRYOUT_REG <= CARRYOUT_IN; end end end endgenerate // The register enables. assign A0_OUT = (A0REG == 1) ? A0_REG : A; assign A1_OUT = (A1REG == 1) ? A1_REG : A0_OUT; assign B0_OUT = (B0REG == 1) ? B0_REG : B; assign B1_OUT = (B1REG == 1) ? B1_REG : B1_IN; assign C_OUT = (CREG == 1) ? C_REG : C; assign D_OUT = (DREG == 1) ? D_REG : D; assign M = (MREG == 1) ? M_REG : M_MULT; assign P = (PREG == 1) ? P_REG : P_IN; assign OPMODE_OUT = (OPMODEREG == 1) ? OPMODE_REG : OPMODE; assign CARRYIN_OUT = (CARRYINREG == 1) ? CARRYIN_REG : CARRYIN_IN; assign CARRYOUT = (CARRYOUTREG == 1) ? CARRYOUT_REG : CARRYOUT_IN; assign CARRYOUTF = CARRYOUT; // The pre-adder. wire signed [17:0] PREADDER; assign B1_IN = OPMODE_OUT[4] ? PREADDER : B0_OUT; assign PREADDER = OPMODE_OUT[6] ? D_OUT - B0_OUT : D_OUT + B0_OUT; // The multiplier. assign M_MULT = A1_OUT * B1_OUT; // The carry in selection. assign CARRYIN_IN = (CARRYINSEL == "OPMODE5") ? OPMODE_OUT[5] : CARRYIN; // The post-adder inputs. always @* begin case (OPMODE_OUT[1:0]) 2'b00: XMUX <= 0; 2'b01: XMUX <= M; 2'b10: XMUX <= P; 2'b11: XMUX <= {D_OUT[11:0], A1_OUT, B1_OUT}; default: XMUX <= 48'hxxxxxxxxxxxx; endcase end always @* begin case (OPMODE_OUT[3:2]) 2'b00: ZMUX <= 0; 2'b01: ZMUX <= PCIN; 2'b10: ZMUX <= P; 2'b11: ZMUX <= C_OUT; default: ZMUX <= 48'hxxxxxxxxxxxx; endcase end // The post-adder. wire signed [48:0] X_EXT; wire signed [48:0] Z_EXT; assign X_EXT = {1'b0, XMUX}; assign Z_EXT = {1'b0, ZMUX}; assign {CARRYOUT_IN, P_IN} = OPMODE_OUT[7] ? (Z_EXT - (X_EXT + CARRYIN_OUT)) : (Z_EXT + X_EXT + CARRYIN_OUT); // Cascade outputs. assign BCOUT = B1_OUT; assign PCOUT = P; endmodule module DSP48 ( input signed [17:0] A, input signed [17:0] B, input signed [47:0] C, input signed [17:0] BCIN, input signed [47:0] PCIN, input CARRYIN, input [6:0] OPMODE, input SUBTRACT, input [1:0] CARRYINSEL, output signed [47:0] P, output signed [17:0] BCOUT, output signed [47:0] PCOUT, (* clkbuf_sink *) input CLK, input CEA, input CEB, input CEC, input CEM, input CECARRYIN, input CECINSUB, input CECTRL, input CEP, input RSTA, input RSTB, input RSTC, input RSTM, input RSTCARRYIN, input RSTCTRL, input RSTP ); parameter integer AREG = 1; parameter integer BREG = 1; parameter integer CREG = 1; parameter integer MREG = 1; parameter integer PREG = 1; parameter integer CARRYINREG = 1; parameter integer CARRYINSELREG = 1; parameter integer OPMODEREG = 1; parameter integer SUBTRACTREG = 1; parameter B_INPUT = "DIRECT"; parameter LEGACY_MODE = "MULT18X18S"; wire signed [17:0] A_OUT; wire signed [17:0] B_OUT; wire signed [47:0] C_OUT; wire signed [35:0] M_MULT; wire signed [35:0] M_OUT; wire signed [47:0] P_IN; wire [6:0] OPMODE_OUT; wire [1:0] CARRYINSEL_OUT; wire CARRYIN_OUT; wire SUBTRACT_OUT; reg INT_CARRYIN_XY; reg INT_CARRYIN_Z; reg signed [47:0] XMUX; reg signed [47:0] YMUX; wire signed [47:0] XYMUX; reg signed [47:0] ZMUX; reg CIN; // The B input multiplexer. wire signed [17:0] B_MUX; assign B_MUX = (B_INPUT == "DIRECT") ? B : BCIN; // The cascade output. assign BCOUT = B_OUT; assign PCOUT = P; // The registers. reg signed [17:0] A0_REG; reg signed [17:0] A1_REG; reg signed [17:0] B0_REG; reg signed [17:0] B1_REG; reg signed [47:0] C_REG; reg signed [35:0] M_REG; reg signed [47:0] P_REG; reg [6:0] OPMODE_REG; reg [1:0] CARRYINSEL_REG; reg SUBTRACT_REG; reg CARRYIN_REG; reg INT_CARRYIN_XY_REG; initial begin A0_REG = 0; A1_REG = 0; B0_REG = 0; B1_REG = 0; C_REG = 0; M_REG = 0; P_REG = 0; OPMODE_REG = 0; CARRYINSEL_REG = 0; SUBTRACT_REG = 0; CARRYIN_REG = 0; INT_CARRYIN_XY_REG = 0; end always @(posedge CLK) begin if (RSTA) begin A0_REG <= 0; A1_REG <= 0; end else if (CEA) begin A0_REG <= A; A1_REG <= A0_REG; end if (RSTB) begin B0_REG <= 0; B1_REG <= 0; end else if (CEB) begin B0_REG <= B_MUX; B1_REG <= B0_REG; end if (RSTC) begin C_REG <= 0; end else if (CEC) begin C_REG <= C; end if (RSTM) begin M_REG <= 0; end else if (CEM) begin M_REG <= M_MULT; end if (RSTP) begin P_REG <= 0; end else if (CEP) begin P_REG <= P_IN; end if (RSTCTRL) begin OPMODE_REG <= 0; CARRYINSEL_REG <= 0; SUBTRACT_REG <= 0; end else begin if (CECTRL) begin OPMODE_REG <= OPMODE; CARRYINSEL_REG <= CARRYINSEL; end if (CECINSUB) SUBTRACT_REG <= SUBTRACT; end if (RSTCARRYIN) begin CARRYIN_REG <= 0; INT_CARRYIN_XY_REG <= 0; end else begin if (CECINSUB) CARRYIN_REG <= CARRYIN; if (CECARRYIN) INT_CARRYIN_XY_REG <= INT_CARRYIN_XY; end end // The register enables. assign A_OUT = (AREG == 2) ? A1_REG : (AREG == 1) ? A0_REG : A; assign B_OUT = (BREG == 2) ? B1_REG : (BREG == 1) ? B0_REG : B_MUX; assign C_OUT = (CREG == 1) ? C_REG : C; assign M_OUT = (MREG == 1) ? M_REG : M_MULT; assign P = (PREG == 1) ? P_REG : P_IN; assign OPMODE_OUT = (OPMODEREG == 1) ? OPMODE_REG : OPMODE; assign SUBTRACT_OUT = (SUBTRACTREG == 1) ? SUBTRACT_REG : SUBTRACT; assign CARRYINSEL_OUT = (CARRYINSELREG == 1) ? CARRYINSEL_REG : CARRYINSEL; assign CARRYIN_OUT = (CARRYINREG == 1) ? CARRYIN_REG : CARRYIN; // The multiplier. assign M_MULT = A_OUT * B_OUT; // The post-adder inputs. always @* begin case (OPMODE_OUT[1:0]) 2'b00: XMUX <= 0; 2'b10: XMUX <= P; 2'b11: XMUX <= {{12{A_OUT[17]}}, A_OUT, B_OUT}; default: XMUX <= 48'hxxxxxxxxxxxx; endcase case (OPMODE_OUT[1:0]) 2'b01: INT_CARRYIN_XY <= A_OUT[17] ~^ B_OUT[17]; 2'b11: INT_CARRYIN_XY <= ~A_OUT[17]; // TODO: not tested in hardware. default: INT_CARRYIN_XY <= A_OUT[17] ~^ B_OUT[17]; endcase end always @* begin case (OPMODE_OUT[3:2]) 2'b00: YMUX <= 0; 2'b11: YMUX <= C_OUT; default: YMUX <= 48'hxxxxxxxxxxxx; endcase end assign XYMUX = (OPMODE_OUT[3:0] == 4'b0101) ? M_OUT : (XMUX + YMUX); always @* begin case (OPMODE_OUT[6:4]) 3'b000: ZMUX <= 0; 3'b001: ZMUX <= PCIN; 3'b010: ZMUX <= P; 3'b011: ZMUX <= C_OUT; 3'b101: ZMUX <= {{17{PCIN[47]}}, PCIN[47:17]}; 3'b110: ZMUX <= {{17{P[47]}}, P[47:17]}; default: ZMUX <= 48'hxxxxxxxxxxxx; endcase // TODO: check how all this works on actual hw. if (OPMODE_OUT[1:0] == 2'b10) INT_CARRYIN_Z <= ~P[47]; else case (OPMODE_OUT[6:4]) 3'b001: INT_CARRYIN_Z <= ~PCIN[47]; 3'b010: INT_CARRYIN_Z <= ~P[47]; 3'b101: INT_CARRYIN_Z <= ~PCIN[47]; 3'b110: INT_CARRYIN_Z <= ~P[47]; default: INT_CARRYIN_Z <= 1'bx; endcase end always @* begin case (CARRYINSEL_OUT) 2'b00: CIN <= CARRYIN_OUT; 2'b01: CIN <= INT_CARRYIN_Z; 2'b10: CIN <= INT_CARRYIN_XY; 2'b11: CIN <= INT_CARRYIN_XY_REG; default: CIN <= 1'bx; endcase end // The post-adder. assign P_IN = SUBTRACT_OUT ? (ZMUX - (XYMUX + CIN)) : (ZMUX + XYMUX + CIN); endmodule // TODO: DSP48E (Virtex 5). // Virtex 6, Series 7. `ifdef YOSYS (* abc9_box=!(PREG || AREG || ADREG || BREG || CREG || DREG || MREG), lib_whitebox=!(PREG || AREG || ADREG || BREG || CREG || DREG || MREG) *) `endif module DSP48E1 ( output [29:0] ACOUT, output [17:0] BCOUT, output reg CARRYCASCOUT, output reg [3:0] CARRYOUT, output reg MULTSIGNOUT, output OVERFLOW, output reg signed [47:0] P, output reg PATTERNBDETECT, output reg PATTERNDETECT, output [47:0] PCOUT, output UNDERFLOW, input signed [29:0] A, input [29:0] ACIN, input [3:0] ALUMODE, input signed [17:0] B, input [17:0] BCIN, input [47:0] C, input CARRYCASCIN, input CARRYIN, input [2:0] CARRYINSEL, input CEA1, input CEA2, input CEAD, input CEALUMODE, input CEB1, input CEB2, input CEC, input CECARRYIN, input CECTRL, input CED, input CEINMODE, input CEM, input CEP, (* clkbuf_sink *) input CLK, input [24:0] D, input [4:0] INMODE, input MULTSIGNIN, input [6:0] OPMODE, input [47:0] PCIN, input RSTA, input RSTALLCARRYIN, input RSTALUMODE, input RSTB, input RSTC, input RSTCTRL, input RSTD, input RSTINMODE, input RSTM, input RSTP ); parameter integer ACASCREG = 1; parameter integer ADREG = 1; parameter integer ALUMODEREG = 1; parameter integer AREG = 1; parameter AUTORESET_PATDET = "NO_RESET"; parameter A_INPUT = "DIRECT"; parameter integer BCASCREG = 1; parameter integer BREG = 1; parameter B_INPUT = "DIRECT"; parameter integer CARRYINREG = 1; parameter integer CARRYINSELREG = 1; parameter integer CREG = 1; parameter integer DREG = 1; parameter integer INMODEREG = 1; parameter integer MREG = 1; parameter integer OPMODEREG = 1; parameter integer PREG = 1; parameter SEL_MASK = "MASK"; parameter SEL_PATTERN = "PATTERN"; parameter USE_DPORT = "FALSE"; parameter USE_MULT = "MULTIPLY"; parameter USE_PATTERN_DETECT = "NO_PATDET"; parameter USE_SIMD = "ONE48"; parameter [47:0] MASK = 48'h3FFFFFFFFFFF; parameter [47:0] PATTERN = 48'h000000000000; parameter [3:0] IS_ALUMODE_INVERTED = 4'b0; parameter [0:0] IS_CARRYIN_INVERTED = 1'b0; parameter [0:0] IS_CLK_INVERTED = 1'b0; parameter [4:0] IS_INMODE_INVERTED = 5'b0; parameter [6:0] IS_OPMODE_INVERTED = 7'b0; `ifdef YOSYS function integer \A.required ; begin if (AREG != 0) \A.required = 254; else if (USE_MULT == "MULTIPLY" && USE_DPORT == "FALSE") begin if (MREG != 0) \A.required = 1416; else if (PREG != 0) \A.required = (USE_PATTERN_DETECT != "NO_PATDET" ? 3030 : 2739) ; end else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") begin // Worst-case from ADREG and MREG if (MREG != 0) \A.required = 2400; else if (ADREG != 0) \A.required = 1283; else if (PREG != 0) \A.required = 3723; else if (PREG != 0) \A.required = (USE_PATTERN_DETECT != "NO_PATDET" ? 4014 : 3723) ; end else if (USE_MULT == "NONE" && USE_DPORT == "FALSE") begin if (PREG != 0) \A.required = (USE_PATTERN_DETECT != "NO_PATDET" ? 1730 : 1441) ; end end endfunction function integer \B.required ; begin if (BREG != 0) \B.required = 324; else if (MREG != 0) \B.required = 1285; else if (USE_MULT == "MULTIPLY" && USE_DPORT == "FALSE") begin if (PREG != 0) \B.required = (USE_PATTERN_DETECT != "NO_PATDET" ? 2898 : 2608) ; end else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") begin if (PREG != 0) \B.required = (USE_PATTERN_DETECT != "NO_PATDET" ? 2898 : 2608) ; end else if (USE_MULT == "NONE" && USE_DPORT == "FALSE") begin if (PREG != 0) \B.required = (USE_PATTERN_DETECT != "NO_PATDET" ? 1718 : 1428) ; end end endfunction function integer \C.required ; begin if (CREG != 0) \C.required = 168; else if (PREG != 0) \C.required = (USE_PATTERN_DETECT != "NO_PATDET" ? 1534 : 1244) ; end endfunction function integer \D.required ; begin if (USE_MULT == "MULTIPLY" && USE_DPORT == "FALSE") begin end else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") begin if (DREG != 0) \D.required = 248; else if (ADREG != 0) \D.required = 1195; else if (MREG != 0) \D.required = 2310; else if (PREG != 0) \D.required = (USE_PATTERN_DETECT != "NO_PATDET" ? 3925 : 3635) ; end else if (USE_MULT == "NONE" && USE_DPORT == "FALSE") begin end end endfunction function integer \P.arrival ; begin if (USE_MULT == "MULTIPLY" && USE_DPORT == "FALSE") begin if (PREG != 0) \P.arrival = 329; // Worst-case from CREG and MREG else if (CREG != 0) \P.arrival = 1687; else if (MREG != 0) \P.arrival = 1671; // Worst-case from AREG and BREG else if (AREG != 0) \P.arrival = 2952; else if (BREG != 0) \P.arrival = 2813; end else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") begin if (PREG != 0) \P.arrival = 329; // Worst-case from CREG and MREG else if (CREG != 0) \P.arrival = 1687; else if (MREG != 0) \P.arrival = 1671; // Worst-case from AREG, ADREG, BREG, DREG else if (AREG != 0) \P.arrival = 3935; else if (DREG != 0) \P.arrival = 3908; else if (ADREG != 0) \P.arrival = 2958; else if (BREG != 0) \P.arrival = 2813; end else if (USE_MULT == "NONE" && USE_DPORT == "FALSE") begin if (PREG != 0) \P.arrival = 329; // Worst-case from AREG, BREG, CREG else if (CREG != 0) \P.arrival = 1687; else if (AREG != 0) \P.arrival = 1632; else if (BREG != 0) \P.arrival = 1616; end end endfunction function integer \PCOUT.arrival ; begin if (USE_MULT == "MULTIPLY" && USE_DPORT == "FALSE") begin if (PREG != 0) \PCOUT.arrival = 435; // Worst-case from CREG and MREG else if (CREG != 0) \PCOUT.arrival = 1835; else if (MREG != 0) \PCOUT.arrival = 1819; // Worst-case from AREG and BREG else if (AREG != 0) \PCOUT.arrival = 3098; else if (BREG != 0) \PCOUT.arrival = 2960; end else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") begin if (PREG != 0) \PCOUT.arrival = 435; // Worst-case from CREG and MREG else if (CREG != 0) \PCOUT.arrival = 1835; else if (MREG != 0) \PCOUT.arrival = 1819; // Worst-case from AREG, ADREG, BREG, DREG else if (AREG != 0) \PCOUT.arrival = 4083; else if (DREG != 0) \PCOUT.arrival = 4056; else if (BREG != 0) \PCOUT.arrival = 2960; else if (ADREG != 0) \PCOUT.arrival = 2859; end else if (USE_MULT == "NONE" && USE_DPORT == "FALSE") begin if (PREG != 0) \PCOUT.arrival = 435; // Worst-case from AREG, BREG, CREG else if (CREG != 0) \PCOUT.arrival = 1835; else if (AREG != 0) \PCOUT.arrival = 1780; else if (BREG != 0) \PCOUT.arrival = 1765; end end endfunction function integer \A.P.comb ; begin if (USE_MULT == "MULTIPLY" && USE_DPORT == "FALSE") \A.P.comb = 2823; else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") \A.P.comb = 3806; else if (USE_MULT == "NONE" && USE_DPORT == "FALSE") \A.P.comb = 1523; end endfunction function integer \A.PCOUT.comb ; begin if (USE_MULT == "MULTIPLY" && USE_DPORT == "FALSE") \A.PCOUT.comb = 2970; else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") \A.PCOUT.comb = 3954; else if (USE_MULT == "NONE" && USE_DPORT == "FALSE") \A.PCOUT.comb = 1671; end endfunction function integer \B.P.comb ; begin if (USE_MULT == "MULTIPLY" && USE_DPORT == "FALSE") \B.P.comb = 2690; else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") \B.P.comb = 2690; else if (USE_MULT == "NONE" && USE_DPORT == "FALSE") \B.P.comb = 1509; end endfunction function integer \B.PCOUT.comb ; begin if (USE_MULT == "MULTIPLY" && USE_DPORT == "FALSE") \B.PCOUT.comb = 2838; else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") \B.PCOUT.comb = 2838; else if (USE_MULT == "NONE" && USE_DPORT == "FALSE") \B.PCOUT.comb = 1658; end endfunction function integer \C.P.comb ; begin if (USE_MULT == "MULTIPLY" && USE_DPORT == "FALSE") \C.P.comb = 1325; else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") \C.P.comb = 1325; else if (USE_MULT == "NONE" && USE_DPORT == "FALSE") \C.P.comb = 1325; end endfunction function integer \C.PCOUT.comb ; begin if (USE_MULT == "MULTIPLY" && USE_DPORT == "FALSE") \C.PCOUT.comb = 1474; else if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") \C.PCOUT.comb = 1474; else if (USE_MULT == "NONE" && USE_DPORT == "FALSE") \C.PCOUT.comb = 1474; end endfunction function integer \D.P.comb ; begin if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") \D.P.comb = 3717; end endfunction function integer \D.PCOUT.comb ; begin if (USE_MULT == "MULTIPLY" && USE_DPORT == "TRUE") \D.PCOUT.comb = 3700; end endfunction generate if (PREG == 0 && MREG == 0 && AREG == 0 && ADREG == 0) specify (A *> P) = \A.P.comb (); (A *> PCOUT) = \A.PCOUT.comb (); endspecify else specify $setup(A, posedge CLK &&& !IS_CLK_INVERTED, \A.required () ); $setup(A, negedge CLK &&& IS_CLK_INVERTED, \A.required () ); endspecify if (PREG == 0 && MREG == 0 && BREG == 0) specify (B *> P) = \B.P.comb (); (B *> PCOUT) = \B.PCOUT.comb (); endspecify else specify $setup(B, posedge CLK &&& !IS_CLK_INVERTED, \B.required () ); $setup(B, negedge CLK &&& IS_CLK_INVERTED, \B.required () ); endspecify if (PREG == 0 && CREG == 0) specify (C *> P) = \C.P.comb (); (C *> PCOUT) = \C.PCOUT.comb (); endspecify else specify $setup(C, posedge CLK &&& !IS_CLK_INVERTED, \C.required () ); $setup(C, negedge CLK &&& IS_CLK_INVERTED, \C.required () ); endspecify if (PREG == 0 && MREG == 0 && ADREG == 0 && DREG == 0) specify (D *> P) = \D.P.comb (); (D *> PCOUT) = \D.PCOUT.comb (); endspecify else specify $setup(D, posedge CLK &&& !IS_CLK_INVERTED, \D.required () ); $setup(D, negedge CLK &&& IS_CLK_INVERTED, \D.required () ); endspecify if (PREG == 0) specify (PCIN *> P) = 1107; (PCIN *> PCOUT) = 1255; endspecify else specify $setup(PCIN, posedge CLK &&& !IS_CLK_INVERTED, USE_PATTERN_DETECT != "NO_PATDET" ? 1315 : 1025); $setup(PCIN, negedge CLK &&& IS_CLK_INVERTED, USE_PATTERN_DETECT != "NO_PATDET" ? 1315 : 1025); endspecify if (PREG || AREG || ADREG || BREG || CREG || DREG || MREG) specify if (!IS_CLK_INVERTED && CEP) (posedge CLK => (P : 48'bx)) = \P.arrival () ; if ( IS_CLK_INVERTED && CEP) (negedge CLK => (P : 48'bx)) = \P.arrival () ; if (!IS_CLK_INVERTED && CEP) (posedge CLK => (PCOUT : 48'bx)) = \PCOUT.arrival () ; if ( IS_CLK_INVERTED && CEP) (negedge CLK => (PCOUT : 48'bx)) = \PCOUT.arrival () ; endspecify endgenerate `endif initial begin `ifndef YOSYS if (AUTORESET_PATDET != "NO_RESET") $fatal(1, "Unsupported AUTORESET_PATDET value"); if (SEL_MASK != "MASK") $fatal(1, "Unsupported SEL_MASK value"); if (SEL_PATTERN != "PATTERN") $fatal(1, "Unsupported SEL_PATTERN value"); if (USE_SIMD != "ONE48" && USE_SIMD != "TWO24" && USE_SIMD != "FOUR12") $fatal(1, "Unsupported USE_SIMD value"); if (IS_ALUMODE_INVERTED != 4'b0) $fatal(1, "Unsupported IS_ALUMODE_INVERTED value"); if (IS_CARRYIN_INVERTED != 1'b0) $fatal(1, "Unsupported IS_CARRYIN_INVERTED value"); if (IS_CLK_INVERTED != 1'b0) $fatal(1, "Unsupported IS_CLK_INVERTED value"); if (IS_INMODE_INVERTED != 5'b0) $fatal(1, "Unsupported IS_INMODE_INVERTED value"); if (IS_OPMODE_INVERTED != 7'b0) $fatal(1, "Unsupported IS_OPMODE_INVERTED value"); `endif end wire signed [29:0] A_muxed; wire signed [17:0] B_muxed; generate if (A_INPUT == "CASCADE") assign A_muxed = ACIN; else assign A_muxed = A; if (B_INPUT == "CASCADE") assign B_muxed = BCIN; else assign B_muxed = B; endgenerate reg signed [29:0] Ar1, Ar2; reg signed [24:0] Dr; reg signed [17:0] Br1, Br2; reg signed [47:0] Cr; reg [4:0] INMODEr; reg [6:0] OPMODEr; reg [3:0] ALUMODEr; reg [2:0] CARRYINSELr; generate // Configurable A register if (AREG == 2) begin initial Ar1 = 30'b0; initial Ar2 = 30'b0; always @(posedge CLK) if (RSTA) begin Ar1 <= 30'b0; Ar2 <= 30'b0; end else begin if (CEA1) Ar1 <= A_muxed; if (CEA2) Ar2 <= Ar1; end end else if (AREG == 1) begin //initial Ar1 = 30'b0; initial Ar2 = 30'b0; always @(posedge CLK) if (RSTA) begin Ar1 <= 30'b0; Ar2 <= 30'b0; end else begin if (CEA1) Ar1 <= A_muxed; if (CEA2) Ar2 <= A_muxed; end end else begin always @* Ar1 <= A_muxed; always @* Ar2 <= A_muxed; end // Configurable B register if (BREG == 2) begin initial Br1 = 25'b0; initial Br2 = 25'b0; always @(posedge CLK) if (RSTB) begin Br1 <= 18'b0; Br2 <= 18'b0; end else begin if (CEB1) Br1 <= B_muxed; if (CEB2) Br2 <= Br1; end end else if (BREG == 1) begin //initial Br1 = 18'b0; initial Br2 = 18'b0; always @(posedge CLK) if (RSTB) begin Br1 <= 18'b0; Br2 <= 18'b0; end else begin if (CEB1) Br1 <= B_muxed; if (CEB2) Br2 <= B_muxed; end end else begin always @* Br1 <= B_muxed; always @* Br2 <= B_muxed; end // C and D registers if (CREG == 1) initial Cr = 48'b0; if (CREG == 1) begin always @(posedge CLK) if (RSTC) Cr <= 48'b0; else if (CEC) Cr <= C; end else always @* Cr <= C; if (CREG == 1) initial Dr = 25'b0; if (DREG == 1) begin always @(posedge CLK) if (RSTD) Dr <= 25'b0; else if (CED) Dr <= D; end else always @* Dr <= D; // Control registers if (INMODEREG == 1) initial INMODEr = 5'b0; if (INMODEREG == 1) begin always @(posedge CLK) if (RSTINMODE) INMODEr <= 5'b0; else if (CEINMODE) INMODEr <= INMODE; end else always @* INMODEr <= INMODE; if (OPMODEREG == 1) initial OPMODEr = 7'b0; if (OPMODEREG == 1) begin always @(posedge CLK) if (RSTCTRL) OPMODEr <= 7'b0; else if (CECTRL) OPMODEr <= OPMODE; end else always @* OPMODEr <= OPMODE; if (ALUMODEREG == 1) initial ALUMODEr = 4'b0; if (ALUMODEREG == 1) begin always @(posedge CLK) if (RSTALUMODE) ALUMODEr <= 4'b0; else if (CEALUMODE) ALUMODEr <= ALUMODE; end else always @* ALUMODEr <= ALUMODE; if (CARRYINSELREG == 1) initial CARRYINSELr = 3'b0; if (CARRYINSELREG == 1) begin always @(posedge CLK) if (RSTCTRL) CARRYINSELr <= 3'b0; else if (CECTRL) CARRYINSELr <= CARRYINSEL; end else always @* CARRYINSELr <= CARRYINSEL; endgenerate // A and B cascade generate if (ACASCREG == 1 && AREG == 2) assign ACOUT = Ar1; else assign ACOUT = Ar2; if (BCASCREG == 1 && BREG == 2) assign BCOUT = Br1; else assign BCOUT = Br2; endgenerate // A/D input selection and pre-adder wire signed [24:0] Ar12_muxed = INMODEr[0] ? Ar1 : Ar2; wire signed [24:0] Ar12_gated = INMODEr[1] ? 25'b0 : Ar12_muxed; wire signed [24:0] Dr_gated = INMODEr[2] ? Dr : 25'b0; wire signed [24:0] AD_result = INMODEr[3] ? (Dr_gated - Ar12_gated) : (Dr_gated + Ar12_gated); reg signed [24:0] ADr; generate if (ADREG == 1) initial ADr = 25'b0; if (ADREG == 1) begin always @(posedge CLK) if (RSTD) ADr <= 25'b0; else if (CEAD) ADr <= AD_result; end else always @* ADr <= AD_result; endgenerate // 25x18 multiplier wire signed [24:0] A_MULT; wire signed [17:0] B_MULT = INMODEr[4] ? Br1 : Br2; generate if (USE_DPORT == "TRUE") assign A_MULT = ADr; else assign A_MULT = Ar12_gated; endgenerate wire signed [42:0] M = A_MULT * B_MULT; wire signed [42:0] Mx = (CARRYINSEL == 3'b010) ? 43'bx : M; reg signed [42:0] Mr = 43'b0; // Multiplier result register generate if (MREG == 1) begin always @(posedge CLK) if (RSTM) Mr <= 43'b0; else if (CEM) Mr <= Mx; end else always @* Mr <= Mx; endgenerate wire signed [42:0] Mrx = (CARRYINSELr == 3'b010) ? 43'bx : Mr; // X, Y and Z ALU inputs reg signed [47:0] X, Y, Z; always @* begin // X multiplexer case (OPMODEr[1:0]) 2'b00: X = 48'b0; 2'b01: begin X = $signed(Mrx); `ifndef YOSYS if (OPMODEr[3:2] != 2'b01) $fatal(1, "OPMODEr[3:2] must be 2'b01 when OPMODEr[1:0] is 2'b01"); `endif end 2'b10: begin X = P; `ifndef YOSYS if (PREG != 1) $fatal(1, "PREG must be 1 when OPMODEr[1:0] is 2'b10"); `endif end 2'b11: X = $signed({Ar2, Br2}); default: X = 48'bx; endcase // Y multiplexer case (OPMODEr[3:2]) 2'b00: Y = 48'b0; 2'b01: begin Y = 48'b0; // FIXME: more accurate partial product modelling? `ifndef YOSYS if (OPMODEr[1:0] != 2'b01) $fatal(1, "OPMODEr[1:0] must be 2'b01 when OPMODEr[3:2] is 2'b01"); `endif end 2'b10: Y = {48{1'b1}}; 2'b11: Y = Cr; default: Y = 48'bx; endcase // Z multiplexer case (OPMODEr[6:4]) 3'b000: Z = 48'b0; 3'b001: Z = PCIN; 3'b010: begin Z = P; `ifndef YOSYS if (PREG != 1) $fatal(1, "PREG must be 1 when OPMODEr[6:4] i0s 3'b010"); `endif end 3'b011: Z = Cr; 3'b100: begin Z = P; `ifndef YOSYS if (PREG != 1) $fatal(1, "PREG must be 1 when OPMODEr[6:4] is 3'b100"); if (OPMODEr[3:0] != 4'b1000) $fatal(1, "OPMODEr[3:0] must be 4'b1000 when OPMODEr[6:4] i0s 3'b100"); `endif end 3'b101: Z = $signed(PCIN[47:17]); 3'b110: Z = $signed(P[47:17]); default: Z = 48'bx; endcase end // Carry in wire A24_xnor_B17d = A_MULT[24] ~^ B_MULT[17]; reg CARRYINr, A24_xnor_B17; generate if (CARRYINREG == 1) initial CARRYINr = 1'b0; if (CARRYINREG == 1) begin always @(posedge CLK) if (RSTALLCARRYIN) CARRYINr <= 1'b0; else if (CECARRYIN) CARRYINr <= CARRYIN; end else always @* CARRYINr = CARRYIN; if (MREG == 1) initial A24_xnor_B17 = 1'b0; if (MREG == 1) begin always @(posedge CLK) if (RSTALLCARRYIN) A24_xnor_B17 <= 1'b0; else if (CEM) A24_xnor_B17 <= A24_xnor_B17d; end else always @* A24_xnor_B17 = A24_xnor_B17d; endgenerate reg cin_muxed; always @(*) begin case (CARRYINSELr) 3'b000: cin_muxed = CARRYINr; 3'b001: cin_muxed = ~PCIN[47]; 3'b010: cin_muxed = CARRYCASCIN; 3'b011: cin_muxed = PCIN[47]; 3'b100: cin_muxed = CARRYCASCOUT; 3'b101: cin_muxed = ~P[47]; 3'b110: cin_muxed = A24_xnor_B17; 3'b111: cin_muxed = P[47]; default: cin_muxed = 1'bx; endcase end wire alu_cin = (ALUMODEr[3] || ALUMODEr[2]) ? 1'b0 : cin_muxed; // ALU core wire [47:0] Z_muxinv = ALUMODEr[0] ? ~Z : Z; wire [47:0] xor_xyz = X ^ Y ^ Z_muxinv; wire [47:0] maj_xyz = (X & Y) | (X & Z_muxinv) | (Y & Z_muxinv); wire [47:0] xor_xyz_muxed = ALUMODEr[3] ? maj_xyz : xor_xyz; wire [47:0] maj_xyz_gated = ALUMODEr[2] ? 48'b0 : maj_xyz; wire [48:0] maj_xyz_simd_gated; wire [3:0] int_carry_in, int_carry_out, ext_carry_out; wire [47:0] alu_sum; assign int_carry_in[0] = 1'b0; wire [3:0] carryout_reset; generate if (USE_SIMD == "FOUR12") begin assign maj_xyz_simd_gated = { maj_xyz_gated[47:36], 1'b0, maj_xyz_gated[34:24], 1'b0, maj_xyz_gated[22:12], 1'b0, maj_xyz_gated[10:0], alu_cin }; assign int_carry_in[3:1] = 3'b000; assign ext_carry_out = { int_carry_out[3], maj_xyz_gated[35] ^ int_carry_out[2], maj_xyz_gated[23] ^ int_carry_out[1], maj_xyz_gated[11] ^ int_carry_out[0] }; assign carryout_reset = 4'b0000; end else if (USE_SIMD == "TWO24") begin assign maj_xyz_simd_gated = { maj_xyz_gated[47:24], 1'b0, maj_xyz_gated[22:0], alu_cin }; assign int_carry_in[3:1] = {int_carry_out[2], 1'b0, int_carry_out[0]}; assign ext_carry_out = { int_carry_out[3], 1'bx, maj_xyz_gated[23] ^ int_carry_out[1], 1'bx }; assign carryout_reset = 4'b0x0x; end else begin assign maj_xyz_simd_gated = {maj_xyz_gated, alu_cin}; assign int_carry_in[3:1] = int_carry_out[2:0]; assign ext_carry_out = { int_carry_out[3], 3'bxxx }; assign carryout_reset = 4'b0xxx; end genvar i; for (i = 0; i < 4; i = i + 1) assign {int_carry_out[i], alu_sum[i*12 +: 12]} = {1'b0, maj_xyz_simd_gated[i*12 +: ((i == 3) ? 13 : 12)]} + xor_xyz_muxed[i*12 +: 12] + int_carry_in[i]; endgenerate wire signed [47:0] Pd = ALUMODEr[1] ? ~alu_sum : alu_sum; wire [3:0] CARRYOUTd = (OPMODEr[3:0] == 4'b0101 || ALUMODEr[3:2] != 2'b00) ? 4'bxxxx : ((ALUMODEr[0] & ALUMODEr[1]) ? ~ext_carry_out : ext_carry_out); wire CARRYCASCOUTd = ext_carry_out[3]; wire MULTSIGNOUTd = Mrx[42]; generate if (PREG == 1) begin initial P = 48'b0; initial CARRYOUT = carryout_reset; initial CARRYCASCOUT = 1'b0; initial MULTSIGNOUT = 1'b0; always @(posedge CLK) if (RSTP) begin P <= 48'b0; CARRYOUT <= carryout_reset; CARRYCASCOUT <= 1'b0; MULTSIGNOUT <= 1'b0; end else if (CEP) begin P <= Pd; CARRYOUT <= CARRYOUTd; CARRYCASCOUT <= CARRYCASCOUTd; MULTSIGNOUT <= MULTSIGNOUTd; end end else begin always @* begin P = Pd; CARRYOUT = CARRYOUTd; CARRYCASCOUT = CARRYCASCOUTd; MULTSIGNOUT = MULTSIGNOUTd; end end endgenerate assign PCOUT = P; generate wire PATTERNDETECTd, PATTERNBDETECTd; if (USE_PATTERN_DETECT == "PATDET") begin // TODO: Support SEL_PATTERN != "PATTERN" and SEL_MASK != "MASK assign PATTERNDETECTd = &(~(Pd ^ PATTERN) | MASK); assign PATTERNBDETECTd = &((Pd ^ PATTERN) | MASK); end else begin assign PATTERNDETECTd = 1'b1; assign PATTERNBDETECTd = 1'b1; end if (PREG == 1) begin reg PATTERNDETECTPAST, PATTERNBDETECTPAST; initial PATTERNDETECT = 1'b0; initial PATTERNBDETECT = 1'b0; initial PATTERNDETECTPAST = 1'b0; initial PATTERNBDETECTPAST = 1'b0; always @(posedge CLK) if (RSTP) begin PATTERNDETECT <= 1'b0; PATTERNBDETECT <= 1'b0; PATTERNDETECTPAST <= 1'b0; PATTERNBDETECTPAST <= 1'b0; end else if (CEP) begin PATTERNDETECT <= PATTERNDETECTd; PATTERNBDETECT <= PATTERNBDETECTd; PATTERNDETECTPAST <= PATTERNDETECT; PATTERNBDETECTPAST <= PATTERNBDETECT; end assign OVERFLOW = &{PATTERNDETECTPAST, ~PATTERNBDETECT, ~PATTERNDETECT}; assign UNDERFLOW = &{PATTERNBDETECTPAST, ~PATTERNBDETECT, ~PATTERNDETECT}; end else begin always @* begin PATTERNDETECT = PATTERNDETECTd; PATTERNBDETECT = PATTERNBDETECTd; end assign OVERFLOW = 1'bx, UNDERFLOW = 1'bx; end endgenerate endmodule // TODO: DSP48E2 (Ultrascale). // Block RAM module RAMB18E1 ( (* clkbuf_sink *) (* invertible_pin = "IS_CLKARDCLK_INVERTED" *) input CLKARDCLK, (* clkbuf_sink *) (* invertible_pin = "IS_CLKBWRCLK_INVERTED" *) input CLKBWRCLK, (* invertible_pin = "IS_ENARDEN_INVERTED" *) input ENARDEN, (* invertible_pin = "IS_ENBWREN_INVERTED" *) input ENBWREN, input REGCEAREGCE, input REGCEB, (* invertible_pin = "IS_RSTRAMARSTRAM_INVERTED" *) input RSTRAMARSTRAM, (* invertible_pin = "IS_RSTRAMB_INVERTED" *) input RSTRAMB, (* invertible_pin = "IS_RSTREGARSTREG_INVERTED" *) input RSTREGARSTREG, (* invertible_pin = "IS_RSTREGB_INVERTED" *) input RSTREGB, input [13:0] ADDRARDADDR, input [13:0] ADDRBWRADDR, input [15:0] DIADI, input [15:0] DIBDI, input [1:0] DIPADIP, input [1:0] DIPBDIP, input [1:0] WEA, input [3:0] WEBWE, output [15:0] DOADO, output [15:0] DOBDO, output [1:0] DOPADOP, output [1:0] DOPBDOP ); parameter integer DOA_REG = 0; parameter integer DOB_REG = 0; parameter INITP_00 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INITP_01 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INITP_02 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INITP_03 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INITP_04 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INITP_05 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INITP_06 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INITP_07 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_00 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_01 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_02 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_03 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_04 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_05 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_06 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_07 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_08 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_09 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_0A = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_0B = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_0C = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_0D = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_0E = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_0F = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_10 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_11 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_12 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_13 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_14 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_15 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_16 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_17 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_18 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_19 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_1A = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_1B = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_1C = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_1D = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_1E = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_1F = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_20 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_21 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_22 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_23 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_24 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_25 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_26 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_27 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_28 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_29 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_2A = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_2B = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_2C = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_2D = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_2E = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_2F = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_30 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_31 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_32 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_33 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_34 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_35 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_36 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_37 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_38 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_39 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_3A = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_3B = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_3C = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_3D = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_3E = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_3F = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_A = 18'h0; parameter INIT_B = 18'h0; parameter INIT_FILE = "NONE"; parameter RAM_MODE = "TDP"; parameter RDADDR_COLLISION_HWCONFIG = "DELAYED_WRITE"; parameter integer READ_WIDTH_A = 0; parameter integer READ_WIDTH_B = 0; parameter RSTREG_PRIORITY_A = "RSTREG"; parameter RSTREG_PRIORITY_B = "RSTREG"; parameter SIM_COLLISION_CHECK = "ALL"; parameter SIM_DEVICE = "VIRTEX6"; parameter SRVAL_A = 18'h0; parameter SRVAL_B = 18'h0; parameter WRITE_MODE_A = "WRITE_FIRST"; parameter WRITE_MODE_B = "WRITE_FIRST"; parameter integer WRITE_WIDTH_A = 0; parameter integer WRITE_WIDTH_B = 0; parameter IS_CLKARDCLK_INVERTED = 1'b0; parameter IS_CLKBWRCLK_INVERTED = 1'b0; parameter IS_ENARDEN_INVERTED = 1'b0; parameter IS_ENBWREN_INVERTED = 1'b0; parameter IS_RSTRAMARSTRAM_INVERTED = 1'b0; parameter IS_RSTRAMB_INVERTED = 1'b0; parameter IS_RSTREGARSTREG_INVERTED = 1'b0; parameter IS_RSTREGB_INVERTED = 1'b0; specify // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/BRAM_L.sdf#L13 $setup(ADDRARDADDR, posedge CLKARDCLK, 566); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/BRAM_L.sdf#L17 $setup(ADDRBWRADDR, posedge CLKBWRCLK, 566); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/BRAM_L.sdf#L19 $setup(WEA, posedge CLKARDCLK, 532); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/BRAM_L.sdf#L21 $setup(WEBWE, posedge CLKBWRCLK, 532); // https://github.com/SymbiFlow/prjxray-db/blob/4bc6385ab300b1819848371f508185f57b649a0e/artix7/timings/BRAM_L.sdf#L29 $setup(REGCEAREGCE, posedge CLKARDCLK, 360); // https://github.com/SymbiFlow/prjxray-db/blob/4bc6385ab300b1819848371f508185f57b649a0e/artix7/timings/BRAM_L.sdf#L31 $setup(RSTREGARSTREG, posedge CLKARDCLK, 342); // https://github.com/SymbiFlow/prjxray-db/blob/4bc6385ab300b1819848371f508185f57b649a0e/artix7/timings/BRAM_L.sdf#L49 $setup(REGCEB, posedge CLKBWRCLK, 360); // https://github.com/SymbiFlow/prjxray-db/blob/4bc6385ab300b1819848371f508185f57b649a0e/artix7/timings/BRAM_L.sdf#L59 $setup(RSTREGB, posedge CLKBWRCLK, 342); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/BRAM_L.sdf#L123 $setup(DIADI, posedge CLKARDCLK, 737); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/BRAM_L.sdf#L133 $setup(DIBDI, posedge CLKBWRCLK, 737); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/BRAM_L.sdf#L125 $setup(DIPADIP, posedge CLKARDCLK, 737); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/BRAM_L.sdf#L135 $setup(DIPBDIP, posedge CLKBWRCLK, 737); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/BRAM_L.sdf#L143 if (&DOA_REG) (posedge CLKARDCLK => (DOADO : 16'bx)) = 2454; // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/BRAM_L.sdf#L144 if (&DOA_REG) (posedge CLKARDCLK => (DOPADOP : 2'bx)) = 2454; // https://github.com/SymbiFlow/prjxray-db/blob/4bc6385ab300b1819848371f508185f57b649a0e/artix7/timings/BRAM_L.sdf#L153 if (|DOA_REG) (posedge CLKARDCLK => (DOADO : 16'bx)) = 882; // https://github.com/SymbiFlow/prjxray-db/blob/4bc6385ab300b1819848371f508185f57b649a0e/artix7/timings/BRAM_L.sdf#L154 if (|DOA_REG) (posedge CLKARDCLK => (DOPADOP : 2'bx)) = 882; // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/BRAM_L.sdf#L163 if (&DOB_REG) (posedge CLKBWRCLK => (DOBDO : 16'bx)) = 2454; // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/BRAM_L.sdf#L164 if (&DOB_REG) (posedge CLKBWRCLK => (DOPBDOP : 2'bx)) = 2454; // https://github.com/SymbiFlow/prjxray-db/blob/4bc6385ab300b1819848371f508185f57b649a0e/artix7/timings/BRAM_L.sdf#L173 if (|DOB_REG) (posedge CLKBWRCLK => (DOBDO : 16'bx)) = 882; // https://github.com/SymbiFlow/prjxray-db/blob/4bc6385ab300b1819848371f508185f57b649a0e/artix7/timings/BRAM_L.sdf#L174 if (|DOB_REG) (posedge CLKBWRCLK => (DOPBDOP : 2'bx)) = 882; endspecify endmodule module RAMB36E1 ( output CASCADEOUTA, output CASCADEOUTB, output [31:0] DOADO, output [31:0] DOBDO, output [3:0] DOPADOP, output [3:0] DOPBDOP, output [7:0] ECCPARITY, output [8:0] RDADDRECC, output SBITERR, output DBITERR, (* invertible_pin = "IS_ENARDEN_INVERTED" *) input ENARDEN, (* clkbuf_sink *) (* invertible_pin = "IS_CLKARDCLK_INVERTED" *) input CLKARDCLK, (* invertible_pin = "IS_RSTRAMARSTRAM_INVERTED" *) input RSTRAMARSTRAM, (* invertible_pin = "IS_RSTREGARSTREG_INVERTED" *) input RSTREGARSTREG, input CASCADEINA, input REGCEAREGCE, (* invertible_pin = "IS_ENBWREN_INVERTED" *) input ENBWREN, (* clkbuf_sink *) (* invertible_pin = "IS_CLKBWRCLK_INVERTED" *) input CLKBWRCLK, (* invertible_pin = "IS_RSTRAMB_INVERTED" *) input RSTRAMB, (* invertible_pin = "IS_RSTREGB_INVERTED" *) input RSTREGB, input CASCADEINB, input REGCEB, input INJECTDBITERR, input INJECTSBITERR, input [15:0] ADDRARDADDR, input [15:0] ADDRBWRADDR, input [31:0] DIADI, input [31:0] DIBDI, input [3:0] DIPADIP, input [3:0] DIPBDIP, input [3:0] WEA, input [7:0] WEBWE ); parameter integer DOA_REG = 0; parameter integer DOB_REG = 0; parameter EN_ECC_READ = "FALSE"; parameter EN_ECC_WRITE = "FALSE"; parameter INITP_00 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INITP_01 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INITP_02 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INITP_03 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INITP_04 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INITP_05 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INITP_06 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INITP_07 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INITP_08 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INITP_09 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INITP_0A = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INITP_0B = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INITP_0C = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INITP_0D = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INITP_0E = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INITP_0F = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_00 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_01 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_02 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_03 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_04 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_05 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_06 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_07 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_08 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_09 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_0A = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_0B = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_0C = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_0D = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_0E = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_0F = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_10 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_11 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_12 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_13 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_14 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_15 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_16 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_17 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_18 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_19 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_1A = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_1B = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_1C = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_1D = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_1E = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_1F = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_20 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_21 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_22 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_23 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_24 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_25 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_26 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_27 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_28 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_29 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_2A = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_2B = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_2C = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_2D = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_2E = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_2F = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_30 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_31 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_32 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_33 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_34 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_35 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_36 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_37 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_38 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_39 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_3A = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_3B = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_3C = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_3D = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_3E = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_3F = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_40 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_41 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_42 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_43 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_44 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_45 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_46 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_47 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_48 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_49 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_4A = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_4B = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_4C = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_4D = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_4E = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_4F = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_50 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_51 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_52 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_53 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_54 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_55 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_56 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_57 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_58 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_59 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_5A = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_5B = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_5C = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_5D = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_5E = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_5F = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_60 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_61 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_62 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_63 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_64 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_65 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_66 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_67 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_68 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_69 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_6A = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_6B = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_6C = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_6D = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_6E = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_6F = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_70 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_71 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_72 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_73 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_74 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_75 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_76 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_77 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_78 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_79 = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_7A = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_7B = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_7C = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_7D = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_7E = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_7F = 256'h0000000000000000000000000000000000000000000000000000000000000000; parameter INIT_A = 36'h0; parameter INIT_B = 36'h0; parameter INIT_FILE = "NONE"; parameter RAM_EXTENSION_A = "NONE"; parameter RAM_EXTENSION_B = "NONE"; parameter RAM_MODE = "TDP"; parameter RDADDR_COLLISION_HWCONFIG = "DELAYED_WRITE"; parameter integer READ_WIDTH_A = 0; parameter integer READ_WIDTH_B = 0; parameter RSTREG_PRIORITY_A = "RSTREG"; parameter RSTREG_PRIORITY_B = "RSTREG"; parameter SIM_COLLISION_CHECK = "ALL"; parameter SIM_DEVICE = "VIRTEX6"; parameter SRVAL_A = 36'h0; parameter SRVAL_B = 36'h0; parameter WRITE_MODE_A = "WRITE_FIRST"; parameter WRITE_MODE_B = "WRITE_FIRST"; parameter integer WRITE_WIDTH_A = 0; parameter integer WRITE_WIDTH_B = 0; parameter IS_CLKARDCLK_INVERTED = 1'b0; parameter IS_CLKBWRCLK_INVERTED = 1'b0; parameter IS_ENARDEN_INVERTED = 1'b0; parameter IS_ENBWREN_INVERTED = 1'b0; parameter IS_RSTRAMARSTRAM_INVERTED = 1'b0; parameter IS_RSTRAMB_INVERTED = 1'b0; parameter IS_RSTREGARSTREG_INVERTED = 1'b0; parameter IS_RSTREGB_INVERTED = 1'b0; specify // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/BRAM_L.sdf#L13 $setup(ADDRARDADDR, posedge CLKARDCLK, 566); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/BRAM_L.sdf#L17 $setup(ADDRBWRADDR, posedge CLKBWRCLK, 566); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/BRAM_L.sdf#L19 $setup(WEA, posedge CLKARDCLK, 532); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/BRAM_L.sdf#L21 $setup(WEBWE, posedge CLKBWRCLK, 532); // https://github.com/SymbiFlow/prjxray-db/blob/4bc6385ab300b1819848371f508185f57b649a0e/artix7/timings/BRAM_L.sdf#L29 $setup(REGCEAREGCE, posedge CLKARDCLK, 360); // https://github.com/SymbiFlow/prjxray-db/blob/4bc6385ab300b1819848371f508185f57b649a0e/artix7/timings/BRAM_L.sdf#L31 $setup(RSTREGARSTREG, posedge CLKARDCLK, 342); // https://github.com/SymbiFlow/prjxray-db/blob/4bc6385ab300b1819848371f508185f57b649a0e/artix7/timings/BRAM_L.sdf#L49 $setup(REGCEB, posedge CLKBWRCLK, 360); // https://github.com/SymbiFlow/prjxray-db/blob/4bc6385ab300b1819848371f508185f57b649a0e/artix7/timings/BRAM_L.sdf#L59 $setup(RSTREGB, posedge CLKBWRCLK, 342); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/BRAM_L.sdf#L123 $setup(DIADI, posedge CLKARDCLK, 737); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/BRAM_L.sdf#L133 $setup(DIBDI, posedge CLKBWRCLK, 737); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/BRAM_L.sdf#L125 $setup(DIPADIP, posedge CLKARDCLK, 737); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/BRAM_L.sdf#L135 $setup(DIPBDIP, posedge CLKBWRCLK, 737); // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/BRAM_L.sdf#L143 if (&DOA_REG) (posedge CLKARDCLK => (DOADO : 32'bx)) = 2454; // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/BRAM_L.sdf#L144 if (&DOA_REG) (posedge CLKARDCLK => (DOPADOP : 4'bx)) = 2454; // https://github.com/SymbiFlow/prjxray-db/blob/4bc6385ab300b1819848371f508185f57b649a0e/artix7/timings/BRAM_L.sdf#L153 if (|DOA_REG) (posedge CLKARDCLK => (DOADO : 32'bx)) = 882; // https://github.com/SymbiFlow/prjxray-db/blob/4bc6385ab300b1819848371f508185f57b649a0e/artix7/timings/BRAM_L.sdf#L154 if (|DOA_REG) (posedge CLKARDCLK => (DOPADOP : 4'bx)) = 882; // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/BRAM_L.sdf#L163 if (&DOB_REG) (posedge CLKBWRCLK => (DOBDO : 32'bx)) = 2454; // https://github.com/SymbiFlow/prjxray-db/blob/23c8b0851f979f0799318eaca90174413a46b257/artix7/timings/BRAM_L.sdf#L164 if (&DOB_REG) (posedge CLKBWRCLK => (DOPBDOP : 4'bx)) = 2454; // https://github.com/SymbiFlow/prjxray-db/blob/4bc6385ab300b1819848371f508185f57b649a0e/artix7/timings/BRAM_L.sdf#L173 if (|DOB_REG) (posedge CLKBWRCLK => (DOBDO : 32'bx)) = 882; // https://github.com/SymbiFlow/prjxray-db/blob/4bc6385ab300b1819848371f508185f57b649a0e/artix7/timings/BRAM_L.sdf#L174 if (|DOB_REG) (posedge CLKBWRCLK => (DOPBDOP : 4'bx)) = 882; endspecify endmodule