/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Claire Xenia Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/register.h" #include "kernel/sigtools.h" #include "kernel/consteval.h" #include "kernel/log.h" #include #include #include USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN RTLIL::SigSpec find_any_lvalue(const RTLIL::Process *proc) { RTLIL::SigSpec lvalue; for (auto sync : proc->syncs) for (auto &action : sync->actions) if (action.first.size() > 0) { lvalue = action.first; lvalue.sort_and_unify(); break; } for (auto sync : proc->syncs) { RTLIL::SigSpec this_lvalue; for (auto &action : sync->actions) this_lvalue.append(action.first); this_lvalue.sort_and_unify(); RTLIL::SigSpec common_sig = this_lvalue.extract(lvalue); if (common_sig.size() > 0) lvalue = common_sig; } return lvalue; } void gen_dffsr_complex(RTLIL::Module *mod, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, RTLIL::SigSpec clk, bool clk_polarity, std::vector> &async_rules, RTLIL::Process *proc) { // A signal should be set/cleared if there is a load trigger that is enabled // such that the load value is 1/0 and it is the highest priority trigger RTLIL::SigSpec sig_sr_set = RTLIL::SigSpec(0, sig_d.size()); RTLIL::SigSpec sig_sr_clr = RTLIL::SigSpec(0, sig_d.size()); // Reverse iterate through the rules as the first ones are the highest priority // so need to be at the top of the mux trees for (auto it = async_rules.crbegin(); it != async_rules.crend(); it++) { const auto& [sync_value, rule] = *it; const auto pos_trig = rule->type == RTLIL::SyncType::ST1 ? rule->signal : mod->Not(NEW_ID, rule->signal); // If pos_trig is true, we have priority at this point in the tree so // set a bit if sync_value has a set bit. Otherwise, defer to the rest // of the priority tree sig_sr_set = mod->Mux(NEW_ID, sig_sr_set, sync_value, pos_trig); // Same deal with clear bit const auto sync_value_inv = mod->Not(NEW_ID, sync_value); sig_sr_clr = mod->Mux(NEW_ID, sig_sr_clr, sync_value_inv, pos_trig); } std::stringstream sstr; sstr << "$procdff$" << (autoidx++); RTLIL::Cell *cell = mod->addDffsr(sstr.str(), clk, sig_sr_set, sig_sr_clr, sig_d, sig_q, clk_polarity); cell->attributes = proc->attributes; log(" created %s cell `%s' with %s edge clock and multiple level-sensitive resets.\n", cell->type.c_str(), cell->name.c_str(), clk_polarity ? "positive" : "negative"); } void gen_aldff(RTLIL::Module *mod, RTLIL::SigSpec sig_in, RTLIL::SigSpec sig_set, RTLIL::SigSpec sig_out, bool clk_polarity, bool set_polarity, RTLIL::SigSpec clk, RTLIL::SigSpec set, RTLIL::Process *proc) { std::stringstream sstr; sstr << "$procdff$" << (autoidx++); RTLIL::Cell *cell = mod->addCell(sstr.str(), ID($aldff)); cell->attributes = proc->attributes; cell->parameters[ID::WIDTH] = RTLIL::Const(sig_in.size()); cell->parameters[ID::ALOAD_POLARITY] = RTLIL::Const(set_polarity, 1); cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(clk_polarity, 1); cell->setPort(ID::D, sig_in); cell->setPort(ID::Q, sig_out); cell->setPort(ID::AD, sig_set); cell->setPort(ID::CLK, clk); cell->setPort(ID::ALOAD, set); log(" created %s cell `%s' with %s edge clock and %s level non-const reset.\n", cell->type.c_str(), cell->name.c_str(), clk_polarity ? "positive" : "negative", set_polarity ? "positive" : "negative"); } void gen_dff(RTLIL::Module *mod, RTLIL::SigSpec sig_in, RTLIL::Const val_rst, RTLIL::SigSpec sig_out, bool clk_polarity, bool arst_polarity, RTLIL::SigSpec clk, RTLIL::SigSpec *arst, RTLIL::Process *proc) { std::stringstream sstr; sstr << "$procdff$" << (autoidx++); RTLIL::Cell *cell = mod->addCell(sstr.str(), clk.empty() ? ID($ff) : arst ? ID($adff) : ID($dff)); cell->attributes = proc->attributes; cell->parameters[ID::WIDTH] = RTLIL::Const(sig_in.size()); if (arst) { cell->parameters[ID::ARST_POLARITY] = RTLIL::Const(arst_polarity, 1); cell->parameters[ID::ARST_VALUE] = val_rst; } if (!clk.empty()) { cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(clk_polarity, 1); } cell->setPort(ID::D, sig_in); cell->setPort(ID::Q, sig_out); if (arst) cell->setPort(ID::ARST, *arst); if (!clk.empty()) cell->setPort(ID::CLK, clk); if (!clk.empty()) log(" created %s cell `%s' with %s edge clock", cell->type.c_str(), cell->name.c_str(), clk_polarity ? "positive" : "negative"); else log(" created %s cell `%s' with global clock", cell->type.c_str(), cell->name.c_str()); if (arst) log(" and %s level reset", arst_polarity ? "positive" : "negative"); log(".\n"); } void proc_dff(RTLIL::Module *mod, RTLIL::Process *proc, ConstEval &ce) { while (1) { RTLIL::SigSpec sig = find_any_lvalue(proc); if (sig.size() == 0) break; log("Creating register for signal `%s.%s' using process `%s.%s'.\n", mod->name.c_str(), log_signal(sig), mod->name.c_str(), proc->name.c_str()); RTLIL::SigSpec insig = RTLIL::SigSpec(RTLIL::State::Sz, sig.size()); RTLIL::SyncRule *sync_edge = NULL; RTLIL::SyncRule *sync_always = NULL; bool global_clock = false; // A priority ordered set of rules, pairing the value to be assigned for // that rule to the rule std::vector> async_rules; // Needed when the async rules are collapsed into one as async_rules // works with pointers to SyncRule RTLIL::SyncRule single_async_rule; for (auto sync : proc->syncs) for (auto &action : sync->actions) { if (action.first.extract(sig).size() == 0) continue; if (sync->type == RTLIL::SyncType::ST0 || sync->type == RTLIL::SyncType::ST1) { RTLIL::SigSpec rstval = RTLIL::SigSpec(RTLIL::State::Sz, sig.size()); sig.replace(action.first, action.second, &rstval); async_rules.emplace_back(rstval, sync); } else if (sync->type == RTLIL::SyncType::STp || sync->type == RTLIL::SyncType::STn) { if (sync_edge != NULL && sync_edge != sync) log_error("Multiple edge sensitive events found for this signal!\n"); sig.replace(action.first, action.second, &insig); sync_edge = sync; } else if (sync->type == RTLIL::SyncType::STa) { if (sync_always != NULL && sync_always != sync) log_error("Multiple always events found for this signal!\n"); sig.replace(action.first, action.second, &insig); sync_always = sync; } else if (sync->type == RTLIL::SyncType::STg) { sig.replace(action.first, action.second, &insig); global_clock = true; } else { log_error("Event with any-edge sensitivity found for this signal!\n"); } action.first.remove2(sig, &action.second); } // If all async rules assign the same value, priority ordering between // them doesn't matter so they can be collapsed together into one rule // with the disjunction of triggers if (!async_rules.empty() && std::all_of(async_rules.begin(), async_rules.end(), [&](auto& p) { return p.first == async_rules.front().first; })) { const auto rstval = async_rules.front().first; // The trigger is the disjunction of existing triggers // (with appropriate negation) RTLIL::SigSpec triggers; for (const auto &[_, it] : async_rules) triggers.append(it->type == RTLIL::SyncType::ST1 ? it->signal : mod->Not(NEW_ID, it->signal)); // Put this into the dummy sync rule so it can be treated the same // as ones coming from the module single_async_rule.type = RTLIL::SyncType::ST1; single_async_rule.signal = mod->ReduceOr(NEW_ID, triggers); single_async_rule.actions.push_back(RTLIL::SigSig(sig, rstval)); // Replace existing rules with this new rule async_rules.clear(); async_rules.emplace_back(rstval, &single_async_rule); } SigSpec sig_q = sig; ce.assign_map.apply(insig); ce.assign_map.apply(sig); // If the reset value assigns the reg to itself, add this as part of // the input signal and delete the rule if (async_rules.size() == 1 && async_rules.front().first == sig) { const auto& [_, rule] = async_rules.front(); if (rule->type == RTLIL::SyncType::ST1) insig = mod->Mux(NEW_ID, insig, sig, rule->signal); else insig = mod->Mux(NEW_ID, sig, insig, rule->signal); async_rules.clear(); } if (sync_always) { if (sync_edge || !async_rules.empty()) log_error("Mixed always event with edge and/or level sensitive events!\n"); log(" created direct connection (no actual register cell created).\n"); mod->connect(RTLIL::SigSig(sig, insig)); continue; } if (!sync_edge && !global_clock) log_error("Missing edge-sensitive event for this signal!\n"); // More than one reset value so we derive a dffsr formulation if (async_rules.size() > 1) { log_warning("Complex async reset for dff `%s'.\n", log_signal(sig)); gen_dffsr_complex(mod, insig, sig, sync_edge->signal, sync_edge->type == RTLIL::SyncType::STp, async_rules, proc); return; } // If there is a reset condition in the async rules, use it SigSpec rstval = async_rules.empty() ? RTLIL::SigSpec(RTLIL::State::Sz, sig.size()) : async_rules.front().first; RTLIL::SyncRule* sync_level = async_rules.empty() ? nullptr : async_rules.front().second; ce.assign_map.apply(rstval); if (!rstval.is_fully_const() && !ce.eval(rstval)) { log_warning("Async reset value `%s' is not constant!\n", log_signal(rstval)); gen_aldff(mod, insig, rstval, sig_q, sync_edge->type == RTLIL::SyncType::STp, sync_level && sync_level->type == RTLIL::SyncType::ST1, sync_edge->signal, sync_level->signal, proc); return; } gen_dff(mod, insig, rstval.as_const(), sig_q, sync_edge && sync_edge->type == RTLIL::SyncType::STp, sync_level && sync_level->type == RTLIL::SyncType::ST1, sync_edge ? sync_edge->signal : SigSpec(), sync_level ? &sync_level->signal : NULL, proc); } } struct ProcDffPass : public Pass { ProcDffPass() : Pass("proc_dff", "extract flip-flops from processes") { } void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" proc_dff [selection]\n"); log("\n"); log("This pass identifies flip-flops in the processes and converts them to\n"); log("d-type flip-flop cells.\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) override { log_header(design, "Executing PROC_DFF pass (convert process syncs to FFs).\n"); extra_args(args, 1, design); for (auto mod : design->modules()) if (design->selected(mod)) { ConstEval ce(mod); for (auto &proc_it : mod->processes) if (design->selected(mod, proc_it.second)) proc_dff(mod, proc_it.second, ce); } } } ProcDffPass; PRIVATE_NAMESPACE_END