/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/yosys.h" #include "kernel/satgen.h" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN struct EquivSimpleWorker { Module *module; const vector &equiv_cells; Cell *equiv_cell; SigMap &sigmap; dict &bit2driver; ezSatPtr ez; SatGen satgen; int max_seq; bool verbose; pool> imported_cells_cache; EquivSimpleWorker(const vector &equiv_cells, SigMap &sigmap, dict &bit2driver, int max_seq, bool verbose, bool model_undef) : module(equiv_cells.front()->module), equiv_cells(equiv_cells), equiv_cell(nullptr), sigmap(sigmap), bit2driver(bit2driver), satgen(ez.get(), &sigmap), max_seq(max_seq), verbose(verbose) { satgen.model_undef = model_undef; } bool find_input_cone(pool &next_seed, pool &cells_cone, pool &bits_cone, const pool &cells_stop, const pool &bits_stop, pool *input_bits, Cell *cell) { if (cells_cone.count(cell)) return false; cells_cone.insert(cell); if (cells_stop.count(cell)) return true; for (auto &conn : cell->connections()) if (yosys_celltypes.cell_input(cell->type, conn.first)) for (auto bit : sigmap(conn.second)) { if (cell->type.in("$dff", "$_DFF_P_", "$_DFF_N_", "$ff", "$_FF_")) { if (!conn.first.in("\\CLK", "\\C")) next_seed.insert(bit); } else find_input_cone(next_seed, cells_cone, bits_cone, cells_stop, bits_stop, input_bits, bit); } return false; } void find_input_cone(pool &next_seed, pool &cells_cone, pool &bits_cone, const pool &cells_stop, const pool &bits_stop, pool *input_bits, SigBit bit) { if (bits_cone.count(bit)) return; bits_cone.insert(bit); if (bits_stop.count(bit)) { if (input_bits != nullptr) input_bits->insert(bit); return; } if (!bit2driver.count(bit)) return; if (find_input_cone(next_seed, cells_cone, bits_cone, cells_stop, bits_stop, input_bits, bit2driver.at(bit))) if (input_bits != nullptr) input_bits->insert(bit); } bool run_cell() { SigBit bit_a = sigmap(equiv_cell->getPort("\\A")).as_bit(); SigBit bit_b = sigmap(equiv_cell->getPort("\\B")).as_bit(); int ez_context = ez->frozen_literal(); if (satgen.model_undef) { int ez_a = satgen.importSigBit(bit_a, max_seq+1); int ez_b = satgen.importDefSigBit(bit_b, max_seq+1); int ez_undef_a = satgen.importUndefSigBit(bit_a, max_seq+1); ez->assume(ez->XOR(ez_a, ez_b), ez_context); ez->assume(ez->NOT(ez_undef_a), ez_context); } else { int ez_a = satgen.importSigBit(bit_a, max_seq+1); int ez_b = satgen.importSigBit(bit_b, max_seq+1); ez->assume(ez->XOR(ez_a, ez_b), ez_context); } pool seed_a = { bit_a }; pool seed_b = { bit_b }; if (verbose) { log(" Trying to prove $equiv cell %s:\n", log_id(equiv_cell)); log(" A = %s, B = %s, Y = %s\n", log_signal(bit_a), log_signal(bit_b), log_signal(equiv_cell->getPort("\\Y"))); } else { log(" Trying to prove $equiv for %s:", log_signal(equiv_cell->getPort("\\Y"))); } int step = max_seq; while (1) { pool no_stop_cells; pool no_stop_bits; pool full_cells_cone_a, full_cells_cone_b; pool full_bits_cone_a, full_bits_cone_b; pool next_seed_a, next_seed_b; for (auto bit_a : seed_a) find_input_cone(next_seed_a, full_cells_cone_a, full_bits_cone_a, no_stop_cells, no_stop_bits, nullptr, bit_a); next_seed_a.clear(); for (auto bit_b : seed_b) find_input_cone(next_seed_b, full_cells_cone_b, full_bits_cone_b, no_stop_cells, no_stop_bits, nullptr, bit_b); next_seed_b.clear(); pool short_cells_cone_a, short_cells_cone_b; pool short_bits_cone_a, short_bits_cone_b; pool input_bits; for (auto bit_a : seed_a) find_input_cone(next_seed_a, short_cells_cone_a, short_bits_cone_a, full_cells_cone_b, full_bits_cone_b, &input_bits, bit_a); next_seed_a.swap(seed_a); for (auto bit_b : seed_b) find_input_cone(next_seed_b, short_cells_cone_b, short_bits_cone_b, full_cells_cone_a, full_bits_cone_a, &input_bits, bit_b); next_seed_b.swap(seed_b); pool problem_cells; problem_cells.insert(short_cells_cone_a.begin(), short_cells_cone_a.end()); problem_cells.insert(short_cells_cone_b.begin(), short_cells_cone_b.end()); if (verbose) log(" Adding %d new cells to the problem (%d A, %d B, %d shared).\n", GetSize(problem_cells), GetSize(short_cells_cone_a), GetSize(short_cells_cone_b), (GetSize(short_cells_cone_a) + GetSize(short_cells_cone_b)) - GetSize(problem_cells)); for (auto cell : problem_cells) { auto key = pair(cell, step+1); if (!imported_cells_cache.count(key) && !satgen.importCell(cell, step+1)) log_cmd_error("No SAT model available for cell %s (%s).\n", log_id(cell), log_id(cell->type)); imported_cells_cache.insert(key); } if (satgen.model_undef) { for (auto bit : input_bits) ez->assume(ez->NOT(satgen.importUndefSigBit(bit, step+1))); } if (verbose) log(" Problem size at t=%d: %d literals, %d clauses\n", step, ez->numCnfVariables(), ez->numCnfClauses()); if (!ez->solve(ez_context)) { log(verbose ? " Proved equivalence! Marking $equiv cell as proven.\n" : " success!\n"); equiv_cell->setPort("\\B", equiv_cell->getPort("\\A")); ez->assume(ez->NOT(ez_context)); return true; } if (verbose) log(" Failed to prove equivalence with sequence length %d.\n", max_seq - step); if (--step < 0) { if (verbose) log(" Reached sequence limit.\n"); break; } if (seed_a.empty() && seed_b.empty()) { if (verbose) log(" No nets to continue in previous time step.\n"); break; } if (seed_a.empty()) { if (verbose) log(" No nets on A-side to continue in previous time step.\n"); break; } if (seed_b.empty()) { if (verbose) log(" No nets on B-side to continue in previous time step.\n"); break; } if (verbose) { #if 0 log(" Continuing analysis in previous time step with the following nets:\n"); for (auto bit : seed_a) log(" A: %s\n", log_signal(bit)); for (auto bit : seed_b) log(" B: %s\n", log_signal(bit)); #else log(" Continuing analysis in previous time step with %d A- and %d B-nets.\n", GetSize(seed_a), GetSize(seed_b)); #endif } } if (!verbose) log(" failed.\n"); ez->assume(ez->NOT(ez_context)); return false; } int run() { if (GetSize(equiv_cells) > 1) { SigSpec sig; for (auto c : equiv_cells) sig.append(sigmap(c->getPort("\\Y"))); log(" Grouping SAT models for %s:\n", log_signal(sig)); } int counter = 0; for (auto c : equiv_cells) { equiv_cell = c; if (run_cell()) counter++; } return counter; } }; struct EquivSimplePass : public Pass { EquivSimplePass() : Pass("equiv_simple", "try proving simple $equiv instances") { } virtual void help() { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" equiv_simple [options] [selection]\n"); log("\n"); log("This command tries to prove $equiv cells using a simple direct SAT approach.\n"); log("\n"); log(" -v\n"); log(" verbose output\n"); log("\n"); log(" -undef\n"); log(" enable modelling of undef states\n"); log("\n"); log(" -nogroup\n"); log(" disabling grouping of $equiv cells by output wire\n"); log("\n"); log(" -seq \n"); log(" the max. number of time steps to be considered (default = 1)\n"); log("\n"); } virtual void execute(std::vector args, Design *design) { bool verbose = false, model_undef = false, nogroup = false; int success_counter = 0; int max_seq = 1; log_header(design, "Executing EQUIV_SIMPLE pass.\n"); size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-v") { verbose = true; continue; } if (args[argidx] == "-undef") { model_undef = true; continue; } if (args[argidx] == "-nogroup") { nogroup = true; continue; } if (args[argidx] == "-seq" && argidx+1 < args.size()) { max_seq = atoi(args[++argidx].c_str()); continue; } break; } extra_args(args, argidx, design); CellTypes ct; ct.setup_internals(); ct.setup_stdcells(); for (auto module : design->selected_modules()) { SigMap sigmap(module); dict bit2driver; dict> unproven_equiv_cells; int unproven_cells_counter = 0; for (auto cell : module->selected_cells()) if (cell->type == "$equiv" && cell->getPort("\\A") != cell->getPort("\\B")) { auto bit = sigmap(cell->getPort("\\Y").as_bit()); auto bit_group = bit; if (!nogroup && bit_group.wire) bit_group.offset = 0; unproven_equiv_cells[bit_group][bit] = cell; unproven_cells_counter++; } if (unproven_equiv_cells.empty()) continue; log("Found %d unproven $equiv cells (%d groups) in %s:\n", unproven_cells_counter, GetSize(unproven_equiv_cells), log_id(module)); for (auto cell : module->cells()) { if (!ct.cell_known(cell->type) && !cell->type.in("$dff", "$_DFF_P_", "$_DFF_N_", "$ff", "$_FF_")) continue; for (auto &conn : cell->connections()) if (yosys_celltypes.cell_output(cell->type, conn.first)) for (auto bit : sigmap(conn.second)) bit2driver[bit] = cell; } unproven_equiv_cells.sort(); for (auto it : unproven_equiv_cells) { it.second.sort(); vector cells; for (auto it2 : it.second) cells.push_back(it2.second); EquivSimpleWorker worker(cells, sigmap, bit2driver, max_seq, verbose, model_undef); success_counter += worker.run(); } } log("Proved %d previously unproven $equiv cells.\n", success_counter); } } EquivSimplePass; PRIVATE_NAMESPACE_END