pattern xilinx_dsp state clock state sigA sigffAmuxY sigB sigffBmuxY sigC sigM sigP state postAddAB postAddMuxAB state ffAenpol ffBenpol ffMenpol ffPenpol state ffPoffset match dsp select dsp->type.in(\DSP48E1) endmatch code sigA sigffAmuxY sigB sigffBmuxY sigM sigA = port(dsp, \A); int i; for (i = GetSize(sigA)-1; i > 0; i--) if (sigA[i] != sigA[i-1]) break; // Do not remove non-const sign bit if (sigA[i].wire) ++i; sigA.remove(i, GetSize(sigA)-i); sigB = port(dsp, \B); for (i = GetSize(sigB)-1; i > 0; i--) if (sigB[i] != sigB[i-1]) break; // Do not remove non-const sign bit if (sigB[i].wire) ++i; sigB.remove(i, GetSize(sigB)-i); SigSpec P = port(dsp, \P); // Only care about those bits that are used for (i = 0; i < GetSize(P); i++) { if (nusers(P[i]) <= 1) break; sigM.append(P[i]); } log_assert(nusers(P.extract_end(i)) <= 1); //if (GetSize(sigM) <= 10) // reject; sigffAmuxY = SigSpec(); sigffBmuxY = SigSpec(); endcode match ffA if param(dsp, \AREG).as_int() == 0 select ffA->type.in($dff) // DSP48E1 does not support clock inversion select param(ffA, \CLK_POLARITY).as_bool() filter GetSize(port(ffA, \Q)) >= GetSize(sigA) slice offset GetSize(port(ffA, \Q)) filter offset+GetSize(sigA) <= GetSize(port(ffA, \Q)) filter port(ffA, \Q).extract(offset, GetSize(sigA)) == sigA optional endmatch code sigA sigffAmuxY clock if (ffA) { for (auto b : port(ffA, \Q)) if (b.wire->get_bool_attribute(\keep)) reject; clock = port(ffA, \CLK).as_bit(); SigSpec A = sigA; A.replace(port(ffA, \Q), port(ffA, \D)); // Only search for ffAmux if ffA.Q has at // least 3 users (ffA, dsp, ffAmux) and // its ffA.D only has two (ffA, ffAmux) if (nusers(sigA) >= 3 && nusers(A) == 2) sigffAmuxY = sigA; sigA = std::move(A); } endcode match ffAmux if !sigffAmuxY.empty() select ffAmux->type.in($mux) index port(ffAmux, \Y) === port(ffA, \D) filter GetSize(port(ffAmux, \Y)) >= GetSize(sigA) slice offset GetSize(port(ffAmux, \Y)) filter offset+GetSize(sigA) <= GetSize(port(ffAmux, \Y)) filter port(ffAmux, \Y).extract(offset, GetSize(sigA)) == sigA choice BA {\B, \A} filter offset+GetSize(sigffAmuxY) <= GetSize(port(ffAmux, \Y)) filter port(ffAmux, BA).extract(offset, GetSize(sigffAmuxY)) == sigffAmuxY define pol (BA == \B) set ffAenpol pol optional endmatch match ffB if param(dsp, \BREG).as_int() == 0 select ffB->type.in($dff) // DSP48E1 does not support clock inversion select param(ffB, \CLK_POLARITY).as_bool() filter GetSize(port(ffB, \Q)) >= GetSize(sigB) slice offset GetSize(port(ffB, \Q)) filter offset+GetSize(sigB) <= GetSize(port(ffB, \Q)) filter port(ffB, \Q).extract(offset, GetSize(sigB)) == sigB optional endmatch code sigB sigffBmuxY clock if (ffB) { for (auto b : port(ffB, \Q)) if (b.wire->get_bool_attribute(\keep)) reject; SigBit c = port(ffB, \CLK).as_bit(); if (clock != SigBit() && c != clock) reject; clock = c; SigSpec B = sigB; B.replace(port(ffB, \Q), port(ffB, \D)); // Only search for ffBmux if ffB.Q has at // least 3 users (ffB, dsp, ffBmux) and // its ffB.D only has two (ffB, ffBmux) if (nusers(sigB) >= 3 && nusers(B) == 2) sigffBmuxY = sigB; sigB = std::move(B); } endcode match ffBmux if !sigffBmuxY.empty() select ffBmux->type.in($mux) index port(ffBmux, \Y) === port(ffB, \D) filter GetSize(port(ffBmux, \Y)) >= GetSize(sigB) slice offset GetSize(port(ffBmux, \Y)) filter offset+GetSize(sigB) <= GetSize(port(ffBmux, \Y)) filter port(ffBmux, \Y).extract(offset, GetSize(sigB)) == sigB choice BA {\B, \A} filter offset+GetSize(sigffBmuxY) <= GetSize(port(ffBmux, \Y)) filter port(ffBmux, BA).extract(offset, GetSize(sigffBmuxY)) == sigffBmuxY define pol (BA == \B) set ffBenpol pol optional endmatch match ffMmux if param(dsp, \MREG).as_int() == 0 if nusers(sigM) == 2 select ffMmux->type.in($mux) choice BA {\B, \A} // new-value net must have exactly two users: dsp and ffM select nusers(port(ffMmux, BA)) == 2 define AB (BA == \B ? \A : \B) // keep-last-value net must have at least three users: ffMmux, ffM, downstream sink(s) select nusers(port(ffMmux, AB)) >= 3 // ffMmux output must have two users: ffMmux and ffM.D select nusers(port(ffMmux, \Y)) == 2 filter GetSize(port(ffMmux, \Y)) <= GetSize(sigM) filter port(ffMmux, BA) == sigM.extract(0, GetSize(port(ffMmux, \Y))) // Remaining bits on sigM must not have any other users filter nusers(sigM.extract_end(GetSize(port(ffMmux, BA)))) <= 1 define pol (BA == \B) set ffMenpol pol optional endmatch code sigM if (ffMmux) sigM = port(ffMmux, \Y); endcode match ffM_enable if ffMmux if nusers(sigM) == 2 select ffM_enable->type.in($dff) // DSP48E1 does not support clock inversion select param(ffM_enable, \CLK_POLARITY).as_bool() index port(ffM_enable, \D) === sigM index port(ffM_enable, \Q) === port(ffMmux, ffMenpol ? \A : \B) endmatch match ffM if !ffM_enable if param(dsp, \MREG).as_int() == 0 if nusers(sigM) == 2 select ffM->type.in($dff) // DSP48E1 does not support clock inversion select param(ffM, \CLK_POLARITY).as_bool() index port(ffM, \D) === sigM optional endmatch code ffM clock sigM sigP if (ffM_enable) { log_assert(!ffM); ffM = ffM_enable; } if (ffM) { sigM = port(ffM, \Q); for (auto b : sigM) if (b.wire->get_bool_attribute(\keep)) reject; SigBit c = port(ffM, \CLK).as_bit(); if (clock != SigBit() && c != clock) reject; clock = c; } sigP = sigM; endcode match postAdd // Ensure that Z mux is not already used if port(dsp, \OPMODE).extract(4,3).is_fully_zero() select postAdd->type.in($add) select GetSize(port(postAdd, \Y)) <= 48 select nusers(port(postAdd, \Y)) == 2 choice AB {\A, \B} select nusers(port(postAdd, AB)) <= 3 filter ffMmux || nusers(port(postAdd, AB)) == 2 filter !ffMmux || nusers(port(postAdd, AB)) == 3 filter GetSize(port(postAdd, AB)) <= GetSize(sigP) filter port(postAdd, AB) == sigP.extract(0, GetSize(port(postAdd, AB))) filter nusers(sigP.extract_end(GetSize(port(postAdd, AB)))) <= 1 set postAddAB AB optional endmatch code sigC sigP if (postAdd) { sigC = port(postAdd, postAddAB == \A ? \B : \A); // TODO for DSP48E1, which will have sign extended inputs/outputs //int natural_mul_width = GetSize(port(dsp, \A)) + GetSize(port(dsp, \B)); //int actual_mul_width = GetSize(sigP); //int actual_acc_width = GetSize(sigC); //if ((actual_acc_width > actual_mul_width) && (natural_mul_width > actual_mul_width)) // reject; //if ((actual_acc_width != actual_mul_width) && (param(dsp, \A_SIGNED).as_bool() != param(postAdd, \A_SIGNED).as_bool())) // reject; sigP = port(postAdd, \Y); } endcode match ffPmux if param(dsp, \PREG).as_int() == 0 // new-value net must have exactly two users: dsp and ffP if nusers(sigP) == 2 select ffPmux->type.in($mux) // ffPmux output must have two users: ffPmux and ffP.D select nusers(port(ffPmux, \Y)) == 2 filter GetSize(port(ffPmux, \Y)) >= GetSize(sigP) choice BA {\B, \A} slice offset GetSize(port(ffPmux, \Y)) filter offset+GetSize(sigP) <= GetSize(port(ffPmux, \Y)) filter port(ffPmux, BA).extract(offset, GetSize(sigP)) == sigP define AB (BA == \B ? \A : \B) // keep-last-value net must have at least three users: ffPmux, ffP, downstream sink(s) filter nusers(port(ffPmux, AB)) >= 3 define pol (BA == \B) set ffPenpol pol set ffPoffset offset optional endmatch code sigP if (ffPmux) sigP.replace(port(ffPmux, ffPenpol ? \B : \A), port(ffPmux, \Y)); endcode match ffP_enable if ffPmux if nusers(sigP) == 2 select ffP_enable->type.in($dff) // DSP48E1 does not support clock inversion select param(ffP_enable, \CLK_POLARITY).as_bool() index port(ffP_enable, \D) === port(ffPmux, \Y) index port(ffP_enable, \Q) === port(ffPmux, ffPenpol ? \A : \B) filter GetSize(port(ffP_enable, \D)) >= GetSize(sigP) filter ffPoffset+GetSize(sigP) <= GetSize(port(ffP_enable, \D)) filter port(ffP_enable, \D).extract(ffPoffset, GetSize(sigP)) == sigP endmatch match ffP if !ffP_enable if param(dsp, \PREG).as_int() == 0 if nusers(sigP) == 2 select ffP->type.in($dff) // DSP48E1 does not support clock inversion select param(ffP, \CLK_POLARITY).as_bool() filter GetSize(port(ffP, \D)) >= GetSize(sigP) slice offset GetSize(port(ffP, \D)) filter offset+GetSize(sigP) <= GetSize(port(ffP, \D)) filter port(ffP, \D).extract(offset, GetSize(sigP)) == sigP optional endmatch code ffP sigP clock if (ffP_enable) { log_assert(!ffP); ffP = ffP_enable; } if (ffP) { for (auto b : port(ffP, \Q)) if (b.wire->get_bool_attribute(\keep)) reject; SigBit c = port(ffP, \CLK).as_bit(); if (clock != SigBit() && c != clock) reject; clock = c; sigP.replace(port(ffP, \D), port(ffP, \Q)); } endcode match postAddMux if postAdd if ffP select postAddMux->type.in($mux) select nusers(port(postAddMux, \Y)) == 2 choice AB {\A, \B} index port(postAddMux, AB) === sigP index port(postAddMux, \Y) === sigC set postAddMuxAB AB optional endmatch code sigC if (postAddMux) sigC = port(postAddMux, postAddMuxAB == \A ? \B : \A); endcode code accept; endcode