module \$_DFF_N_ (input D, C, output Q); FDRE #(.INIT(|0), .IS_C_INVERTED(|1), .IS_D_INVERTED(|0), .IS_R_INVERTED(|0)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(1'b1), .R(1'b0)); endmodule module \$_DFF_P_ (input D, C, output Q); FDRE #(.INIT(|0), .IS_C_INVERTED(|0), .IS_D_INVERTED(|0), .IS_R_INVERTED(|0)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(1'b1), .R(1'b0)); endmodule module \$_DFFE_NP_ (input D, C, E, output Q); FDRE #(.INIT(|0), .IS_C_INVERTED(|1), .IS_D_INVERTED(|0), .IS_R_INVERTED(|0)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(E), .R(1'b0)); endmodule module \$_DFFE_PP_ (input D, C, E, output Q); FDRE #(.INIT(|0), .IS_C_INVERTED(|0), .IS_D_INVERTED(|0), .IS_R_INVERTED(|0)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(E), .R(1'b0)); endmodule module \$_DFF_NN0_ (input D, C, R, output Q); FDCE #(.INIT(|0), .IS_C_INVERTED(|1), .IS_D_INVERTED(|0), .IS_CLR_INVERTED(|1)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(1'b1), .CLR(R)); endmodule module \$_DFF_NP0_ (input D, C, R, output Q); FDCE #(.INIT(|0), .IS_C_INVERTED(|1), .IS_D_INVERTED(|0), .IS_CLR_INVERTED(|0)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(1'b1), .CLR(R)); endmodule module \$_DFF_PN0_ (input D, C, R, output Q); FDCE #(.INIT(|0), .IS_C_INVERTED(|0), .IS_D_INVERTED(|0), .IS_CLR_INVERTED(|1)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(1'b1), .CLR(R)); endmodule module \$_DFF_PP0_ (input D, C, R, output Q); FDCE #(.INIT(|0), .IS_C_INVERTED(|0), .IS_D_INVERTED(|0), .IS_CLR_INVERTED(|0)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(1'b1), .CLR(R)); endmodule module \$_DFF_NN1_ (input D, C, R, output Q); FDPE #(.INIT(|0), .IS_C_INVERTED(|1), .IS_D_INVERTED(|0), .IS_PRE_INVERTED(|1)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(1'b1), .PRE(R)); endmodule module \$_DFF_NP1_ (input D, C, R, output Q); FDPE #(.INIT(|0), .IS_C_INVERTED(|1), .IS_D_INVERTED(|0), .IS_PRE_INVERTED(|0)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(1'b1), .PRE(R)); endmodule module \$_DFF_PN1_ (input D, C, R, output Q); FDPE #(.INIT(|0), .IS_C_INVERTED(|0), .IS_D_INVERTED(|0), .IS_PRE_INVERTED(|1)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(1'b1), .PRE(R)); endmodule module \$_DFF_PP1_ (input D, C, R, output Q); FDPE #(.INIT(|0), .IS_C_INVERTED(|0), .IS_D_INVERTED(|0), .IS_PRE_INVERTED(|0)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(1'b1), .PRE(R)); endmodule `ifndef NO_LUT module \$lut (A, Y); parameter WIDTH = 0; parameter LUT = 0; input [WIDTH-1:0] A; output Y; generate if (WIDTH == 1) begin LUT1 #(.INIT(LUT)) _TECHMAP_REPLACE_ (.O(Y), .I0(A[0])); end else if (WIDTH == 2) begin LUT2 #(.INIT(LUT)) _TECHMAP_REPLACE_ (.O(Y), .I0(A[0]), .I1(A[1])); end else if (WIDTH == 3) begin LUT3 #(.INIT(LUT)) _TECHMAP_REPLACE_ (.O(Y), .I0(A[0]), .I1(A[1]), .I2(A[2])); end else if (WIDTH == 4) begin LUT4 #(.INIT(LUT)) _TECHMAP_REPLACE_ (.O(Y), .I0(A[0]), .I1(A[1]), .I2(A[2]), .I3(A[3])); end else if (WIDTH == 5) begin LUT5 #(.INIT(LUT)) _TECHMAP_REPLACE_ (.O(Y), .I0(A[0]), .I1(A[1]), .I2(A[2]), .I3(A[3]), .I4(A[4])); end else if (WIDTH == 6) begin LUT6 #(.INIT(LUT)) _TECHMAP_REPLACE_ (.O(Y), .I0(A[0]), .I1(A[1]), .I2(A[2]), .I3(A[3]), .I4(A[4]), .I5(A[5])); end else if (WIDTH == 7) begin wire T0, T1; LUT6 #(.INIT(LUT[63:0])) fpga_lut_0 (.O(T0), .I0(A[0]), .I1(A[1]), .I2(A[2]), .I3(A[3]), .I4(A[4]), .I5(A[5])); LUT6 #(.INIT(LUT[127:64])) fpga_lut_1 (.O(T1), .I0(A[0]), .I1(A[1]), .I2(A[2]), .I3(A[3]), .I4(A[4]), .I5(A[5])); MUXF7 fpga_mux_0 (.O(Y), .I0(T0), .I1(T1), .S(A[6])); end else if (WIDTH == 8) begin wire T0, T1, T2, T3, T4, T5; LUT6 #(.INIT(LUT[63:0])) fpga_lut_0 (.O(T0), .I0(A[0]), .I1(A[1]), .I2(A[2]), .I3(A[3]), .I4(A[4]), .I5(A[5])); LUT6 #(.INIT(LUT[127:64])) fpga_lut_1 (.O(T1), .I0(A[0]), .I1(A[1]), .I2(A[2]), .I3(A[3]), .I4(A[4]), .I5(A[5])); LUT6 #(.INIT(LUT[191:128])) fpga_lut_2 (.O(T2), .I0(A[0]), .I1(A[1]), .I2(A[2]), .I3(A[3]), .I4(A[4]), .I5(A[5])); LUT6 #(.INIT(LUT[255:192])) fpga_lut_3 (.O(T3), .I0(A[0]), .I1(A[1]), .I2(A[2]), .I3(A[3]), .I4(A[4]), .I5(A[5])); MUXF7 fpga_mux_0 (.O(T4), .I0(T0), .I1(T1), .S(A[6])); MUXF7 fpga_mux_1 (.O(T5), .I0(T2), .I1(T3), .S(A[6])); MUXF8 fpga_mux_2 (.O(Y), .I0(T4), .I1(T5), .S(A[7])); end else begin wire _TECHMAP_FAIL_ = 1; end endgenerate endmodule `endif module \$__SHREG_ (input C, input D, input E, output Q); parameter DEPTH = 0; parameter [DEPTH-1:0] INIT = 0; parameter CLKPOL = 1; parameter ENPOL = 2; wire CE; generate if (ENPOL == 0) assign CE = ~E; else if (ENPOL == 1) assign CE = E; else assign CE = 1'b1; if (DEPTH == 1) begin FDRE #(.INIT(INIT), .IS_C_INVERTED(~CLKPOL[0]), .IS_D_INVERTED(|0), .IS_R_INVERTED(|0)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0)); end else if (DEPTH <= 16) begin localparam [3:0] A = DEPTH - 1; SRL16E #(.INIT(INIT), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A0(A[0]), .A1(A[1]), .A2(A[2]), .A3(A[3]), .CE(CE), .CLK(C), .D(D), .Q(Q)); end else if (DEPTH > 17 && DEPTH <= 32) begin SRLC32E #(.INIT(INIT), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A(DEPTH-1), .CE(CE), .CLK(C), .D(D), .Q(Q)); end else if (DEPTH > 33 && DEPTH <= 64) begin wire T0, T1, T2; localparam [5:0] A = DEPTH-1; SRLC32E #(.INIT(INIT[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(A[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1)); \$__SHREG_ #(.DEPTH(DEPTH-32), .INIT(INIT[DEPTH-1:32]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T1), .E(E), .Q(T2)); MUXF7 fpga_mux_0 (.O(Q), .I0(T0), .I1(T2), .S(A[5])); end else if (DEPTH > 65 && DEPTH <= 96) begin localparam [6:0] A = DEPTH-1; wire T0, T1, T2, T3, T4, T5, T6; SRLC32E #(.INIT(INIT[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(A[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1)); SRLC32E #(.INIT(INIT[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(A[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3)); \$__SHREG_ #(.DEPTH(DEPTH-64), .INIT(INIT[DEPTH-1:64]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_2 (.C(C), .D(T3), .E(E), .Q(T4)); MUXF7 fpga_mux_0 (.O(T5), .I0(T0), .I1(T2), .S(A[5])); MUXF7 fpga_mux_1 (.O(T6), .I0(T4), .I1(1'b0 /* unused */), .S(A[5])); MUXF8 fpga_mux_2 (.O(Q), .I0(T5), .I1(T6), .S(A[6])); end else if (DEPTH <= 128) begin if (DEPTH > 97) begin localparam [6:0] A = DEPTH-1; wire T0, T1, T2, T3, T4, T5, T6, T7, T8; SRLC32E #(.INIT(INIT[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(A[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1)); SRLC32E #(.INIT(INIT[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(A[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3)); SRLC32E #(.INIT(INIT[96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(A[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5)); \$__SHREG_ #(.DEPTH(DEPTH-96), .INIT(INIT[DEPTH-1:96]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_3 (.C(C), .D(T5), .E(E), .Q(T6)); MUXF7 fpga_mux_0 (.O(T7), .I0(T0), .I1(T2), .S(A[5])); MUXF7 fpga_mux_1 (.O(T8), .I0(T4), .I1(T6), .S(A[5])); MUXF8 fpga_mux_2 (.O(Q), .I0(T7), .I1(T8), .S(A[6])); end // Handle case where depth is just 1 over a convenient value, // in which case use the flop else begin wire T0; \$__SHREG_ #(.DEPTH(DEPTH-1), .INIT(INIT[DEPTH-2:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_0 (.C(C), .D(D), .E(E), .Q(T0)); \$__SHREG_ #(.DEPTH(1), .INIT(INIT[DEPTH-1]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T0), .E(E), .Q(Q)); end end else begin // UG474 (v1.8, p34) states that: // "There are no direct connections between slices to form longer shift // registers, nor is the MC31 output at LUT B/C/D available." wire T0, T1; \$__SHREG_ #(.DEPTH(128), .INIT(INIT[128-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_0 (.C(C), .D(D), .E(E), .Q(T0)); \$__SHREG_ #(.DEPTH(DEPTH-128), .INIT(INIT[DEPTH-1:128]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T0), .E(E), .Q(Q)); end endgenerate endmodule