/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Claire Xenia Wolf * 2019 Eddie Hung * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/yosys.h" #include "kernel/sigtools.h" #include USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN #include "passes/pmgen/xilinx_dsp_pm.h" #include "passes/pmgen/xilinx_dsp48a_pm.h" #include "passes/pmgen/xilinx_dsp_CREG_pm.h" #include "passes/pmgen/xilinx_dsp_cascade_pm.h" static Cell* addDsp(Module *module) { Cell *cell = module->addCell(NEW_ID, ID(DSP48E1)); cell->setParam(ID(ACASCREG), 0); cell->setParam(ID(ADREG), 0); cell->setParam(ID(A_INPUT), Const("DIRECT")); cell->setParam(ID(ALUMODEREG), 0); cell->setParam(ID(AREG), 0); cell->setParam(ID(BCASCREG), 0); cell->setParam(ID(B_INPUT), Const("DIRECT")); cell->setParam(ID(BREG), 0); cell->setParam(ID(CARRYINREG), 0); cell->setParam(ID(CARRYINSELREG), 0); cell->setParam(ID(CREG), 0); cell->setParam(ID(DREG), 0); cell->setParam(ID(INMODEREG), 0); cell->setParam(ID(MREG), 0); cell->setParam(ID(OPMODEREG), 0); cell->setParam(ID(PREG), 0); cell->setParam(ID(USE_MULT), Const("NONE")); cell->setParam(ID(USE_SIMD), Const("ONE48")); cell->setParam(ID(USE_DPORT), Const("FALSE")); cell->setPort(ID::D, Const(0, 25)); cell->setPort(ID(INMODE), Const(0, 5)); cell->setPort(ID(ALUMODE), Const(0, 4)); cell->setPort(ID(OPMODE), Const(0, 7)); cell->setPort(ID(CARRYINSEL), Const(0, 3)); cell->setPort(ID(ACIN), Const(0, 30)); cell->setPort(ID(BCIN), Const(0, 18)); cell->setPort(ID(PCIN), Const(0, 48)); cell->setPort(ID(CARRYIN), Const(0, 1)); return cell; } void xilinx_simd_pack(Module *module, const std::vector &selected_cells) { std::deque simd12_add, simd12_sub; std::deque simd24_add, simd24_sub; for (auto cell : selected_cells) { if (!cell->type.in(ID($add), ID($sub))) continue; SigSpec Y = cell->getPort(ID::Y); if (!Y.is_chunk()) continue; if (!Y.as_chunk().wire->get_strpool_attribute(ID(use_dsp)).count("simd")) continue; if (GetSize(Y) > 25) continue; SigSpec A = cell->getPort(ID::A); SigSpec B = cell->getPort(ID::B); if (GetSize(Y) <= 13) { if (GetSize(A) > 12) continue; if (GetSize(B) > 12) continue; if (cell->type == ID($add)) simd12_add.push_back(cell); else if (cell->type == ID($sub)) simd12_sub.push_back(cell); } else if (GetSize(Y) <= 25) { if (GetSize(A) > 24) continue; if (GetSize(B) > 24) continue; if (cell->type == ID($add)) simd24_add.push_back(cell); else if (cell->type == ID($sub)) simd24_sub.push_back(cell); } else log_abort(); } auto f12 = [module](SigSpec &AB, SigSpec &C, SigSpec &P, SigSpec &CARRYOUT, Cell *lane) { SigSpec A = lane->getPort(ID::A); SigSpec B = lane->getPort(ID::B); SigSpec Y = lane->getPort(ID::Y); A.extend_u0(12, lane->getParam(ID::A_SIGNED).as_bool()); B.extend_u0(12, lane->getParam(ID::B_SIGNED).as_bool()); AB.append(A); C.append(B); if (GetSize(Y) < 13) Y.append(module->addWire(NEW_ID, 13-GetSize(Y))); else log_assert(GetSize(Y) == 13); P.append(Y.extract(0, 12)); CARRYOUT.append(Y[12]); }; auto g12 = [&f12,module](std::deque &simd12) { while (simd12.size() > 1) { SigSpec AB, C, P, CARRYOUT; Cell *lane1 = simd12.front(); simd12.pop_front(); Cell *lane2 = simd12.front(); simd12.pop_front(); Cell *lane3 = nullptr; Cell *lane4 = nullptr; if (!simd12.empty()) { lane3 = simd12.front(); simd12.pop_front(); if (!simd12.empty()) { lane4 = simd12.front(); simd12.pop_front(); } } log("Analysing %s.%s for Xilinx DSP SIMD12 packing.\n", log_id(module), log_id(lane1)); Cell *cell = addDsp(module); cell->setParam(ID(USE_SIMD), Const("FOUR12")); // X = A:B // Y = 0 // Z = C cell->setPort(ID(OPMODE), Const::from_string("0110011")); log_assert(lane1); log_assert(lane2); f12(AB, C, P, CARRYOUT, lane1); f12(AB, C, P, CARRYOUT, lane2); if (lane3) { f12(AB, C, P, CARRYOUT, lane3); if (lane4) f12(AB, C, P, CARRYOUT, lane4); else { AB.append(Const(0, 12)); C.append(Const(0, 12)); P.append(module->addWire(NEW_ID, 12)); CARRYOUT.append(module->addWire(NEW_ID, 1)); } } else { AB.append(Const(0, 24)); C.append(Const(0, 24)); P.append(module->addWire(NEW_ID, 24)); CARRYOUT.append(module->addWire(NEW_ID, 2)); } log_assert(GetSize(AB) == 48); log_assert(GetSize(C) == 48); log_assert(GetSize(P) == 48); log_assert(GetSize(CARRYOUT) == 4); cell->setPort(ID::A, AB.extract(18, 30)); cell->setPort(ID::B, AB.extract(0, 18)); cell->setPort(ID::C, C); cell->setPort(ID::P, P); cell->setPort(ID(CARRYOUT), CARRYOUT); if (lane1->type == ID($sub)) cell->setPort(ID(ALUMODE), Const::from_string("0011")); module->remove(lane1); module->remove(lane2); if (lane3) module->remove(lane3); if (lane4) module->remove(lane4); module->design->select(module, cell); } }; g12(simd12_add); g12(simd12_sub); auto f24 = [module](SigSpec &AB, SigSpec &C, SigSpec &P, SigSpec &CARRYOUT, Cell *lane) { SigSpec A = lane->getPort(ID::A); SigSpec B = lane->getPort(ID::B); SigSpec Y = lane->getPort(ID::Y); A.extend_u0(24, lane->getParam(ID::A_SIGNED).as_bool()); B.extend_u0(24, lane->getParam(ID::B_SIGNED).as_bool()); C.append(A); AB.append(B); if (GetSize(Y) < 25) Y.append(module->addWire(NEW_ID, 25-GetSize(Y))); else log_assert(GetSize(Y) == 25); P.append(Y.extract(0, 24)); CARRYOUT.append(module->addWire(NEW_ID)); // TWO24 uses every other bit CARRYOUT.append(Y[24]); }; auto g24 = [&f24,module](std::deque &simd24) { while (simd24.size() > 1) { SigSpec AB; SigSpec C; SigSpec P; SigSpec CARRYOUT; Cell *lane1 = simd24.front(); simd24.pop_front(); Cell *lane2 = simd24.front(); simd24.pop_front(); log("Analysing %s.%s for Xilinx DSP SIMD24 packing.\n", log_id(module), log_id(lane1)); Cell *cell = addDsp(module); cell->setParam(ID(USE_SIMD), Const("TWO24")); // X = A:B // Y = 0 // Z = C cell->setPort(ID(OPMODE), Const::from_string("0110011")); log_assert(lane1); log_assert(lane2); f24(AB, C, P, CARRYOUT, lane1); f24(AB, C, P, CARRYOUT, lane2); log_assert(GetSize(AB) == 48); log_assert(GetSize(C) == 48); log_assert(GetSize(P) == 48); log_assert(GetSize(CARRYOUT) == 4); cell->setPort(ID::A, AB.extract(18, 30)); cell->setPort(ID::B, AB.extract(0, 18)); cell->setPort(ID::C, C); cell->setPort(ID::P, P); cell->setPort(ID(CARRYOUT), CARRYOUT); if (lane1->type == ID($sub)) cell->setPort(ID(ALUMODE), Const::from_string("0011")); module->remove(lane1); module->remove(lane2); module->design->select(module, cell); } }; g24(simd24_add); g24(simd24_sub); } void xilinx_dsp_pack(xilinx_dsp_pm &pm) { auto &st = pm.st_xilinx_dsp_pack; log("Analysing %s.%s for Xilinx DSP packing.\n", log_id(pm.module), log_id(st.dsp)); log_debug("preAdd: %s\n", log_id(st.preAdd, "--")); log_debug("ffAD: %s\n", log_id(st.ffAD, "--")); log_debug("ffA2: %s\n", log_id(st.ffA2, "--")); log_debug("ffA1: %s\n", log_id(st.ffA1, "--")); log_debug("ffB2: %s\n", log_id(st.ffB2, "--")); log_debug("ffB1: %s\n", log_id(st.ffB1, "--")); log_debug("ffD: %s\n", log_id(st.ffD, "--")); log_debug("dsp: %s\n", log_id(st.dsp, "--")); log_debug("ffM: %s\n", log_id(st.ffM, "--")); log_debug("postAdd: %s\n", log_id(st.postAdd, "--")); log_debug("postAddMux: %s\n", log_id(st.postAddMux, "--")); log_debug("ffP: %s\n", log_id(st.ffP, "--")); log_debug("overflow: %s\n", log_id(st.overflow, "--")); Cell *cell = st.dsp; if (st.preAdd) { log(" preadder %s (%s)\n", log_id(st.preAdd), log_id(st.preAdd->type)); bool A_SIGNED = st.preAdd->getParam(ID::A_SIGNED).as_bool(); bool D_SIGNED = st.preAdd->getParam(ID::B_SIGNED).as_bool(); if (st.sigA == st.preAdd->getPort(ID::B)) std::swap(A_SIGNED, D_SIGNED); st.sigA.extend_u0(30, A_SIGNED); st.sigD.extend_u0(25, D_SIGNED); cell->setPort(ID::A, st.sigA); cell->setPort(ID::D, st.sigD); cell->setPort(ID(INMODE), Const::from_string("00100")); if (st.ffAD) { if (st.ffAD->type.in(ID($dffe), ID($sdffe))) { bool pol = st.ffAD->getParam(ID::EN_POLARITY).as_bool(); SigSpec S = st.ffAD->getPort(ID::EN); cell->setPort(ID(CEAD), pol ? S : pm.module->Not(NEW_ID, S)); } else cell->setPort(ID(CEAD), State::S1); cell->setParam(ID(ADREG), 1); } cell->setParam(ID(USE_DPORT), Const("TRUE")); pm.autoremove(st.preAdd); } if (st.postAdd) { log(" postadder %s (%s)\n", log_id(st.postAdd), log_id(st.postAdd->type)); SigSpec &opmode = cell->connections_.at(ID(OPMODE)); if (st.postAddMux) { log_assert(st.ffP); opmode[4] = st.postAddMux->getPort(ID::S); pm.autoremove(st.postAddMux); } else if (st.ffP && st.sigC == st.sigP) opmode[4] = State::S0; else opmode[4] = State::S1; opmode[6] = State::S0; opmode[5] = State::S1; if (opmode[4] != State::S0) { if (st.postAddMuxAB == ID::A) st.sigC.extend_u0(48, st.postAdd->getParam(ID::B_SIGNED).as_bool()); else st.sigC.extend_u0(48, st.postAdd->getParam(ID::A_SIGNED).as_bool()); cell->setPort(ID::C, st.sigC); } pm.autoremove(st.postAdd); } if (st.overflow) { log(" overflow %s (%s)\n", log_id(st.overflow), log_id(st.overflow->type)); cell->setParam(ID(USE_PATTERN_DETECT), Const("PATDET")); cell->setParam(ID(SEL_PATTERN), Const("PATTERN")); cell->setParam(ID(SEL_MASK), Const("MASK")); if (st.overflow->type == ID($ge)) { Const B = st.overflow->getPort(ID::B).as_const(); log_assert(std::count(B.begin(), B.end(), State::S1) == 1); // Since B is an exact power of 2, subtract 1 // by inverting all bits up until hitting // that one hi bit for (auto &b : B.bits()) if (b == State::S0) b = State::S1; else if (b == State::S1) { b = State::S0; break; } B.extu(48); cell->setParam(ID(MASK), B); cell->setParam(ID(PATTERN), Const(0, 48)); cell->setPort(ID(OVERFLOW), st.overflow->getPort(ID::Y)); } else log_abort(); pm.autoremove(st.overflow); } if (st.clock != SigBit()) { cell->setPort(ID::CLK, st.clock); auto f = [&pm,cell](SigSpec &A, Cell* ff, IdString ceport, IdString rstport) { SigSpec D = ff->getPort(ID::D); SigSpec Q = pm.sigmap(ff->getPort(ID::Q)); if (!A.empty()) A.replace(Q, D); if (rstport != IdString()) { if (ff->type.in(ID($sdff), ID($sdffe))) { SigSpec srst = ff->getPort(ID::SRST); bool rstpol = ff->getParam(ID::SRST_POLARITY).as_bool(); cell->setPort(rstport, rstpol ? srst : pm.module->Not(NEW_ID, srst)); } else { cell->setPort(rstport, State::S0); } } if (ff->type.in(ID($dffe), ID($sdffe))) { SigSpec ce = ff->getPort(ID::EN); bool cepol = ff->getParam(ID::EN_POLARITY).as_bool(); cell->setPort(ceport, cepol ? ce : pm.module->Not(NEW_ID, ce)); } else cell->setPort(ceport, State::S1); for (auto c : Q.chunks()) { auto it = c.wire->attributes.find(ID::init); if (it == c.wire->attributes.end()) continue; for (int i = c.offset; i < c.offset+c.width; i++) { log_assert(it->second[i] == State::S0 || it->second[i] == State::Sx); it->second.bits()[i] = State::Sx; } } }; if (st.ffA2) { SigSpec A = cell->getPort(ID::A); f(A, st.ffA2, ID(CEA2), ID(RSTA)); if (st.ffA1) { f(A, st.ffA1, ID(CEA1), IdString()); cell->setParam(ID(AREG), 2); cell->setParam(ID(ACASCREG), 2); } else { cell->setParam(ID(AREG), 1); cell->setParam(ID(ACASCREG), 1); } pm.add_siguser(A, cell); cell->setPort(ID::A, A); } if (st.ffB2) { SigSpec B = cell->getPort(ID::B); f(B, st.ffB2, ID(CEB2), ID(RSTB)); if (st.ffB1) { f(B, st.ffB1, ID(CEB1), IdString()); cell->setParam(ID(BREG), 2); cell->setParam(ID(BCASCREG), 2); } else { cell->setParam(ID(BREG), 1); cell->setParam(ID(BCASCREG), 1); } pm.add_siguser(B, cell); cell->setPort(ID::B, B); } if (st.ffD) { SigSpec D = cell->getPort(ID::D); f(D, st.ffD, ID(CED), ID(RSTD)); pm.add_siguser(D, cell); cell->setPort(ID::D, D); cell->setParam(ID(DREG), 1); } if (st.ffM) { SigSpec M; // unused f(M, st.ffM, ID(CEM), ID(RSTM)); st.ffM->connections_.at(ID::Q).replace(st.sigM, pm.module->addWire(NEW_ID, GetSize(st.sigM))); cell->setParam(ID(MREG), State::S1); } if (st.ffP) { SigSpec P; // unused f(P, st.ffP, ID(CEP), ID(RSTP)); st.ffP->connections_.at(ID::Q).replace(st.sigP, pm.module->addWire(NEW_ID, GetSize(st.sigP))); cell->setParam(ID(PREG), State::S1); } log(" clock: %s (%s)", log_signal(st.clock), "posedge"); if (st.ffA2) { log(" ffA2:%s", log_id(st.ffA2)); if (st.ffA1) log(" ffA1:%s", log_id(st.ffA1)); } if (st.ffAD) log(" ffAD:%s", log_id(st.ffAD)); if (st.ffB2) { log(" ffB2:%s", log_id(st.ffB2)); if (st.ffB1) log(" ffB1:%s", log_id(st.ffB1)); } if (st.ffD) log(" ffD:%s", log_id(st.ffD)); if (st.ffM) log(" ffM:%s", log_id(st.ffM)); if (st.ffP) log(" ffP:%s", log_id(st.ffP)); } log("\n"); SigSpec P = st.sigP; if (GetSize(P) < 48) P.append(pm.module->addWire(NEW_ID, 48-GetSize(P))); cell->setPort(ID::P, P); pm.blacklist(cell); } void xilinx_dsp48a_pack(xilinx_dsp48a_pm &pm) { auto &st = pm.st_xilinx_dsp48a_pack; log("Analysing %s.%s for Xilinx DSP48A/DSP48A1 packing.\n", log_id(pm.module), log_id(st.dsp)); log_debug("preAdd: %s\n", log_id(st.preAdd, "--")); log_debug("ffA1: %s\n", log_id(st.ffA1, "--")); log_debug("ffA0: %s\n", log_id(st.ffA0, "--")); log_debug("ffB1: %s\n", log_id(st.ffB1, "--")); log_debug("ffB0: %s\n", log_id(st.ffB0, "--")); log_debug("ffD: %s\n", log_id(st.ffD, "--")); log_debug("dsp: %s\n", log_id(st.dsp, "--")); log_debug("ffM: %s\n", log_id(st.ffM, "--")); log_debug("postAdd: %s\n", log_id(st.postAdd, "--")); log_debug("postAddMux: %s\n", log_id(st.postAddMux, "--")); log_debug("ffP: %s\n", log_id(st.ffP, "--")); Cell *cell = st.dsp; SigSpec &opmode = cell->connections_.at(ID(OPMODE)); if (st.preAdd) { log(" preadder %s (%s)\n", log_id(st.preAdd), log_id(st.preAdd->type)); bool D_SIGNED = st.preAdd->getParam(ID::A_SIGNED).as_bool(); bool B_SIGNED = st.preAdd->getParam(ID::B_SIGNED).as_bool(); st.sigB.extend_u0(18, B_SIGNED); st.sigD.extend_u0(18, D_SIGNED); cell->setPort(ID::B, st.sigB); cell->setPort(ID::D, st.sigD); opmode[4] = State::S1; if (st.preAdd->type == ID($add)) opmode[6] = State::S0; else if (st.preAdd->type == ID($sub)) opmode[6] = State::S1; else log_assert(!"strange pre-adder type"); pm.autoremove(st.preAdd); } if (st.postAdd) { log(" postadder %s (%s)\n", log_id(st.postAdd), log_id(st.postAdd->type)); if (st.postAddMux) { log_assert(st.ffP); opmode[2] = st.postAddMux->getPort(ID::S); pm.autoremove(st.postAddMux); } else if (st.ffP && st.sigC == st.sigP) opmode[2] = State::S0; else opmode[2] = State::S1; opmode[3] = State::S1; if (opmode[2] != State::S0) { if (st.postAddMuxAB == ID::A) st.sigC.extend_u0(48, st.postAdd->getParam(ID::B_SIGNED).as_bool()); else st.sigC.extend_u0(48, st.postAdd->getParam(ID::A_SIGNED).as_bool()); cell->setPort(ID::C, st.sigC); } pm.autoremove(st.postAdd); } if (st.clock != SigBit()) { cell->setPort(ID::CLK, st.clock); auto f = [&pm,cell](SigSpec &A, Cell* ff, IdString ceport, IdString rstport) { SigSpec D = ff->getPort(ID::D); SigSpec Q = pm.sigmap(ff->getPort(ID::Q)); if (!A.empty()) A.replace(Q, D); if (rstport != IdString()) { if (ff->type.in(ID($sdff), ID($sdffe))) { SigSpec srst = ff->getPort(ID::SRST); bool rstpol = ff->getParam(ID::SRST_POLARITY).as_bool(); cell->setPort(rstport, rstpol ? srst : pm.module->Not(NEW_ID, srst)); } else { cell->setPort(rstport, State::S0); } } if (ff->type.in(ID($dffe), ID($sdffe))) { SigSpec ce = ff->getPort(ID::EN); bool cepol = ff->getParam(ID::EN_POLARITY).as_bool(); cell->setPort(ceport, cepol ? ce : pm.module->Not(NEW_ID, ce)); } else cell->setPort(ceport, State::S1); for (auto c : Q.chunks()) { auto it = c.wire->attributes.find(ID::init); if (it == c.wire->attributes.end()) continue; for (int i = c.offset; i < c.offset+c.width; i++) { log_assert(it->second[i] == State::S0 || it->second[i] == State::Sx); it->second.bits()[i] = State::Sx; } } }; if (st.ffA0 || st.ffA1) { SigSpec A = cell->getPort(ID::A); if (st.ffA1) { f(A, st.ffA1, ID(CEA), ID(RSTA)); cell->setParam(ID(A1REG), 1); } if (st.ffA0) { f(A, st.ffA0, ID(CEA), ID(RSTA)); cell->setParam(ID(A0REG), 1); } pm.add_siguser(A, cell); cell->setPort(ID::A, A); } if (st.ffB0 || st.ffB1) { SigSpec B = cell->getPort(ID::B); if (st.ffB1) { f(B, st.ffB1, ID(CEB), ID(RSTB)); cell->setParam(ID(B1REG), 1); } if (st.ffB0) { f(B, st.ffB0, ID(CEB), ID(RSTB)); cell->setParam(ID(B0REG), 1); } pm.add_siguser(B, cell); cell->setPort(ID::B, B); } if (st.ffD) { SigSpec D = cell->getPort(ID::D); f(D, st.ffD, ID(CED), ID(RSTD)); pm.add_siguser(D, cell); cell->setPort(ID::D, D); cell->setParam(ID(DREG), 1); } if (st.ffM) { SigSpec M; // unused f(M, st.ffM, ID(CEM), ID(RSTM)); st.ffM->connections_.at(ID::Q).replace(st.sigM, pm.module->addWire(NEW_ID, GetSize(st.sigM))); cell->setParam(ID(MREG), State::S1); } if (st.ffP) { SigSpec P; // unused f(P, st.ffP, ID(CEP), ID(RSTP)); st.ffP->connections_.at(ID::Q).replace(st.sigP, pm.module->addWire(NEW_ID, GetSize(st.sigP))); cell->setParam(ID(PREG), State::S1); } log(" clock: %s (%s)", log_signal(st.clock), "posedge"); if (st.ffA0) log(" ffA0:%s", log_id(st.ffA0)); if (st.ffA1) log(" ffA1:%s", log_id(st.ffA1)); if (st.ffB0) log(" ffB0:%s", log_id(st.ffB0)); if (st.ffB1) log(" ffB1:%s", log_id(st.ffB1)); if (st.ffD) log(" ffD:%s", log_id(st.ffD)); if (st.ffM) log(" ffM:%s", log_id(st.ffM)); if (st.ffP) log(" ffP:%s", log_id(st.ffP)); } log("\n"); SigSpec P = st.sigP; if (GetSize(P) < 48) P.append(pm.module->addWire(NEW_ID, 48-GetSize(P))); cell->setPort(ID::P, P); pm.blacklist(cell); } void xilinx_dsp_packC(xilinx_dsp_CREG_pm &pm) { auto &st = pm.st_xilinx_dsp_packC; log_debug("Analysing %s.%s for Xilinx DSP packing (CREG).\n", log_id(pm.module), log_id(st.dsp)); log_debug("ffC: %s\n", log_id(st.ffC, "--")); Cell *cell = st.dsp; if (st.clock != SigBit()) { cell->setPort(ID::CLK, st.clock); auto f = [&pm,cell](SigSpec &A, Cell* ff, IdString ceport, IdString rstport) { SigSpec D = ff->getPort(ID::D); SigSpec Q = pm.sigmap(ff->getPort(ID::Q)); if (!A.empty()) A.replace(Q, D); if (rstport != IdString()) { if (ff->type.in(ID($sdff), ID($sdffe))) { SigSpec srst = ff->getPort(ID::SRST); bool rstpol = ff->getParam(ID::SRST_POLARITY).as_bool(); cell->setPort(rstport, rstpol ? srst : pm.module->Not(NEW_ID, srst)); } else { cell->setPort(rstport, State::S0); } } if (ff->type.in(ID($dffe), ID($sdffe))) { SigSpec ce = ff->getPort(ID::EN); bool cepol = ff->getParam(ID::EN_POLARITY).as_bool(); cell->setPort(ceport, cepol ? ce : pm.module->Not(NEW_ID, ce)); } else cell->setPort(ceport, State::S1); for (auto c : Q.chunks()) { auto it = c.wire->attributes.find(ID::init); if (it == c.wire->attributes.end()) continue; for (int i = c.offset; i < c.offset+c.width; i++) { log_assert(it->second[i] == State::S0 || it->second[i] == State::Sx); it->second.bits()[i] = State::Sx; } } }; if (st.ffC) { SigSpec C = cell->getPort(ID::C); f(C, st.ffC, ID(CEC), ID(RSTC)); pm.add_siguser(C, cell); cell->setPort(ID::C, C); cell->setParam(ID(CREG), 1); } log(" clock: %s (%s)", log_signal(st.clock), "posedge"); if (st.ffC) log(" ffC:%s", log_id(st.ffC)); log("\n"); } pm.blacklist(cell); } struct XilinxDspPass : public Pass { XilinxDspPass() : Pass("xilinx_dsp", "Xilinx: pack resources into DSPs") { } void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" xilinx_dsp [options] [selection]\n"); log("\n"); log("Pack input registers (A2, A1, B2, B1, C, D, AD; with optional enable/reset),\n"); log("pipeline registers (M; with optional enable/reset), output registers (P; with\n"); log("optional enable/reset), pre-adder and/or post-adder into Xilinx DSP resources.\n"); log("\n"); log("Multiply-accumulate operations using the post-adder with feedback on the 'C'\n"); log("input will be folded into the DSP. In this scenario only, the 'C' input can be\n"); log("used to override the current accumulation result with a new value, which will\n"); log("be added to the multiplier result to form the next accumulation result.\n"); log("\n"); log("Use of the dedicated 'PCOUT' -> 'PCIN' cascade path is detected for 'P' -> 'C'\n"); log("connections (optionally, where 'P' is right-shifted by 17-bits and used as an\n"); log("input to the post-adder -- a pattern common for summing partial products to\n"); log("implement wide multipliers). Limited support also exists for similar cascading\n"); log("for A and B using '[AB]COUT' -> '[AB]CIN'. Currently, cascade chains are limited\n"); log("to a maximum length of 20 cells, corresponding to the smallest Xilinx 7 Series\n"); log("device.\n"); log("\n"); log("This pass is a no-op if the scratchpad variable 'xilinx_dsp.multonly' is set\n"); log("to 1.\n"); log("\n"); log("\n"); log("Experimental feature: addition/subtractions less than 12 or 24 bits with the\n"); log("'(* use_dsp=\"simd\" *)' attribute attached to the output wire or attached to\n"); log("the add/subtract operator will cause those operations to be implemented using\n"); log("the 'SIMD' feature of DSPs.\n"); log("\n"); log("Experimental feature: the presence of a `$ge' cell attached to the registered\n"); log("P output implementing the operation \"(P >= )\" will be transformed\n"); log("into using the DSP48E1's pattern detector feature for overflow detection.\n"); log("\n"); log(" -family {xcup|xcu|xc7|xc6v|xc5v|xc4v|xc6s|xc3sda}\n"); log(" select the family to target\n"); log(" default: xc7\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) override { log_header(design, "Executing XILINX_DSP pass (pack resources into DSPs).\n"); std::string family = "xc7"; size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if ((args[argidx] == "-family" || args[argidx] == "-arch") && argidx+1 < args.size()) { family = args[++argidx]; continue; } break; } extra_args(args, argidx, design); // Don't bother distinguishing between those. if (family == "xc6v") family = "xc7"; if (family == "xcup") family = "xcu"; for (auto module : design->selected_modules()) { if (design->scratchpad_get_bool("xilinx_dsp.multonly")) continue; // Experimental feature: pack $add/$sub cells with // (* use_dsp48="simd" *) into DSP48E1's using its // SIMD feature if (family == "xc7") xilinx_simd_pack(module, module->selected_cells()); // Match for all features ([ABDMP][12]?REG, pre-adder, // post-adder, pattern detector, etc.) except for CREG if (family == "xc7") { xilinx_dsp_pm pm(module, module->selected_cells()); pm.run_xilinx_dsp_pack(xilinx_dsp_pack); } else if (family == "xc6s" || family == "xc3sda") { xilinx_dsp48a_pm pm(module, module->selected_cells()); pm.run_xilinx_dsp48a_pack(xilinx_dsp48a_pack); } // Separating out CREG packing is necessary since there // is no guarantee that the cell ordering corresponds // to the "expected" case (i.e. the order in which // they appear in the source) thus the possiblity // existed that a register got packed as a CREG into a // downstream DSP that should have otherwise been a // PREG of an upstream DSP that had not been visited // yet { xilinx_dsp_CREG_pm pm(module, module->selected_cells()); pm.run_xilinx_dsp_packC(xilinx_dsp_packC); } // Lastly, identify and utilise PCOUT -> PCIN, // ACOUT -> ACIN, and BCOUT-> BCIN dedicated cascade // chains { xilinx_dsp_cascade_pm pm(module, module->selected_cells()); pm.run_xilinx_dsp_cascade(); } } } } XilinxDspPass; PRIVATE_NAMESPACE_END