/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/yosys.h" #include "kernel/satgen.h" #include "kernel/sigtools.h" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN struct EquivInductWorker { Module *module; SigMap sigmap; vector cells; pool workset; ezSatPtr ez; SatGen satgen; int max_seq; int success_counter; dict ez_step_is_consistent; pool cell_warn_cache; SigPool undriven_signals; EquivInductWorker(Module *module, const pool &unproven_equiv_cells, bool model_undef, int max_seq) : module(module), sigmap(module), cells(module->selected_cells()), workset(unproven_equiv_cells), satgen(ez.get(), &sigmap), max_seq(max_seq), success_counter(0) { satgen.model_undef = model_undef; } void create_timestep(int step) { vector ez_equal_terms; for (auto cell : cells) { if (!satgen.importCell(cell, step) && !cell_warn_cache.count(cell)) { if (RTLIL::builtin_ff_cell_types().count(cell->type)) log_warning("No SAT model available for async FF cell %s (%s). Consider running `async2sync` or `clk2fflogic` first.\n", log_id(cell), log_id(cell->type)); else log_warning("No SAT model available for cell %s (%s).\n", log_id(cell), log_id(cell->type)); cell_warn_cache.insert(cell); } if (cell->type == ID($equiv)) { SigBit bit_a = sigmap(cell->getPort(ID::A)).as_bit(); SigBit bit_b = sigmap(cell->getPort(ID::B)).as_bit(); if (bit_a != bit_b) { int ez_a = satgen.importSigBit(bit_a, step); int ez_b = satgen.importSigBit(bit_b, step); int cond = ez->IFF(ez_a, ez_b); if (satgen.model_undef) { cond = ez->AND(cond, ez->NOT(satgen.importUndefSigBit(bit_b, step))); cond = ez->OR(cond, satgen.importUndefSigBit(bit_a, step)); } ez_equal_terms.push_back(cond); } } } if (satgen.model_undef) { for (auto bit : undriven_signals.export_all()) ez->assume(ez->NOT(satgen.importUndefSigBit(bit, step))); } log_assert(!ez_step_is_consistent.count(step)); ez_step_is_consistent[step] = ez->expression(ez->OpAnd, ez_equal_terms); } void run() { log("Found %d unproven $equiv cells in module %s:\n", GetSize(workset), log_id(module)); if (satgen.model_undef) { for (auto cell : cells) if (yosys_celltypes.cell_known(cell->type)) for (auto &conn : cell->connections()) if (yosys_celltypes.cell_input(cell->type, conn.first)) undriven_signals.add(sigmap(conn.second)); for (auto cell : cells) if (yosys_celltypes.cell_known(cell->type)) for (auto &conn : cell->connections()) if (yosys_celltypes.cell_output(cell->type, conn.first)) undriven_signals.del(sigmap(conn.second)); } create_timestep(1); if (satgen.model_undef) { for (auto bit : satgen.initial_state.export_all()) ez->assume(ez->NOT(satgen.importUndefSigBit(bit, 1))); log(" Undef modelling: force def on %d initial reg values and %d inputs.\n", GetSize(satgen.initial_state), GetSize(undriven_signals)); } for (int step = 1; step <= max_seq; step++) { ez->assume(ez_step_is_consistent[step]); log(" Proving existence of base case for step %d. (%d clauses over %d variables)\n", step, ez->numCnfClauses(), ez->numCnfVariables()); if (!ez->solve()) { log(" Proof for base case failed. Circuit inherently diverges!\n"); return; } create_timestep(step+1); int new_step_not_consistent = ez->NOT(ez_step_is_consistent[step+1]); ez->bind(new_step_not_consistent); log(" Proving induction step %d. (%d clauses over %d variables)\n", step, ez->numCnfClauses(), ez->numCnfVariables()); if (!ez->solve(new_step_not_consistent)) { log(" Proof for induction step holds. Entire workset of %d cells proven!\n", GetSize(workset)); for (auto cell : workset) cell->setPort(ID::B, cell->getPort(ID::A)); success_counter += GetSize(workset); return; } log(" Proof for induction step failed. %s\n", step != max_seq ? "Extending to next time step." : "Trying to prove individual $equiv from workset."); } workset.sort(); for (auto cell : workset) { SigBit bit_a = sigmap(cell->getPort(ID::A)).as_bit(); SigBit bit_b = sigmap(cell->getPort(ID::B)).as_bit(); log(" Trying to prove $equiv for %s:", log_signal(sigmap(cell->getPort(ID::Y)))); int ez_a = satgen.importSigBit(bit_a, max_seq+1); int ez_b = satgen.importSigBit(bit_b, max_seq+1); int cond = ez->XOR(ez_a, ez_b); if (satgen.model_undef) cond = ez->AND(cond, ez->NOT(satgen.importUndefSigBit(bit_a, max_seq+1))); if (!ez->solve(cond)) { log(" success!\n"); cell->setPort(ID::B, cell->getPort(ID::A)); success_counter++; } else { log(" failed.\n"); } } } }; struct EquivInductPass : public Pass { EquivInductPass() : Pass("equiv_induct", "proving $equiv cells using temporal induction") { } void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" equiv_induct [options] [selection]\n"); log("\n"); log("Uses a version of temporal induction to prove $equiv cells.\n"); log("\n"); log("Only selected $equiv cells are proven and only selected cells are used to\n"); log("perform the proof.\n"); log("\n"); log(" -undef\n"); log(" enable modelling of undef states\n"); log("\n"); log(" -seq \n"); log(" the max. number of time steps to be considered (default = 4)\n"); log("\n"); log("This command is very effective in proving complex sequential circuits, when\n"); log("the internal state of the circuit quickly propagates to $equiv cells.\n"); log("\n"); log("However, this command uses a weak definition of 'equivalence': This command\n"); log("proves that the two circuits will not diverge after they produce equal\n"); log("outputs (observable points via $equiv) for at least cycles (the \n"); log("specified via -seq).\n"); log("\n"); log("Combined with simulation this is very powerful because simulation can give\n"); log("you confidence that the circuits start out synced for at least cycles\n"); log("after reset.\n"); log("\n"); } void execute(std::vector args, Design *design) override { int success_counter = 0; bool model_undef = false; int max_seq = 4; log_header(design, "Executing EQUIV_INDUCT pass.\n"); size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-undef") { model_undef = true; continue; } if (args[argidx] == "-seq" && argidx+1 < args.size()) { max_seq = atoi(args[++argidx].c_str()); continue; } break; } extra_args(args, argidx, design); for (auto module : design->selected_modules()) { pool unproven_equiv_cells; for (auto cell : module->selected_cells()) if (cell->type == ID($equiv)) { if (cell->getPort(ID::A) != cell->getPort(ID::B)) unproven_equiv_cells.insert(cell); } if (unproven_equiv_cells.empty()) { log("No selected unproven $equiv cells found in %s.\n", log_id(module)); continue; } EquivInductWorker worker(module, unproven_equiv_cells, model_undef, max_seq); worker.run(); success_counter += worker.success_counter; } log("Proved %d previously unproven $equiv cells.\n", success_counter); } } EquivInductPass; PRIVATE_NAMESPACE_END