/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * 2019 Eddie Hung * 2019 David Shah * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * --- * * Tech-mapping rules for decomposing arbitrarily-sized $mul cells * into an equivalent collection of smaller `DSP_NAME cells (with the * same interface as $mul) no larger than `DSP_[AB]_MAXWIDTH, attached * to $shl and $add cells. * */ `ifndef DSP_A_MAXWIDTH $error("Macro DSP_A_MAXWIDTH must be defined"); `endif `ifndef DSP_B_MAXWIDTH $error("Macro DSP_B_MAXWIDTH must be defined"); `endif `ifndef DSP_NAME $error("Macro DSP_NAME must be defined"); `endif `define MAX(a,b) (a > b ? a : b) `define MIN(a,b) (a < b ? a : b) module \$mul (A, B, Y); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 1; parameter B_WIDTH = 1; parameter Y_WIDTH = 1; input [A_WIDTH-1:0] A; input [B_WIDTH-1:0] B; output [Y_WIDTH-1:0] Y; generate if (A_SIGNED != B_SIGNED || A_WIDTH <= 1 || B_WIDTH <= 1) wire _TECHMAP_FAIL_ = 1; // NB: A_SIGNED == B_SIGNED == 0 from here else if (A_WIDTH >= B_WIDTH) \$__mul #( .A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH), .B_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH) ) _TECHMAP_REPLACE_ ( .A(A), .B(B), .Y(Y) ); else \$__mul #( .A_SIGNED(B_SIGNED), .B_SIGNED(A_SIGNED), .A_WIDTH(B_WIDTH), .B_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH) ) _TECHMAP_REPLACE_ ( .A(B), .B(A), .Y(Y) ); endgenerate endmodule module \$__mul (A, B, Y); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 1; parameter B_WIDTH = 1; parameter Y_WIDTH = 1; input [A_WIDTH-1:0] A; input [B_WIDTH-1:0] B; output [Y_WIDTH-1:0] Y; wire [1023:0] _TECHMAP_DO_ = "proc; clean"; `ifdef DSP_SIGNEDONLY localparam sign_headroom = 1; `else localparam sign_headroom = 0; `endif genvar i; generate if (A_WIDTH <= 1 || B_WIDTH <= 1) wire _TECHMAP_FAIL_ = 1; `ifdef DSP_MINWIDTH else if (A_WIDTH+B_WIDTH < `DSP_MINWIDTH || Y_WIDTH < `DSP_MINWIDTH) wire _TECHMAP_FAIL_ = 1; `endif else if (A_WIDTH > `DSP_A_MAXWIDTH) begin localparam n = (A_WIDTH+`DSP_A_MAXWIDTH-sign_headroom-1) / (`DSP_A_MAXWIDTH-sign_headroom); localparam partial_Y_WIDTH = `MIN(Y_WIDTH, B_WIDTH+`DSP_A_MAXWIDTH); localparam last_Y_WIDTH = `MIN(partial_Y_WIDTH, B_WIDTH+A_WIDTH-(n-1)*(`DSP_A_MAXWIDTH-sign_headroom)); if (A_SIGNED && B_SIGNED) begin wire signed [partial_Y_WIDTH-1:0] partial [n-2:0]; wire signed [last_Y_WIDTH-1:0] last_partial; wire signed [Y_WIDTH-1:0] partial_sum [n-1:0]; end else begin wire [partial_Y_WIDTH-1:0] partial [n-1:0]; wire [last_Y_WIDTH-1:0] last_partial; wire [Y_WIDTH-1:0] partial_sum [n-1:0]; end \$__mul #( .A_SIGNED(sign_headroom), .B_SIGNED(B_SIGNED), .A_WIDTH(`DSP_A_MAXWIDTH), .B_WIDTH(B_WIDTH), .Y_WIDTH(partial_Y_WIDTH) ) mul_slice_first ( .A({{sign_headroom{1'b0}}, A[`DSP_A_MAXWIDTH-sign_headroom-1 : 0]}), .B(B), .Y(partial[0]) ); assign partial_sum[0] = partial[0]; for (i = 1; i < n-1; i=i+1) begin:slice \$__mul #( .A_SIGNED(sign_headroom), .B_SIGNED(B_SIGNED), .A_WIDTH(`DSP_A_MAXWIDTH), .B_WIDTH(B_WIDTH), .Y_WIDTH(partial_Y_WIDTH) ) mul_slice ( .A({{sign_headroom{1'b0}}, A[i*(`DSP_A_MAXWIDTH-sign_headroom) +: `DSP_A_MAXWIDTH-sign_headroom]}), .B(B), .Y(partial[i]) ); // TODO: Currently a 'cascade' approach to summing the partial // products is taken here, but a more efficient 'binary // reduction' approach also exists... assign partial_sum[i] = (partial[i] << i*(`DSP_A_MAXWIDTH-sign_headroom)) + partial_sum[i-1]; end \$__mul #( .A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH-(n-1)*(`DSP_A_MAXWIDTH-sign_headroom)), .B_WIDTH(B_WIDTH), .Y_WIDTH(last_Y_WIDTH) ) mul_slice_last ( .A(A[A_WIDTH-1 : (n-1)*(`DSP_A_MAXWIDTH-sign_headroom)]), .B(B), .Y(last_partial) ); assign partial_sum[n-1] = (last_partial << (n-1)*(`DSP_A_MAXWIDTH-sign_headroom)) + partial_sum[n-2]; assign Y = partial_sum[n-1]; end else if (B_WIDTH > `DSP_B_MAXWIDTH) begin localparam n = (B_WIDTH+`DSP_B_MAXWIDTH-sign_headroom-1) / (`DSP_B_MAXWIDTH-sign_headroom); localparam partial_Y_WIDTH = `MIN(Y_WIDTH, A_WIDTH+`DSP_B_MAXWIDTH); localparam last_Y_WIDTH = `MIN(partial_Y_WIDTH, A_WIDTH+B_WIDTH-(n-1)*(`DSP_B_MAXWIDTH-sign_headroom)); if (A_SIGNED && B_SIGNED) begin wire signed [partial_Y_WIDTH-1:0] partial [n-2:0]; wire signed [last_Y_WIDTH-1:0] last_partial; wire signed [Y_WIDTH-1:0] partial_sum [n-1:0]; end else begin wire [partial_Y_WIDTH-1:0] partial [n-1:0]; wire [last_Y_WIDTH-1:0] last_partial; wire [Y_WIDTH-1:0] partial_sum [n-1:0]; end \$__mul #( .A_SIGNED(A_SIGNED), .B_SIGNED(sign_headroom), .A_WIDTH(A_WIDTH), .B_WIDTH(`DSP_B_MAXWIDTH), .Y_WIDTH(partial_Y_WIDTH) ) mul_first ( .A(A), .B({{sign_headroom{1'b0}}, B[`DSP_B_MAXWIDTH-sign_headroom-1 : 0]}), .Y(partial[0]) ); assign partial_sum[0] = partial[0]; for (i = 1; i < n-1; i=i+1) begin:slice \$__mul #( .A_SIGNED(A_SIGNED), .B_SIGNED(sign_headroom), .A_WIDTH(A_WIDTH), .B_WIDTH(`DSP_B_MAXWIDTH), .Y_WIDTH(partial_Y_WIDTH) ) mul ( .A(A), .B({{sign_headroom{1'b0}}, B[i*(`DSP_B_MAXWIDTH-sign_headroom) +: `DSP_B_MAXWIDTH-sign_headroom]}), .Y(partial[i]) ); // TODO: Currently a 'cascade' approach to summing the partial // products is taken here, but a more efficient 'binary // reduction' approach also exists... assign partial_sum[i] = (partial[i] << i*(`DSP_B_MAXWIDTH-sign_headroom)) + partial_sum[i-1]; end \$__mul #( .A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH), .B_WIDTH(B_WIDTH-(n-1)*(`DSP_B_MAXWIDTH-sign_headroom)), .Y_WIDTH(last_Y_WIDTH) ) mul_last ( .A(A), .B(B[B_WIDTH-1 : (n-1)*(`DSP_B_MAXWIDTH-sign_headroom)]), .Y(last_partial) ); assign partial_sum[n-1] = (last_partial << (n-1)*(`DSP_B_MAXWIDTH-sign_headroom)) + partial_sum[n-2]; assign Y = partial_sum[n-1]; end else begin `DSP_NAME #( .A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH), .B_WIDTH(B_WIDTH), .Y_WIDTH(`MIN(Y_WIDTH,A_WIDTH+B_WIDTH)), ) _TECHMAP_REPLACE_ ( .A(A), .B(B), .Y(Y) ); end endgenerate endmodule (* techmap_celltype = "$__mul" *) module $__soft_mul (A, B, Y); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 1; parameter B_WIDTH = 1; parameter Y_WIDTH = 1; input [A_WIDTH-1:0] A; input [B_WIDTH-1:0] B; output [Y_WIDTH-1:0] Y; // Indirection necessary since mapping // back to $mul will cause recursion generate if (A_SIGNED && !B_SIGNED) \$__soft__mul #( .A_SIGNED(A_SIGNED), .B_SIGNED(1), .A_WIDTH(A_WIDTH), .B_WIDTH(B_WIDTH+1), .Y_WIDTH(Y_WIDTH) ) _TECHMAP_REPLACE_ ( .A(A), .B({1'b0,B}), .Y(Y) ); else if (!A_SIGNED && B_SIGNED) \$__soft_mul #( .A_SIGNED(1), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH+1), .B_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH) ) _TECHMAP_REPLACE_ ( .A({1'b0,A}), .B(B), .Y(Y) ); else \$__soft_mul #( .A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH), .B_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH) ) _TECHMAP_REPLACE_ ( .A(A), .B(B), .Y(Y) ); endgenerate endmodule