/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/log.h" #include "kernel/register.h" #include "kernel/rtlil.h" #include "kernel/satgen.h" #include "kernel/sigtools.h" #include #include USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN SigMap assign_map, dff_init_map; SigSet mux_drivers; dict bit2driver; dict> init_attributes; bool keepdc; bool sat; void remove_init_attr(SigSpec sig) { for (auto bit : assign_map(sig)) if (init_attributes.count(bit)) for (auto wbit : init_attributes.at(bit)) wbit.wire->attributes.at(ID(init))[wbit.offset] = State::Sx; } bool handle_dffsr(RTLIL::Module *mod, RTLIL::Cell *cell) { SigSpec sig_set, sig_clr; State pol_set, pol_clr; if (cell->hasPort(ID(S))) sig_set = cell->getPort(ID(S)); if (cell->hasPort(ID(R))) sig_clr = cell->getPort(ID(R)); if (cell->hasPort(ID(SET))) sig_set = cell->getPort(ID(SET)); if (cell->hasPort(ID(CLR))) sig_clr = cell->getPort(ID(CLR)); log_assert(GetSize(sig_set) == GetSize(sig_clr)); if (cell->type.begins_with("$_DFFSR_")) { pol_set = cell->type[9] == 'P' ? State::S1 : State::S0; pol_clr = cell->type[10] == 'P' ? State::S1 : State::S0; } else if (cell->type.begins_with("$_DLATCHSR_")) { pol_set = cell->type[12] == 'P' ? State::S1 : State::S0; pol_clr = cell->type[13] == 'P' ? State::S1 : State::S0; } else if (cell->type.in(ID($dffsr), ID($dlatchsr))) { pol_set = cell->parameters[ID(SET_POLARITY)].as_bool() ? State::S1 : State::S0; pol_clr = cell->parameters[ID(CLR_POLARITY)].as_bool() ? State::S1 : State::S0; } else log_abort(); State npol_set = pol_set == State::S0 ? State::S1 : State::S0; State npol_clr = pol_clr == State::S0 ? State::S1 : State::S0; SigSpec sig_d = cell->getPort(ID(D)); SigSpec sig_q = cell->getPort(ID(Q)); bool did_something = false; bool proper_sr = false; bool used_pol_set = false; bool used_pol_clr = false; bool hasreset = false; Const reset_val; SigSpec sig_reset; for (int i = 0; i < GetSize(sig_set); i++) { SigBit s = sig_set[i], c = sig_clr[i]; if (s != npol_set || c != npol_clr) hasreset = true; if (s == pol_set || c == pol_clr) { log("Constantly %s Q bit %s for SR cell %s (%s) from module %s.\n", s == pol_set ? "set" : "cleared", log_signal(sig_q[i]), log_id(cell), log_id(cell->type), log_id(mod)); remove_init_attr(sig_q[i]); mod->connect(sig_q[i], s == pol_set ? State::S1 : State::S0); sig_set.remove(i); sig_clr.remove(i); sig_d.remove(i); sig_q.remove(i--); did_something = true; continue; } if (sig_reset.empty() && s.wire != nullptr) sig_reset = s; if (sig_reset.empty() && c.wire != nullptr) sig_reset = c; if (s.wire != nullptr && s != sig_reset) proper_sr = true; if (c.wire != nullptr && c != sig_reset) proper_sr = true; if ((s.wire == nullptr) != (c.wire == nullptr)) { if (s.wire != nullptr) used_pol_set = true; if (c.wire != nullptr) used_pol_clr = true; reset_val.bits.push_back(c.wire == nullptr ? State::S1 : State::S0); } else proper_sr = true; } if (!hasreset) proper_sr = false; if (GetSize(sig_set) == 0) { log("Removing %s (%s) from module %s.\n", log_id(cell), log_id(cell->type), log_id(mod)); mod->remove(cell); return true; } if (cell->type.in(ID($dffsr), ID($dlatchsr))) { cell->setParam(ID(WIDTH), GetSize(sig_d)); cell->setPort(ID(SET), sig_set); cell->setPort(ID(CLR), sig_clr); cell->setPort(ID(D), sig_d); cell->setPort(ID(Q), sig_q); } else { cell->setPort(ID(S), sig_set); cell->setPort(ID(R), sig_clr); cell->setPort(ID(D), sig_d); cell->setPort(ID(Q), sig_q); } if (proper_sr) return did_something; if (used_pol_set && used_pol_clr && pol_set != pol_clr) return did_something; if (cell->type == ID($dlatchsr)) return did_something; State unified_pol = used_pol_set ? pol_set : pol_clr; if (cell->type == ID($dffsr)) { if (hasreset) { log("Converting %s (%s) to %s in module %s.\n", log_id(cell), log_id(cell->type), "$adff", log_id(mod)); cell->type = ID($adff); cell->setParam(ID(ARST_POLARITY), unified_pol); cell->setParam(ID(ARST_VALUE), reset_val); cell->setPort(ID(ARST), sig_reset); cell->unsetParam(ID(SET_POLARITY)); cell->unsetParam(ID(CLR_POLARITY)); cell->unsetPort(ID(SET)); cell->unsetPort(ID(CLR)); } else { log("Converting %s (%s) to %s in module %s.\n", log_id(cell), log_id(cell->type), "$dff", log_id(mod)); cell->type = ID($dff); cell->unsetParam(ID(SET_POLARITY)); cell->unsetParam(ID(CLR_POLARITY)); cell->unsetPort(ID(SET)); cell->unsetPort(ID(CLR)); } return true; } if (!hasreset) { IdString new_type; if (cell->type.begins_with("$_DFFSR_")) new_type = stringf("$_DFF_%c_", cell->type[8]); else if (cell->type.begins_with("$_DLATCHSR_")) new_type = stringf("$_DLATCH_%c_", cell->type[11]); else log_abort(); log("Converting %s (%s) to %s in module %s.\n", log_id(cell), log_id(cell->type), log_id(new_type), log_id(mod)); cell->type = new_type; cell->unsetPort(ID(S)); cell->unsetPort(ID(R)); return true; } return did_something; } bool handle_dlatch(RTLIL::Module *mod, RTLIL::Cell *dlatch) { SigSpec sig_e; State on_state, off_state; if (dlatch->type == ID($dlatch)) { sig_e = assign_map(dlatch->getPort(ID(EN))); on_state = dlatch->getParam(ID(EN_POLARITY)).as_bool() ? State::S1 : State::S0; off_state = dlatch->getParam(ID(EN_POLARITY)).as_bool() ? State::S0 : State::S1; } else if (dlatch->type == ID($_DLATCH_P_)) { sig_e = assign_map(dlatch->getPort(ID(E))); on_state = State::S1; off_state = State::S0; } else if (dlatch->type == ID($_DLATCH_N_)) { sig_e = assign_map(dlatch->getPort(ID(E))); on_state = State::S0; off_state = State::S1; } else log_abort(); if (sig_e == off_state) { RTLIL::Const val_init; for (auto bit : dff_init_map(dlatch->getPort(ID(Q)))) val_init.bits.push_back(bit.wire == NULL ? bit.data : State::Sx); mod->connect(dlatch->getPort(ID(Q)), val_init); goto delete_dlatch; } if (sig_e == on_state) { mod->connect(dlatch->getPort(ID(Q)), dlatch->getPort(ID(D))); goto delete_dlatch; } return false; delete_dlatch: log("Removing %s (%s) from module %s.\n", log_id(dlatch), log_id(dlatch->type), log_id(mod)); remove_init_attr(dlatch->getPort(ID(Q))); mod->remove(dlatch); return true; } bool handle_dff(RTLIL::Module *mod, RTLIL::Cell *dff) { RTLIL::SigSpec sig_d, sig_q, sig_c, sig_r, sig_e; RTLIL::Const val_cp, val_rp, val_rv, val_ep; if (dff->type == ID($_FF_)) { sig_d = dff->getPort(ID(D)); sig_q = dff->getPort(ID(Q)); } else if (dff->type == ID($_DFF_N_) || dff->type == ID($_DFF_P_)) { sig_d = dff->getPort(ID(D)); sig_q = dff->getPort(ID(Q)); sig_c = dff->getPort(ID(C)); val_cp = RTLIL::Const(dff->type == ID($_DFF_P_), 1); } else if (dff->type.begins_with("$_DFF_") && dff->type.compare(9, 1, "_") == 0 && (dff->type[6] == 'N' || dff->type[6] == 'P') && (dff->type[7] == 'N' || dff->type[7] == 'P') && (dff->type[8] == '0' || dff->type[8] == '1')) { sig_d = dff->getPort(ID(D)); sig_q = dff->getPort(ID(Q)); sig_c = dff->getPort(ID(C)); sig_r = dff->getPort(ID(R)); val_cp = RTLIL::Const(dff->type[6] == 'P', 1); val_rp = RTLIL::Const(dff->type[7] == 'P', 1); val_rv = RTLIL::Const(dff->type[8] == '1', 1); } else if (dff->type.begins_with("$_DFFE_") && dff->type.compare(9, 1, "_") == 0 && (dff->type[7] == 'N' || dff->type[7] == 'P') && (dff->type[8] == 'N' || dff->type[8] == 'P')) { sig_d = dff->getPort(ID(D)); sig_q = dff->getPort(ID(Q)); sig_c = dff->getPort(ID(C)); sig_e = dff->getPort(ID(E)); val_cp = RTLIL::Const(dff->type[7] == 'P', 1); val_ep = RTLIL::Const(dff->type[8] == 'P', 1); } else if (dff->type == ID($ff)) { sig_d = dff->getPort(ID(D)); sig_q = dff->getPort(ID(Q)); } else if (dff->type == ID($dff)) { sig_d = dff->getPort(ID(D)); sig_q = dff->getPort(ID(Q)); sig_c = dff->getPort(ID(CLK)); val_cp = RTLIL::Const(dff->parameters[ID(CLK_POLARITY)].as_bool(), 1); } else if (dff->type == ID($dffe)) { sig_e = dff->getPort(ID(EN)); sig_d = dff->getPort(ID(D)); sig_q = dff->getPort(ID(Q)); sig_c = dff->getPort(ID(CLK)); val_cp = RTLIL::Const(dff->parameters[ID(CLK_POLARITY)].as_bool(), 1); val_ep = RTLIL::Const(dff->parameters[ID(EN_POLARITY)].as_bool(), 1); } else if (dff->type == ID($adff)) { sig_d = dff->getPort(ID(D)); sig_q = dff->getPort(ID(Q)); sig_c = dff->getPort(ID(CLK)); sig_r = dff->getPort(ID(ARST)); val_cp = RTLIL::Const(dff->parameters[ID(CLK_POLARITY)].as_bool(), 1); val_rp = RTLIL::Const(dff->parameters[ID(ARST_POLARITY)].as_bool(), 1); val_rv = dff->parameters[ID(ARST_VALUE)]; } else log_abort(); assign_map.apply(sig_d); assign_map.apply(sig_q); assign_map.apply(sig_c); assign_map.apply(sig_r); bool has_init = false; RTLIL::Const val_init; for (auto bit : dff_init_map(sig_q).to_sigbit_vector()) { if (bit.wire == NULL || keepdc) has_init = true; val_init.bits.push_back(bit.wire == NULL ? bit.data : RTLIL::State::Sx); } if (dff->type.in(ID($ff), ID($dff)) && mux_drivers.has(sig_d)) { std::set muxes; mux_drivers.find(sig_d, muxes); for (auto mux : muxes) { RTLIL::SigSpec sig_a = assign_map(mux->getPort(ID(A))); RTLIL::SigSpec sig_b = assign_map(mux->getPort(ID(B))); if (sig_a == sig_q && sig_b.is_fully_const() && (!has_init || val_init == sig_b.as_const())) { mod->connect(sig_q, sig_b); goto delete_dff; } if (sig_b == sig_q && sig_a.is_fully_const() && (!has_init || val_init == sig_a.as_const())) { mod->connect(sig_q, sig_a); goto delete_dff; } } } // If clock is driven by a constant and (i) no reset signal // (ii) Q has no initial value // (iii) initial value is same as reset value if (!sig_c.empty() && sig_c.is_fully_const() && (!sig_r.size() || !has_init || val_init == val_rv)) { if (val_rv.bits.size() == 0) val_rv = val_init; // Q is permanently reset value or initial value mod->connect(sig_q, val_rv); goto delete_dff; } // If D is fully undefined and reset signal present and (i) Q has no initial value // (ii) initial value is same as reset value if (sig_d.is_fully_undef() && sig_r.size() && (!has_init || val_init == val_rv)) { // Q is permanently reset value mod->connect(sig_q, val_rv); goto delete_dff; } // If D is fully undefined and no reset signal and Q has an initial value if (sig_d.is_fully_undef() && !sig_r.size() && has_init) { // Q is permanently initial value mod->connect(sig_q, val_init); goto delete_dff; } // If D is fully constant and (i) no reset signal // (ii) reset value is same as constant D // and (a) has no initial value // (b) initial value same as constant D if (sig_d.is_fully_const() && (!sig_r.size() || val_rv == sig_d.as_const()) && (!has_init || val_init == sig_d.as_const())) { // Q is permanently D mod->connect(sig_q, sig_d); goto delete_dff; } // If D input is same as Q output and (i) no reset signal // (ii) no initial signal // (iii) initial value is same as reset value if (sig_d == sig_q && (sig_r.empty() || !has_init || val_init == val_rv)) { // Q is permanently reset value or initial value if (sig_r.size()) mod->connect(sig_q, val_rv); else if (has_init) mod->connect(sig_q, val_init); goto delete_dff; } // If reset signal is present, and is fully constant if (!sig_r.empty() && sig_r.is_fully_const()) { // If reset value is permanently active or if reset is undefined if (sig_r == val_rp || sig_r.is_fully_undef()) { // Q is permanently reset value mod->connect(sig_q, val_rv); goto delete_dff; } log("Removing unused reset from %s (%s) from module %s.\n", log_id(dff), log_id(dff->type), log_id(mod)); if (dff->type == ID($adff)) { dff->type = ID($dff); dff->unsetPort(ID(ARST)); dff->unsetParam(ID(ARST_POLARITY)); dff->unsetParam(ID(ARST_VALUE)); return true; } log_assert(dff->type.begins_with("$_DFF_")); dff->type = stringf("$_DFF_%c_", + dff->type[6]); dff->unsetPort(ID(R)); } // If enable signal is present, and is fully constant if (!sig_e.empty() && sig_e.is_fully_const()) { // If enable value is permanently inactive if (sig_e != val_ep) { // Q is permanently initial value mod->connect(sig_q, val_init); goto delete_dff; } log("Removing unused enable from %s (%s) from module %s.\n", log_id(dff), log_id(dff->type), log_id(mod)); if (dff->type == ID($dffe)) { dff->type = ID($dff); dff->unsetPort(ID(EN)); dff->unsetParam(ID(EN_POLARITY)); return true; } log_assert(dff->type.begins_with("$_DFFE_")); dff->type = stringf("$_DFF_%c_", + dff->type[7]); dff->unsetPort(ID(E)); } if (sat && has_init && (!sig_r.size() || val_init == val_rv)) { bool removed_sigbits = false; ezSatPtr ez; SatGen satgen(ez.get(), &assign_map); pool sat_cells; std::function sat_import_cell = [&](Cell *c) { if (!sat_cells.insert(c).second) return; if (!satgen.importCell(c)) return; for (auto &conn : c->connections()) { if (!c->input(conn.first)) continue; for (auto bit : assign_map(conn.second)) if (bit2driver.count(bit)) sat_import_cell(bit2driver.at(bit)); } }; // For each register bit, try to prove that it cannot change from the initial value. If so, remove it for (int position = 0; position < GetSize(sig_d); position += 1) { RTLIL::SigBit q_sigbit = sig_q[position]; RTLIL::SigBit d_sigbit = sig_d[position]; if ((!q_sigbit.wire) || (!d_sigbit.wire)) continue; if (!bit2driver.count(d_sigbit)) continue; sat_import_cell(bit2driver.at(d_sigbit)); RTLIL::State sigbit_init_val = val_init[position]; if (sigbit_init_val != State::S0 && sigbit_init_val != State::S1) continue; int init_sat_pi = satgen.importSigSpec(sigbit_init_val).front(); int q_sat_pi = satgen.importSigBit(q_sigbit); int d_sat_pi = satgen.importSigBit(d_sigbit); // Try to find out whether the register bit can change under some circumstances bool counter_example_found = ez->solve(ez->IFF(q_sat_pi, init_sat_pi), ez->NOT(ez->IFF(d_sat_pi, init_sat_pi))); // If the register bit cannot change, we can replace it with a constant if (!counter_example_found) { log("Setting constant %d-bit at position %d on %s (%s) from module %s.\n", sigbit_init_val ? 1 : 0, position, log_id(dff), log_id(dff->type), log_id(mod)); SigSpec tmp = dff->getPort(ID(D)); tmp[position] = sigbit_init_val; dff->setPort(ID(D), tmp); removed_sigbits = true; } } if (removed_sigbits) { handle_dff(mod, dff); return true; } } return false; delete_dff: log("Removing %s (%s) from module %s.\n", log_id(dff), log_id(dff->type), log_id(mod)); remove_init_attr(dff->getPort(ID(Q))); mod->remove(dff); for (auto &entry : bit2driver) if (entry.second == dff) bit2driver.erase(entry.first); return true; } struct OptRmdffPass : public Pass { OptRmdffPass() : Pass("opt_rmdff", "remove DFFs with constant inputs") { } void help() YS_OVERRIDE { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" opt_rmdff [-keepdc] [-sat] [selection]\n"); log("\n"); log("This pass identifies flip-flops with constant inputs and replaces them with\n"); log("a constant driver.\n"); log("\n"); log(" -sat\n"); log(" additionally invoke SAT solver to detect and remove flip-flops (with \n"); log(" non-constant inputs) that can also be replaced with a constant driver\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) YS_OVERRIDE { int total_count = 0, total_initdrv = 0; log_header(design, "Executing OPT_RMDFF pass (remove dff with constant values).\n"); keepdc = false; sat = false; size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-keepdc") { keepdc = true; continue; } if (args[argidx] == "-sat") { sat = true; continue; } break; } extra_args(args, argidx, design); for (auto module : design->selected_modules()) { pool driven_bits; dict init_bits; assign_map.set(module); dff_init_map.set(module); mux_drivers.clear(); bit2driver.clear(); init_attributes.clear(); for (auto wire : module->wires()) { if (wire->attributes.count(ID(init)) != 0) { Const initval = wire->attributes.at(ID(init)); for (int i = 0; i < GetSize(initval) && i < GetSize(wire); i++) if (initval[i] == State::S0 || initval[i] == State::S1) dff_init_map.add(SigBit(wire, i), initval[i]); for (int i = 0; i < GetSize(wire); i++) { SigBit wire_bit(wire, i), mapped_bit = assign_map(wire_bit); if (mapped_bit.wire) { init_attributes[mapped_bit].insert(wire_bit); if (i < GetSize(initval)) init_bits[mapped_bit] = initval[i]; } } } if (wire->port_input) { for (auto bit : assign_map(wire)) driven_bits.insert(bit); } } std::vector dff_list; std::vector dffsr_list; std::vector dlatch_list; for (auto cell : module->cells()) { for (auto &conn : cell->connections()) { bool is_output = cell->output(conn.first); if (is_output || !cell->known()) for (auto bit : assign_map(conn.second)) { if (is_output) bit2driver[bit] = cell; driven_bits.insert(bit); } } if (cell->type.in(ID($mux), ID($pmux))) { if (cell->getPort(ID(A)).size() == cell->getPort(ID(B)).size()) mux_drivers.insert(assign_map(cell->getPort(ID(Y))), cell); continue; } if (!design->selected(module, cell)) continue; if (cell->type.in(ID($_DFFSR_NNN_), ID($_DFFSR_NNP_), ID($_DFFSR_NPN_), ID($_DFFSR_NPP_), ID($_DFFSR_PNN_), ID($_DFFSR_PNP_), ID($_DFFSR_PPN_), ID($_DFFSR_PPP_), ID($dffsr), ID($_DLATCHSR_NNN_), ID($_DLATCHSR_NNP_), ID($_DLATCHSR_NPN_), ID($_DLATCHSR_NPP_), ID($_DLATCHSR_PNN_), ID($_DLATCHSR_PNP_), ID($_DLATCHSR_PPN_), ID($_DLATCHSR_PPP_), ID($dlatchsr))) dffsr_list.push_back(cell->name); if (cell->type.in(ID($_FF_), ID($_DFF_N_), ID($_DFF_P_), ID($_DFF_NN0_), ID($_DFF_NN1_), ID($_DFF_NP0_), ID($_DFF_NP1_), ID($_DFF_PN0_), ID($_DFF_PN1_), ID($_DFF_PP0_), ID($_DFF_PP1_), ID($_DFFE_NN_), ID($_DFFE_NP_), ID($_DFFE_PN_), ID($_DFFE_PP_), ID($ff), ID($dff), ID($dffe), ID($adff))) dff_list.push_back(cell->name); if (cell->type.in(ID($dlatch), ID($_DLATCH_P_), ID($_DLATCH_N_))) dlatch_list.push_back(cell->name); } for (auto &id : dffsr_list) { if (module->cell(id) != nullptr && handle_dffsr(module, module->cells_[id])) total_count++; } for (auto &id : dff_list) { if (module->cell(id) != nullptr && handle_dff(module, module->cells_[id])) total_count++; } for (auto &id : dlatch_list) { if (module->cell(id) != nullptr && handle_dlatch(module, module->cells_[id])) total_count++; } SigSpec const_init_sigs; for (auto bit : init_bits) if (!driven_bits.count(bit.first)) const_init_sigs.append(bit.first); const_init_sigs.sort_and_unify(); for (SigSpec sig : const_init_sigs.chunks()) { Const val; for (auto bit : sig) val.bits.push_back(init_bits.at(bit)); log("Promoting init spec %s = %s to constant driver in module %s.\n", log_signal(sig), log_signal(val), log_id(module)); module->connect(sig, val); remove_init_attr(sig); total_initdrv++; } } assign_map.clear(); mux_drivers.clear(); bit2driver.clear(); init_attributes.clear(); if (total_count || total_initdrv) design->scratchpad_set_bool("opt.did_something", true); if (total_initdrv) log("Promoted %d init specs to constant drivers.\n", total_initdrv); if (total_count) log("Replaced %d DFF cells.\n", total_count); } } OptRmdffPass; PRIVATE_NAMESPACE_END