/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Claire Xenia Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include #include "kernel/yosys.h" #include "kernel/celltypes.h" #include "passes/techmap/libparse.h" #include "kernel/cost.h" #include "libs/json11/json11.hpp" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN struct cell_area_t { double area; bool is_sequential; }; struct statdata_t { #define STAT_INT_MEMBERS X(num_wires) X(num_wire_bits) X(num_pub_wires) X(num_pub_wire_bits) \ X(num_ports) X(num_port_bits) X(num_memories) X(num_memory_bits) X(num_cells) \ X(num_processes) #define STAT_NUMERIC_MEMBERS STAT_INT_MEMBERS X(area) #define X(_name) unsigned int _name; STAT_INT_MEMBERS #undef X double area = 0; double sequential_area = 0; string tech; std::map num_cells_by_type; std::set unknown_cell_area; statdata_t operator+(const statdata_t &other) const { statdata_t sum = other; #define X(_name) sum._name += _name; STAT_NUMERIC_MEMBERS #undef X for (auto &it : num_cells_by_type) sum.num_cells_by_type[it.first] += it.second; return sum; } statdata_t operator*(unsigned int other) const { statdata_t sum = *this; #define X(_name) sum._name *= other; STAT_NUMERIC_MEMBERS #undef X for (auto &it : sum.num_cells_by_type) it.second *= other; return sum; } statdata_t() { #define X(_name) _name = 0; STAT_NUMERIC_MEMBERS #undef X } statdata_t(RTLIL::Design *design, RTLIL::Module *mod, bool width_mode, const dict &cell_area, string techname) { tech = techname; #define X(_name) _name = 0; STAT_NUMERIC_MEMBERS #undef X for (auto wire : mod->selected_wires()) { if (wire->port_input || wire->port_output) { num_ports++; num_port_bits += wire->width; } if (wire->name.isPublic()) { num_pub_wires++; num_pub_wire_bits += wire->width; } num_wires++; num_wire_bits += wire->width; } for (auto &it : mod->memories) { if (!design->selected(mod, it.second)) continue; num_memories++; num_memory_bits += it.second->width * it.second->size; } for (auto cell : mod->selected_cells()) { RTLIL::IdString cell_type = cell->type; if (width_mode) { if (cell_type.in(ID($not), ID($pos), ID($neg), ID($logic_not), ID($logic_and), ID($logic_or), ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool), ID($lut), ID($and), ID($or), ID($xor), ID($xnor), ID($shl), ID($shr), ID($sshl), ID($sshr), ID($shift), ID($shiftx), ID($lt), ID($le), ID($eq), ID($ne), ID($eqx), ID($nex), ID($ge), ID($gt), ID($add), ID($sub), ID($mul), ID($div), ID($mod), ID($divfloor), ID($modfloor), ID($pow), ID($alu))) { int width_a = cell->hasPort(ID::A) ? GetSize(cell->getPort(ID::A)) : 0; int width_b = cell->hasPort(ID::B) ? GetSize(cell->getPort(ID::B)) : 0; int width_y = cell->hasPort(ID::Y) ? GetSize(cell->getPort(ID::Y)) : 0; cell_type = stringf("%s_%d", cell_type.c_str(), max({width_a, width_b, width_y})); } else if (cell_type.in(ID($mux), ID($pmux))) cell_type = stringf("%s_%d", cell_type.c_str(), GetSize(cell->getPort(ID::Y))); else if (cell_type == ID($bmux)) cell_type = stringf("%s_%d_%d", cell_type.c_str(), GetSize(cell->getPort(ID::Y)), GetSize(cell->getPort(ID::S))); else if (cell_type == ID($demux)) cell_type = stringf("%s_%d_%d", cell_type.c_str(), GetSize(cell->getPort(ID::A)), GetSize(cell->getPort(ID::S))); else if (cell_type.in( ID($sr), ID($ff), ID($dff), ID($dffe), ID($dffsr), ID($dffsre), ID($adff), ID($adffe), ID($sdff), ID($sdffe), ID($sdffce), ID($aldff), ID($aldffe), ID($dlatch), ID($adlatch), ID($dlatchsr))) cell_type = stringf("%s_%d", cell_type.c_str(), GetSize(cell->getPort(ID::Q))); } if (!cell_area.empty()) { if (cell_area.count(cell_type)) { cell_area_t cell_data = cell_area.at(cell_type); if (cell_data.is_sequential) { sequential_area += cell_data.area; } area += cell_data.area; } else { unknown_cell_area.insert(cell_type); } } num_cells++; num_cells_by_type[cell_type]++; } for (auto &it : mod->processes) { if (!design->selected(mod, it.second)) continue; num_processes++; } } unsigned int estimate_xilinx_lc() { unsigned int lut6_cnt = num_cells_by_type[ID(LUT6)]; unsigned int lut5_cnt = num_cells_by_type[ID(LUT5)]; unsigned int lut4_cnt = num_cells_by_type[ID(LUT4)]; unsigned int lut3_cnt = num_cells_by_type[ID(LUT3)]; unsigned int lut2_cnt = num_cells_by_type[ID(LUT2)]; unsigned int lut1_cnt = num_cells_by_type[ID(LUT1)]; unsigned int lc_cnt = 0; lc_cnt += lut6_cnt; lc_cnt += lut5_cnt; if (lut1_cnt) { int cnt = std::min(lut5_cnt, lut1_cnt); lut5_cnt -= cnt; lut1_cnt -= cnt; } lc_cnt += lut4_cnt; if (lut1_cnt) { int cnt = std::min(lut4_cnt, lut1_cnt); lut4_cnt -= cnt; lut1_cnt -= cnt; } if (lut2_cnt) { int cnt = std::min(lut4_cnt, lut2_cnt); lut4_cnt -= cnt; lut2_cnt -= cnt; } lc_cnt += lut3_cnt; if (lut1_cnt) { int cnt = std::min(lut3_cnt, lut1_cnt); lut3_cnt -= cnt; lut1_cnt -= cnt; } if (lut2_cnt) { int cnt = std::min(lut3_cnt, lut2_cnt); lut3_cnt -= cnt; lut2_cnt -= cnt; } if (lut3_cnt) { int cnt = (lut3_cnt + 1) / 2; lut3_cnt -= cnt; } lc_cnt += (lut2_cnt + lut1_cnt + 1) / 2; return lc_cnt; } unsigned int cmos_transistor_count(bool *tran_cnt_exact) { unsigned int tran_cnt = 0; auto &gate_costs = CellCosts::cmos_gate_cost(); for (auto it : num_cells_by_type) { auto ctype = it.first; auto cnum = it.second; if (gate_costs.count(ctype)) tran_cnt += cnum * gate_costs.at(ctype); else *tran_cnt_exact = false; } return tran_cnt; } void log_data(RTLIL::IdString mod_name, bool top_mod) { log(" Number of wires: %6u\n", num_wires); log(" Number of wire bits: %6u\n", num_wire_bits); log(" Number of public wires: %6u\n", num_pub_wires); log(" Number of public wire bits: %6u\n", num_pub_wire_bits); log(" Number of ports: %6u\n", num_ports); log(" Number of port bits: %6u\n", num_port_bits); log(" Number of memories: %6u\n", num_memories); log(" Number of memory bits: %6u\n", num_memory_bits); log(" Number of processes: %6u\n", num_processes); log(" Number of cells: %6u\n", num_cells); for (auto &it : num_cells_by_type) if (it.second) log(" %-26s %6u\n", log_id(it.first), it.second); if (!unknown_cell_area.empty()) { log("\n"); for (auto cell_type : unknown_cell_area) log(" Area for cell type %s is unknown!\n", cell_type.c_str()); } if (area != 0) { log("\n"); log(" Chip area for %smodule '%s': %f\n", (top_mod) ? "top " : "", mod_name.c_str(), area); log(" of which used for sequential elements: %f (%.2f%%)\n", sequential_area, 100.0*sequential_area/area); } if (tech == "xilinx") { log("\n"); log(" Estimated number of LCs: %10u\n", estimate_xilinx_lc()); } if (tech == "cmos") { bool tran_cnt_exact = true; unsigned int tran_cnt = cmos_transistor_count(&tran_cnt_exact); log("\n"); log(" Estimated number of transistors: %10u%s\n", tran_cnt, tran_cnt_exact ? "" : "+"); } } void log_data_json(const char *mod_name, bool first_module) { if (!first_module) log(",\n"); log(" %s: {\n", json11::Json(mod_name).dump().c_str()); log(" \"num_wires\": %u,\n", num_wires); log(" \"num_wire_bits\": %u,\n", num_wire_bits); log(" \"num_pub_wires\": %u,\n", num_pub_wires); log(" \"num_pub_wire_bits\": %u,\n", num_pub_wire_bits); log(" \"num_ports\": %u,\n", num_ports); log(" \"num_port_bits\": %u,\n", num_port_bits); log(" \"num_memories\": %u,\n", num_memories); log(" \"num_memory_bits\": %u,\n", num_memory_bits); log(" \"num_processes\": %u,\n", num_processes); log(" \"num_cells\": %u,\n", num_cells); if (area != 0) { log(" \"area\": %f,\n", area); } log(" \"num_cells_by_type\": {\n"); bool first_line = true; for (auto &it : num_cells_by_type) if (it.second) { if (!first_line) log(",\n"); log(" %s: %u", json11::Json(log_id(it.first)).dump().c_str(), it.second); first_line = false; } log("\n"); log(" }"); if (tech == "xilinx") { log(",\n"); log(" \"estimated_num_lc\": %u", estimate_xilinx_lc()); } if (tech == "cmos") { bool tran_cnt_exact = true; unsigned int tran_cnt = cmos_transistor_count(&tran_cnt_exact); log(",\n"); log(" \"estimated_num_transistors\": \"%u%s\"", tran_cnt, tran_cnt_exact ? "" : "+"); } log("\n"); log(" }"); } }; statdata_t hierarchy_worker(std::map &mod_stat, RTLIL::IdString mod, int level, bool quiet = false) { statdata_t mod_data = mod_stat.at(mod); std::map num_cells_by_type; num_cells_by_type.swap(mod_data.num_cells_by_type); for (auto &it : num_cells_by_type) if (mod_stat.count(it.first) > 0) { if (!quiet) log(" %*s%-*s %6u\n", 2*level, "", 26-2*level, log_id(it.first), it.second); mod_data = mod_data + hierarchy_worker(mod_stat, it.first, level+1, quiet) * it.second; mod_data.num_cells -= it.second; } else { mod_data.num_cells_by_type[it.first] += it.second; } return mod_data; } void read_liberty_cellarea(dict &cell_area, string liberty_file) { std::ifstream f; f.open(liberty_file.c_str()); yosys_input_files.insert(liberty_file); if (f.fail()) log_cmd_error("Can't open liberty file `%s': %s\n", liberty_file.c_str(), strerror(errno)); LibertyParser libparser(f); f.close(); for (auto cell : libparser.ast->children) { if (cell->id != "cell" || cell->args.size() != 1) continue; const LibertyAst *ar = cell->find("area"); bool is_flip_flop = cell->find("ff") != nullptr; if (ar != nullptr && !ar->value.empty()) cell_area["\\" + cell->args[0]] = {/*area=*/atof(ar->value.c_str()), is_flip_flop}; } } struct StatPass : public Pass { StatPass() : Pass("stat", "print some statistics") { } void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" stat [options] [selection]\n"); log("\n"); log("Print some statistics (number of objects) on the selected portion of the\n"); log("design.\n"); log("\n"); log(" -top \n"); log(" print design hierarchy with this module as top. if the design is fully\n"); log(" selected and a module has the 'top' attribute set, this module is used\n"); log(" default value for this option.\n"); log("\n"); log(" -liberty \n"); log(" use cell area information from the provided liberty file\n"); log("\n"); log(" -tech \n"); log(" print area estimate for the specified technology. Currently supported\n"); log(" values for : xilinx, cmos\n"); log("\n"); log(" -width\n"); log(" annotate internal cell types with their word width.\n"); log(" e.g. $add_8 for an 8 bit wide $add cell.\n"); log("\n"); log(" -json\n"); log(" output the statistics in a machine-readable JSON format.\n"); log(" this is output to the console; use \"tee\" to output to a file.\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) override { bool width_mode = false, json_mode = false; RTLIL::Module *top_mod = nullptr; std::map mod_stat; dict cell_area; string techname; size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-width") { width_mode = true; continue; } if (args[argidx] == "-liberty" && argidx+1 < args.size()) { string liberty_file = args[++argidx]; rewrite_filename(liberty_file); read_liberty_cellarea(cell_area, liberty_file); continue; } if (args[argidx] == "-tech" && argidx+1 < args.size()) { techname = args[++argidx]; continue; } if (args[argidx] == "-top" && argidx+1 < args.size()) { if (design->module(RTLIL::escape_id(args[argidx+1])) == nullptr) log_cmd_error("Can't find module %s.\n", args[argidx+1].c_str()); top_mod = design->module(RTLIL::escape_id(args[++argidx])); continue; } if (args[argidx] == "-json") { json_mode = true; continue; } break; } extra_args(args, argidx, design); if(!json_mode) log_header(design, "Printing statistics.\n"); if (techname != "" && techname != "xilinx" && techname != "cmos" && !json_mode) log_cmd_error("Unsupported technology: '%s'\n", techname.c_str()); if (json_mode) { log("{\n"); log(" \"creator\": %s,\n", json11::Json(yosys_version_str).dump().c_str()); std::stringstream invocation; std::copy(args.begin(), args.end(), std::ostream_iterator(invocation, " ")); log(" \"invocation\": %s,\n", json11::Json(invocation.str()).dump().c_str()); log(" \"modules\": {\n"); } bool first_module = true; for (auto mod : design->selected_modules()) { if (!top_mod && design->full_selection()) if (mod->get_bool_attribute(ID::top)) top_mod = mod; statdata_t data(design, mod, width_mode, cell_area, techname); mod_stat[mod->name] = data; if (json_mode) { data.log_data_json(mod->name.c_str(), first_module); first_module = false; } else { log("\n"); log("=== %s%s ===\n", log_id(mod->name), design->selected_whole_module(mod->name) ? "" : " (partially selected)"); log("\n"); data.log_data(mod->name, false); } } if (json_mode) { log("\n"); log(top_mod == nullptr ? " }\n" : " },\n"); } if (top_mod != nullptr) { if (!json_mode && GetSize(mod_stat) > 1) { log("\n"); log("=== design hierarchy ===\n"); log("\n"); log(" %-28s %6d\n", log_id(top_mod->name), 1); } statdata_t data = hierarchy_worker(mod_stat, top_mod->name, 0, /*quiet=*/json_mode); if (json_mode) data.log_data_json("design", true); else if (GetSize(mod_stat) > 1) { log("\n"); data.log_data(top_mod->name, true); } design->scratchpad_set_int("stat.num_wires", data.num_wires); design->scratchpad_set_int("stat.num_wire_bits", data.num_wire_bits); design->scratchpad_set_int("stat.num_pub_wires", data.num_pub_wires); design->scratchpad_set_int("stat.num_pub_wire_bits", data.num_pub_wire_bits); design->scratchpad_set_int("stat.num_ports", data.num_ports); design->scratchpad_set_int("stat.num_port_bits", data.num_port_bits); design->scratchpad_set_int("stat.num_memories", data.num_memories); design->scratchpad_set_int("stat.num_memory_bits", data.num_memory_bits); design->scratchpad_set_int("stat.num_processes", data.num_processes); design->scratchpad_set_int("stat.num_cells", data.num_cells); design->scratchpad_set_int("stat.area", data.area); } if (json_mode) { log("\n"); log("}\n"); } log("\n"); } } StatPass; PRIVATE_NAMESPACE_END