/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * 2019 Eddie Hung * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ // Convert negative-polarity reset to positive-polarity (* techmap_celltype = "$_DFF_NN0_" *) module _90_dff_nn0_to_np0 (input D, C, R, output Q); \$_DFF_NP0_ _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule (* techmap_celltype = "$_DFF_PN0_" *) module _90_dff_pn0_to_pp0 (input D, C, R, output Q); \$_DFF_PP0_ _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule (* techmap_celltype = "$_DFF_NN1_" *) module _90_dff_nn1_to_np1 (input D, C, R, output Q); \$_DFF_NP1 _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule (* techmap_celltype = "$_DFF_PN1_" *) module _90_dff_pn1_to_pp1 (input D, C, R, output Q); \$_DFF_PP1 _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule module \$__SHREG_ (input C, input D, input E, output Q); parameter DEPTH = 0; parameter [DEPTH-1:0] INIT = 0; parameter CLKPOL = 1; parameter ENPOL = 2; \$__XILINX_SHREG_ #(.DEPTH(DEPTH), .INIT(INIT), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(DEPTH-1), .E(E), .Q(Q)); endmodule module \$__XILINX_SHREG_ (input C, input D, input [31:0] L, input E, output Q, output SO); parameter DEPTH = 0; parameter [DEPTH-1:0] INIT = 0; parameter CLKPOL = 1; parameter ENPOL = 2; // shregmap's INIT parameter shifts out LSB first; // however Xilinx expects MSB first function [DEPTH-1:0] brev; input [DEPTH-1:0] din; integer i; begin for (i = 0; i < DEPTH; i=i+1) brev[i] = din[DEPTH-1-i]; end endfunction localparam [DEPTH-1:0] INIT_R = brev(INIT); parameter _TECHMAP_CONSTMSK_L_ = 0; parameter _TECHMAP_CONSTVAL_L_ = 0; wire CE; generate if (ENPOL == 0) assign CE = ~E; else if (ENPOL == 1) assign CE = E; else assign CE = 1'b1; if (DEPTH == 1) begin if (CLKPOL) FDRE #(.INIT(INIT_R)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0)); else FDRE_1 #(.INIT(INIT_R)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0)); end else if (DEPTH <= 16) begin SRL16E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A0(L[0]), .A1(L[1]), .A2(L[2]), .A3(L[3]), .CE(CE), .CLK(C), .D(D), .Q(Q)); end else if (DEPTH > 17 && DEPTH <= 32) begin SRLC32E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(Q)); end else if (DEPTH > 33 && DEPTH <= 64) begin wire T0, T1, T2; SRLC32E #(.INIT(INIT_R[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1)); \$__XILINX_SHREG_ #(.DEPTH(DEPTH-32), .INIT(INIT[DEPTH-32-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T1), .L(L), .E(E), .Q(T2)); if (&_TECHMAP_CONSTMSK_L_) assign Q = T2; else MUXF7 fpga_mux_0 (.O(Q), .I0(T0), .I1(T2), .S(L[5])); end else if (DEPTH > 65 && DEPTH <= 96) begin wire T0, T1, T2, T3, T4, T5, T6; SRLC32E #(.INIT(INIT_R[32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1)); SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3)); \$__XILINX_SHREG_ #(.DEPTH(DEPTH-64), .INIT(INIT[DEPTH-64-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_2 (.C(C), .D(T3), .L(L[4:0]), .E(E), .Q(T4)); if (&_TECHMAP_CONSTMSK_L_) assign Q = T4; else begin MUXF7 fpga_mux_0 (.O(T5), .I0(T0), .I1(T2), .S(L[5])); MUXF7 fpga_mux_1 (.O(T6), .I0(T4), .I1(1'b0 /* unused */), .S(L[5])); MUXF8 fpga_mux_2 (.O(Q), .I0(T5), .I1(T6), .S(L[6])); end end else if (DEPTH > 97 && DEPTH < 128) begin wire T0, T1, T2, T3, T4, T5, T6, T7, T8; SRLC32E #(.INIT(INIT_R[32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1)); SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3)); SRLC32E #(.INIT(INIT_R[96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5)); \$__XILINX_SHREG_ #(.DEPTH(DEPTH-96), .INIT(INIT[DEPTH-96-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_3 (.C(C), .D(T5), .L(L[4:0]), .E(E), .Q(T6)); if (&_TECHMAP_CONSTMSK_L_) assign Q = T6; else begin MUXF7 fpga_mux_0 (.O(T7), .I0(T0), .I1(T2), .S(L[5])); MUXF7 fpga_mux_1 (.O(T8), .I0(T4), .I1(T6), .S(L[5])); MUXF8 fpga_mux_2 (.O(Q), .I0(T7), .I1(T8), .S(L[6])); end end else if (DEPTH == 128) begin wire T0, T1, T2, T3, T4, T5, T6; SRLC32E #(.INIT(INIT_R[ 32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1)); SRLC32E #(.INIT(INIT_R[ 64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3)); SRLC32E #(.INIT(INIT_R[ 96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5)); SRLC32E #(.INIT(INIT_R[128-1:96]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_3 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T5), .Q(T6), .Q31(SO)); if (&_TECHMAP_CONSTMSK_L_) assign Q = T6; else begin wire T7, T8; MUXF7 fpga_mux_0 (.O(T7), .I0(T0), .I1(T2), .S(L[5])); MUXF7 fpga_mux_1 (.O(T8), .I0(T4), .I1(T6), .S(L[5])); MUXF8 fpga_mux_2 (.O(Q), .I0(T7), .I1(T8), .S(L[6])); end end else if (DEPTH <= 129 && ~&_TECHMAP_CONSTMSK_L_) begin // Handle cases where fixed-length depth is // just 1 over a convenient value \$__XILINX_SHREG_ #(.DEPTH(DEPTH+1), .INIT({INIT,1'b0}), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(L), .E(E), .Q(Q)); end else begin localparam lower_clog2 = $clog2((DEPTH+1)/2); localparam lower_depth = 2 ** lower_clog2; wire T0, T1, T2, T3; if (&_TECHMAP_CONSTMSK_L_) begin \$__XILINX_SHREG_ #(.DEPTH(lower_depth), .INIT(INIT[DEPTH-1:DEPTH-lower_depth]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_0 (.C(C), .D(D), .L(lower_depth-1), .E(E), .Q(T0)); \$__XILINX_SHREG_ #(.DEPTH(DEPTH-lower_depth), .INIT(INIT[DEPTH-lower_depth-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T0), .L(DEPTH-lower_depth-1), .E(E), .Q(Q), .SO(T3)); end else begin \$__XILINX_SHREG_ #(.DEPTH(lower_depth), .INIT(INIT[DEPTH-1:DEPTH-lower_depth]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_0 (.C(C), .D(D), .L(L[lower_clog2-1:0]), .E(E), .Q(T0), .SO(T1)); \$__XILINX_SHREG_ #(.DEPTH(DEPTH-lower_depth), .INIT(INIT[DEPTH-lower_depth-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T1), .L(L[lower_clog2-1:0]), .E(E), .Q(T2), .SO(T3)); assign Q = L[lower_clog2] ? T2 : T0; end if (DEPTH == 2 * lower_depth) assign SO = T3; end endgenerate endmodule module \$__XILINX_MUX_ (A, B, Y); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 1; parameter B_WIDTH = 1; parameter Y_WIDTH = 1; input [A_WIDTH-1:0] A; input [B_WIDTH-1:0] B; output [Y_WIDTH-1:0] Y; parameter [A_WIDTH-1:0] _TECHMAP_CONSTMSK_A_ = 0; parameter [A_WIDTH-1:0] _TECHMAP_CONSTVAL_A_ = 0; parameter [B_WIDTH-1:0] _TECHMAP_CONSTMSK_B_ = 0; parameter [B_WIDTH-1:0] _TECHMAP_CONSTVAL_B_ = 0; function integer compute_num_leading_X_in_A; integer i, c; begin compute_num_leading_X_in_A = 0; c = 1; for (i = A_WIDTH-1; i >= 0; i=i-1) begin if (!_TECHMAP_CONSTMSK_A_[i] || _TECHMAP_CONSTVAL_A_[i] !== 1'bx) c = 0; compute_num_leading_X_in_A = compute_num_leading_X_in_A + c; end end endfunction localparam num_leading_X_in_A = compute_num_leading_X_in_A(); generate genvar i, j; // Bit-blast if (Y_WIDTH > 1) begin for (i = 0; i < Y_WIDTH; i++) \$__XILINX_MUX_ #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH-Y_WIDTH+1), .B_WIDTH(B_WIDTH), .Y_WIDTH(1'd1)) bitblast (.A(A[A_WIDTH-Y_WIDTH+i:i]), .B(B), .Y(Y[i])); end // If the LSB of B is constant zero (and Y_WIDTH is 1) then // we can optimise by removing every other entry from A // and popping the constant zero from B else if (_TECHMAP_CONSTMSK_B_[0] && !_TECHMAP_CONSTVAL_B_[0]) begin wire [(A_WIDTH+1)/2-1:0] A_i; for (i = 0; i < (A_WIDTH+1)/2; i++) assign A_i[i] = A[i*2]; \$__XILINX_MUX_ #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH((A_WIDTH+1'd1)/2'd2), .B_WIDTH(B_WIDTH-1'd1), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A_i), .B(B[B_WIDTH-1:1]), .Y(Y)); end // Trim off any leading 1'bx -es in A, and resize B accordingly else if (num_leading_X_in_A > 0) begin localparam A_WIDTH_new = A_WIDTH - num_leading_X_in_A; localparam B_WIDTH_new = $clog2(A_WIDTH_new); \$__XILINX_MUX_ #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH_new), .B_WIDTH(B_WIDTH_new), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A[A_WIDTH_new-1:0]), .B(B[B_WIDTH_new-1:0]), .Y(Y)); end else if (B_WIDTH < 3 || A_WIDTH <= 4) begin \$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(A_WIDTH), .B_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(A), .B(B), .Y(Y)); end else if (B_WIDTH == 3) begin localparam a_width0 = 2 ** 2; localparam a_widthN = A_WIDTH - a_width0; wire T0, T1; \$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(a_width0), .B_WIDTH(2), .Y_WIDTH(Y_WIDTH)) fpga_mux (.A(A[a_width0-1:0]), .B(B[2-1:0]), .Y(T0)); if (a_widthN > 1) \$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(a_widthN), .B_WIDTH($clog2(a_widthN)), .Y_WIDTH(Y_WIDTH)) fpga_mux_last (.A(A[A_WIDTH-1:a_width0]), .B(B[$clog2(a_widthN)-1:0]), .Y(T1)); else assign T1 = A[A_WIDTH-1]; MUXF7 fpga_mux (.I0(T0), .I1(T1), .S(B[B_WIDTH-1]), .O(Y)); end else if (B_WIDTH == 4) begin localparam a_width0 = 2 ** 2; localparam num_mux8 = A_WIDTH / a_width0; localparam a_widthN = A_WIDTH - num_mux8*a_width0; wire [4-1:0] T; wire T0, T1; for (i = 0; i < 4; i++) if (i < num_mux8) \$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(a_width0), .B_WIDTH(2), .Y_WIDTH(Y_WIDTH)) fpga_mux (.A(A[i*a_width0+:a_width0]), .B(B[2-1:0]), .Y(T[i])); else if (i == num_mux8 && a_widthN > 0) begin if (a_widthN > 1) \$shiftx #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(a_widthN), .B_WIDTH($clog2(a_widthN)), .Y_WIDTH(Y_WIDTH)) fpga_mux_last (.A(A[A_WIDTH-1:i*a_width0]), .B(B[$clog2(a_widthN)-1:0]), .Y(T[i])); else assign T[i] = A[A_WIDTH-1]; end else assign T[i] = 1'bx; MUXF7 fpga_mux_0 (.I0(T[0]), .I1(T[1]), .S(B[2]), .O(T0)); MUXF7 fpga_mux_1 (.I0(T[2]), .I1(T[3]), .S(B[2]), .O(T1)); MUXF8 fpga_mux_2 (.I0(T0), .I1(T1), .S(B[3]), .O(Y)); end else begin localparam a_width0 = 2 ** 4; localparam num_mux16 = A_WIDTH / a_width0; localparam a_widthN = A_WIDTH - num_mux16*a_width0; wire [(2**(B_WIDTH-4))-1:0] T; for (i = 0; i < 2 ** (B_WIDTH-4); i++) if (i < num_mux16) \$__XILINX_MUX_ #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(a_width0), .B_WIDTH(4), .Y_WIDTH(Y_WIDTH)) fpga_mux (.A(A[i*a_width0+:a_width0]), .B(B[4-1:0]), .Y(T[i])); else if (i == num_mux16 && a_widthN > 0) begin if (a_widthN > 1) \$__XILINX_MUX_ #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(a_widthN), .B_WIDTH($clog2(a_widthN)), .Y_WIDTH(Y_WIDTH)) fpga_mux_last (.A(A[A_WIDTH-1:i*a_width0]), .B(B[$clog2(a_widthN)-1:0]), .Y(T[i])); else assign T[i] = A[A_WIDTH-1]; end else assign T[i] = 1'bx; \$__XILINX_MUX_ #(.A_SIGNED(A_SIGNED), .B_SIGNED(B_SIGNED), .A_WIDTH(2**(B_WIDTH-4)), .B_WIDTH(B_WIDTH-4), .Y_WIDTH(Y_WIDTH)) fpga_mux (.A(T), .B(B[B_WIDTH-1:4]), .Y(Y)); end endgenerate endmodule