/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #ifndef CELLTYPES_H #define CELLTYPES_H #include "kernel/yosys.h" YOSYS_NAMESPACE_BEGIN struct CellType { RTLIL::IdString type; pool inputs, outputs; bool is_evaluable; }; struct CellTypes { dict cell_types; CellTypes() { } CellTypes(RTLIL::Design *design) { setup(design); } void setup(RTLIL::Design *design = NULL) { if (design) setup_design(design); setup_internals(); setup_internals_mem(); setup_stdcells(); setup_stdcells_mem(); } void setup_type(RTLIL::IdString type, const pool &inputs, const pool &outputs, bool is_evaluable = false) { CellType ct = {type, inputs, outputs, is_evaluable}; cell_types[ct.type] = ct; } void setup_module(RTLIL::Module *module) { pool inputs, outputs; for (RTLIL::IdString wire_name : module->ports) { RTLIL::Wire *wire = module->wire(wire_name); if (wire->port_input) inputs.insert(wire->name); if (wire->port_output) outputs.insert(wire->name); } setup_type(module->name, inputs, outputs); } void setup_design(RTLIL::Design *design) { for (auto module : design->modules()) setup_module(module); } void setup_internals() { setup_internals_eval(); IdString A = ID(A), B = ID(B), EN = ID(EN), Y = ID(Y); IdString SRC = ID(SRC), DST = ID(DST), DAT = ID(DAT); IdString EN_SRC = ID(EN_SRC), EN_DST = ID(EN_DST); setup_type(ID($tribuf), {A, EN}, {Y}, true); setup_type(ID($assert), {A, EN}, pool(), true); setup_type(ID($assume), {A, EN}, pool(), true); setup_type(ID($live), {A, EN}, pool(), true); setup_type(ID($fair), {A, EN}, pool(), true); setup_type(ID($cover), {A, EN}, pool(), true); setup_type(ID($initstate), pool(), {Y}, true); setup_type(ID($anyconst), pool(), {Y}, true); setup_type(ID($anyseq), pool(), {Y}, true); setup_type(ID($allconst), pool(), {Y}, true); setup_type(ID($allseq), pool(), {Y}, true); setup_type(ID($equiv), {A, B}, {Y}, true); setup_type(ID($specify2), {EN, SRC, DST}, pool(), true); setup_type(ID($specify3), {EN, SRC, DST, DAT}, pool(), true); setup_type(ID($specrule), {EN_SRC, EN_DST, SRC, DST}, pool(), true); } void setup_internals_eval() { std::vector unary_ops = { ID($not), ID($pos), ID($neg), ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool), ID($logic_not), ID($slice), ID($lut), ID($sop) }; std::vector binary_ops = { ID($and), ID($or), ID($xor), ID($xnor), ID($shl), ID($shr), ID($sshl), ID($sshr), ID($shift), ID($shiftx), ID($lt), ID($le), ID($eq), ID($ne), ID($eqx), ID($nex), ID($ge), ID($gt), ID($add), ID($sub), ID($mul), ID($div), ID($mod), ID($pow), ID($logic_and), ID($logic_or), ID($concat), ID($macc) }; IdString A = ID(A), B = ID(B), S = ID(S), Y = ID(Y); IdString P = ID(P), G = ID(G), C = ID(C), X = ID(X); IdString BI = ID(BI), CI = ID(CI), CO = ID(CO), EN = ID(EN); for (auto type : unary_ops) setup_type(type, {A}, {Y}, true); for (auto type : binary_ops) setup_type(type, {A, B}, {Y}, true); for (auto type : std::vector({ID($mux), ID($pmux)})) setup_type(type, {A, B, S}, {Y}, true); setup_type(ID($lcu), {P, G, CI}, {CO}, true); setup_type(ID($alu), {A, B, CI, BI}, {X, Y, CO}, true); setup_type(ID($fa), {A, B, C}, {X, Y}, true); } void setup_internals_ff() { IdString SET = ID(SET), CLR = ID(CLR), CLK = ID(CLK), ARST = ID(ARST), EN = ID(EN); IdString Q = ID(Q), D = ID(D); setup_type(ID($sr), {SET, CLR}, {Q}); setup_type(ID($ff), {D}, {Q}); setup_type(ID($dff), {CLK, D}, {Q}); setup_type(ID($dffe), {CLK, EN, D}, {Q}); setup_type(ID($dffsr), {CLK, SET, CLR, D}, {Q}); setup_type(ID($adff), {CLK, ARST, D}, {Q}); setup_type(ID($dlatch), {EN, D}, {Q}); setup_type(ID($dlatchsr), {EN, SET, CLR, D}, {Q}); } void setup_internals_mem() { setup_internals_ff(); IdString CLK = ID(CLK), ARST = ID(ARST), EN = ID(EN); IdString ADDR = ID(ADDR), DATA = ID(DATA), RD_EN = ID(RD_EN); IdString RD_CLK = ID(RD_CLK), RD_ADDR = ID(RD_ADDR), WR_CLK = ID(WR_CLK), WR_EN = ID(WR_EN); IdString WR_ADDR = ID(WR_ADDR), WR_DATA = ID(WR_DATA), RD_DATA = ID(RD_DATA); IdString CTRL_IN = ID(CTRL_IN), CTRL_OUT = ID(CTRL_OUT); setup_type(ID($memrd), {CLK, EN, ADDR}, {DATA}); setup_type(ID($memwr), {CLK, EN, ADDR, DATA}, pool()); setup_type(ID($meminit), {ADDR, DATA}, pool()); setup_type(ID($mem), {RD_CLK, RD_EN, RD_ADDR, WR_CLK, WR_EN, WR_ADDR, WR_DATA}, {RD_DATA}); setup_type(ID($fsm), {CLK, ARST, CTRL_IN}, {CTRL_OUT}); } void setup_stdcells() { setup_stdcells_eval(); IdString A = ID(A), E = ID(E), Y = ID(Y); setup_type(ID($_TBUF_), {A, E}, {Y}, true); } void setup_stdcells_eval() { IdString A = ID(A), B = ID(B), C = ID(C), D = ID(D); IdString E = ID(E), F = ID(F), G = ID(G), H = ID(H); IdString I = ID(I), J = ID(J), K = ID(K), L = ID(L); IdString M = ID(M), N = ID(N), O = ID(O), P = ID(P); IdString S = ID(S), T = ID(T), U = ID(U), V = ID(V); IdString Y = ID(Y); setup_type(ID($_BUF_), {A}, {Y}, true); setup_type(ID($_NOT_), {A}, {Y}, true); setup_type(ID($_AND_), {A, B}, {Y}, true); setup_type(ID($_NAND_), {A, B}, {Y}, true); setup_type(ID($_OR_), {A, B}, {Y}, true); setup_type(ID($_NOR_), {A, B}, {Y}, true); setup_type(ID($_XOR_), {A, B}, {Y}, true); setup_type(ID($_XNOR_), {A, B}, {Y}, true); setup_type(ID($_ANDNOT_), {A, B}, {Y}, true); setup_type(ID($_ORNOT_), {A, B}, {Y}, true); setup_type(ID($_MUX_), {A, B, S}, {Y}, true); setup_type(ID($_NMUX_), {A, B, S}, {Y}, true); setup_type(ID($_MUX4_), {A, B, C, D, S, T}, {Y}, true); setup_type(ID($_MUX8_), {A, B, C, D, E, F, G, H, S, T, U}, {Y}, true); setup_type(ID($_MUX16_), {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, S, T, U, V}, {Y}, true); setup_type(ID($_AOI3_), {A, B, C}, {Y}, true); setup_type(ID($_OAI3_), {A, B, C}, {Y}, true); setup_type(ID($_AOI4_), {A, B, C, D}, {Y}, true); setup_type(ID($_OAI4_), {A, B, C, D}, {Y}, true); } void setup_stdcells_mem() { IdString S = ID(S), R = ID(R), C = ID(C); IdString D = ID(D), Q = ID(Q), E = ID(E); std::vector list_np = {'N', 'P'}, list_01 = {'0', '1'}; for (auto c1 : list_np) for (auto c2 : list_np) setup_type(stringf("$_SR_%c%c_", c1, c2), {S, R}, {Q}); setup_type(ID($_FF_), {D}, {Q}); for (auto c1 : list_np) setup_type(stringf("$_DFF_%c_", c1), {C, D}, {Q}); for (auto c1 : list_np) for (auto c2 : list_np) setup_type(stringf("$_DFFE_%c%c_", c1, c2), {C, D, E}, {Q}); for (auto c1 : list_np) for (auto c2 : list_np) for (auto c3 : list_01) setup_type(stringf("$_DFF_%c%c%c_", c1, c2, c3), {C, R, D}, {Q}); for (auto c1 : list_np) for (auto c2 : list_np) for (auto c3 : list_np) setup_type(stringf("$_DFFSR_%c%c%c_", c1, c2, c3), {C, S, R, D}, {Q}); for (auto c1 : list_np) setup_type(stringf("$_DLATCH_%c_", c1), {E, D}, {Q}); for (auto c1 : list_np) for (auto c2 : list_np) for (auto c3 : list_np) setup_type(stringf("$_DLATCHSR_%c%c%c_", c1, c2, c3), {E, S, R, D}, {Q}); } void clear() { cell_types.clear(); } bool cell_known(RTLIL::IdString type) const { return cell_types.count(type) != 0; } bool cell_output(RTLIL::IdString type, RTLIL::IdString port) const { auto it = cell_types.find(type); return it != cell_types.end() && it->second.outputs.count(port) != 0; } bool cell_input(RTLIL::IdString type, RTLIL::IdString port) const { auto it = cell_types.find(type); return it != cell_types.end() && it->second.inputs.count(port) != 0; } bool cell_evaluable(RTLIL::IdString type) const { auto it = cell_types.find(type); return it != cell_types.end() && it->second.is_evaluable; } static RTLIL::Const eval_not(RTLIL::Const v) { for (auto &bit : v.bits) if (bit == State::S0) bit = State::S1; else if (bit == State::S1) bit = State::S0; return v; } static RTLIL::Const eval(RTLIL::IdString type, const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len, bool *errp = nullptr) { if (type == ID($sshr) && !signed1) type = ID($shr); if (type == ID($sshl) && !signed1) type = ID($shl); if (type != ID($sshr) && type != ID($sshl) && type != ID($shr) && type != ID($shl) && type != ID($shift) && type != ID($shiftx) && type != ID($pos) && type != ID($neg) && type != ID($not)) { if (!signed1 || !signed2) signed1 = false, signed2 = false; } #define HANDLE_CELL_TYPE(_t) if (type == "$" #_t) return const_ ## _t(arg1, arg2, signed1, signed2, result_len); HANDLE_CELL_TYPE(not) HANDLE_CELL_TYPE(and) HANDLE_CELL_TYPE(or) HANDLE_CELL_TYPE(xor) HANDLE_CELL_TYPE(xnor) HANDLE_CELL_TYPE(reduce_and) HANDLE_CELL_TYPE(reduce_or) HANDLE_CELL_TYPE(reduce_xor) HANDLE_CELL_TYPE(reduce_xnor) HANDLE_CELL_TYPE(reduce_bool) HANDLE_CELL_TYPE(logic_not) HANDLE_CELL_TYPE(logic_and) HANDLE_CELL_TYPE(logic_or) HANDLE_CELL_TYPE(shl) HANDLE_CELL_TYPE(shr) HANDLE_CELL_TYPE(sshl) HANDLE_CELL_TYPE(sshr) HANDLE_CELL_TYPE(shift) HANDLE_CELL_TYPE(shiftx) HANDLE_CELL_TYPE(lt) HANDLE_CELL_TYPE(le) HANDLE_CELL_TYPE(eq) HANDLE_CELL_TYPE(ne) HANDLE_CELL_TYPE(eqx) HANDLE_CELL_TYPE(nex) HANDLE_CELL_TYPE(ge) HANDLE_CELL_TYPE(gt) HANDLE_CELL_TYPE(add) HANDLE_CELL_TYPE(sub) HANDLE_CELL_TYPE(mul) HANDLE_CELL_TYPE(div) HANDLE_CELL_TYPE(mod) HANDLE_CELL_TYPE(pow) HANDLE_CELL_TYPE(pos) HANDLE_CELL_TYPE(neg) #undef HANDLE_CELL_TYPE if (type == ID($_BUF_)) return arg1; if (type == ID($_NOT_)) return eval_not(arg1); if (type == ID($_AND_)) return const_and(arg1, arg2, false, false, 1); if (type == ID($_NAND_)) return eval_not(const_and(arg1, arg2, false, false, 1)); if (type == ID($_OR_)) return const_or(arg1, arg2, false, false, 1); if (type == ID($_NOR_)) return eval_not(const_or(arg1, arg2, false, false, 1)); if (type == ID($_XOR_)) return const_xor(arg1, arg2, false, false, 1); if (type == ID($_XNOR_)) return const_xnor(arg1, arg2, false, false, 1); if (type == ID($_ANDNOT_)) return const_and(arg1, eval_not(arg2), false, false, 1); if (type == ID($_ORNOT_)) return const_or(arg1, eval_not(arg2), false, false, 1); if (errp != nullptr) { *errp = true; return State::Sm; } log_abort(); } static RTLIL::Const eval(RTLIL::Cell *cell, const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool *errp = nullptr) { if (cell->type == ID($slice)) { RTLIL::Const ret; int width = cell->parameters.at(ID(Y_WIDTH)).as_int(); int offset = cell->parameters.at(ID(OFFSET)).as_int(); ret.bits.insert(ret.bits.end(), arg1.bits.begin()+offset, arg1.bits.begin()+offset+width); return ret; } if (cell->type == ID($concat)) { RTLIL::Const ret = arg1; ret.bits.insert(ret.bits.end(), arg2.bits.begin(), arg2.bits.end()); return ret; } if (cell->type == ID($lut)) { int width = cell->parameters.at(ID(WIDTH)).as_int(); std::vector t = cell->parameters.at(ID(LUT)).bits; while (GetSize(t) < (1 << width)) t.push_back(State::S0); t.resize(1 << width); for (int i = width-1; i >= 0; i--) { RTLIL::State sel = arg1.bits.at(i); std::vector new_t; if (sel == State::S0) new_t = std::vector(t.begin(), t.begin() + GetSize(t)/2); else if (sel == State::S1) new_t = std::vector(t.begin() + GetSize(t)/2, t.end()); else for (int j = 0; j < GetSize(t)/2; j++) new_t.push_back(t[j] == t[j + GetSize(t)/2] ? t[j] : RTLIL::Sx); t.swap(new_t); } log_assert(GetSize(t) == 1); return t; } if (cell->type == ID($sop)) { int width = cell->parameters.at(ID(WIDTH)).as_int(); int depth = cell->parameters.at(ID(DEPTH)).as_int(); std::vector t = cell->parameters.at(ID(TABLE)).bits; while (GetSize(t) < width*depth*2) t.push_back(State::S0); RTLIL::State default_ret = State::S0; for (int i = 0; i < depth; i++) { bool match = true; bool match_x = true; for (int j = 0; j < width; j++) { RTLIL::State a = arg1.bits.at(j); if (t.at(2*width*i + 2*j + 0) == State::S1) { if (a == State::S1) match_x = false; if (a != State::S0) match = false; } if (t.at(2*width*i + 2*j + 1) == State::S1) { if (a == State::S0) match_x = false; if (a != State::S1) match = false; } } if (match) return State::S1; if (match_x) default_ret = State::Sx; } return default_ret; } bool signed_a = cell->parameters.count(ID(A_SIGNED)) > 0 && cell->parameters[ID(A_SIGNED)].as_bool(); bool signed_b = cell->parameters.count(ID(B_SIGNED)) > 0 && cell->parameters[ID(B_SIGNED)].as_bool(); int result_len = cell->parameters.count(ID(Y_WIDTH)) > 0 ? cell->parameters[ID(Y_WIDTH)].as_int() : -1; return eval(cell->type, arg1, arg2, signed_a, signed_b, result_len, errp); } static RTLIL::Const eval(RTLIL::Cell *cell, const RTLIL::Const &arg1, const RTLIL::Const &arg2, const RTLIL::Const &arg3, bool *errp = nullptr) { if (cell->type.in(ID($mux), ID($pmux), ID($_MUX_))) { RTLIL::Const ret = arg1; for (size_t i = 0; i < arg3.bits.size(); i++) if (arg3.bits[i] == RTLIL::State::S1) { std::vector bits(arg2.bits.begin() + i*arg1.bits.size(), arg2.bits.begin() + (i+1)*arg1.bits.size()); ret = RTLIL::Const(bits); } return ret; } if (cell->type == ID($_AOI3_)) return eval_not(const_or(const_and(arg1, arg2, false, false, 1), arg3, false, false, 1)); if (cell->type == ID($_OAI3_)) return eval_not(const_and(const_or(arg1, arg2, false, false, 1), arg3, false, false, 1)); log_assert(arg3.bits.size() == 0); return eval(cell, arg1, arg2, errp); } static RTLIL::Const eval(RTLIL::Cell *cell, const RTLIL::Const &arg1, const RTLIL::Const &arg2, const RTLIL::Const &arg3, const RTLIL::Const &arg4, bool *errp = nullptr) { if (cell->type == ID($_AOI4_)) return eval_not(const_or(const_and(arg1, arg2, false, false, 1), const_and(arg3, arg4, false, false, 1), false, false, 1)); if (cell->type == ID($_OAI4_)) return eval_not(const_and(const_or(arg1, arg2, false, false, 1), const_or(arg3, arg4, false, false, 1), false, false, 1)); log_assert(arg4.bits.size() == 0); return eval(cell, arg1, arg2, arg3, errp); } }; // initialized by yosys_setup() extern CellTypes yosys_celltypes; YOSYS_NAMESPACE_END #endif