/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Claire Xenia Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ // [[CITE]] Power-Modulus Algorithm // Schneier, Bruce (1996). Applied Cryptography: Protocols, Algorithms, and Source Code in C, // Second Edition (2nd ed.). Wiley. ISBN 978-0-471-11709-4, page 244 #include "kernel/yosys.h" #include "libs/bigint/BigIntegerLibrary.hh" YOSYS_NAMESPACE_BEGIN static void extend_u0(RTLIL::Const &arg, int width, bool is_signed) { RTLIL::State padding = RTLIL::State::S0; if (arg.size() > 0 && is_signed) padding = arg.back(); while (int(arg.size()) < width) arg.bits().push_back(padding); arg.bits().resize(width); } static BigInteger const2big(const RTLIL::Const &val, bool as_signed, int &undef_bit_pos) { BigUnsigned mag; BigInteger::Sign sign = BigInteger::positive; State inv_sign_bit = RTLIL::State::S1; size_t num_bits = val.size(); if (as_signed && num_bits && val[num_bits-1] == RTLIL::State::S1) { inv_sign_bit = RTLIL::State::S0; sign = BigInteger::negative; num_bits--; } for (size_t i = 0; i < num_bits; i++) if (val[i] == RTLIL::State::S0 || val[i] == RTLIL::State::S1) mag.setBit(i, val[i] == inv_sign_bit); else if (undef_bit_pos < 0) undef_bit_pos = i; if (sign == BigInteger::negative) mag += 1; return BigInteger(mag, sign); } static RTLIL::Const big2const(const BigInteger &val, int result_len, int undef_bit_pos) { if (undef_bit_pos >= 0) return RTLIL::Const(RTLIL::State::Sx, result_len); BigUnsigned mag = val.getMagnitude(); RTLIL::Const result(0, result_len); if (!mag.isZero()) { if (val.getSign() < 0) { mag--; for (int i = 0; i < result_len; i++) result.bits()[i] = mag.getBit(i) ? RTLIL::State::S0 : RTLIL::State::S1; } else { for (int i = 0; i < result_len; i++) result.bits()[i] = mag.getBit(i) ? RTLIL::State::S1 : RTLIL::State::S0; } } #if 0 if (undef_bit_pos >= 0) for (int i = undef_bit_pos; i < result_len; i++) result[i] = RTLIL::State::Sx; #endif return result; } static RTLIL::State logic_and(RTLIL::State a, RTLIL::State b) { if (a == RTLIL::State::S0) return RTLIL::State::S0; if (b == RTLIL::State::S0) return RTLIL::State::S0; if (a != RTLIL::State::S1) return RTLIL::State::Sx; if (b != RTLIL::State::S1) return RTLIL::State::Sx; return RTLIL::State::S1; } static RTLIL::State logic_or(RTLIL::State a, RTLIL::State b) { if (a == RTLIL::State::S1) return RTLIL::State::S1; if (b == RTLIL::State::S1) return RTLIL::State::S1; if (a != RTLIL::State::S0) return RTLIL::State::Sx; if (b != RTLIL::State::S0) return RTLIL::State::Sx; return RTLIL::State::S0; } static RTLIL::State logic_xor(RTLIL::State a, RTLIL::State b) { if (a != RTLIL::State::S0 && a != RTLIL::State::S1) return RTLIL::State::Sx; if (b != RTLIL::State::S0 && b != RTLIL::State::S1) return RTLIL::State::Sx; return a != b ? RTLIL::State::S1 : RTLIL::State::S0; } static RTLIL::State logic_xnor(RTLIL::State a, RTLIL::State b) { if (a != RTLIL::State::S0 && a != RTLIL::State::S1) return RTLIL::State::Sx; if (b != RTLIL::State::S0 && b != RTLIL::State::S1) return RTLIL::State::Sx; return a == b ? RTLIL::State::S1 : RTLIL::State::S0; } RTLIL::Const RTLIL::const_not(const RTLIL::Const &arg1, const RTLIL::Const&, bool signed1, bool, int result_len) { if (result_len < 0) result_len = arg1.size(); RTLIL::Const arg1_ext = arg1; extend_u0(arg1_ext, result_len, signed1); RTLIL::Const result(RTLIL::State::Sx, result_len); for (size_t i = 0; i < size_t(result_len); i++) { if (i >= arg1_ext.size()) result.bits()[i] = RTLIL::State::S0; else if (arg1_ext.bits()[i] == RTLIL::State::S0) result.bits()[i] = RTLIL::State::S1; else if (arg1_ext.bits()[i] == RTLIL::State::S1) result.bits()[i] = RTLIL::State::S0; } return result; } static RTLIL::Const logic_wrapper(RTLIL::State(*logic_func)(RTLIL::State, RTLIL::State), RTLIL::Const arg1, RTLIL::Const arg2, bool signed1, bool signed2, int result_len = -1) { if (result_len < 0) result_len = max(arg1.size(), arg2.size()); extend_u0(arg1, result_len, signed1); extend_u0(arg2, result_len, signed2); RTLIL::Const result(RTLIL::State::Sx, result_len); for (size_t i = 0; i < size_t(result_len); i++) { RTLIL::State a = i < arg1.size() ? arg1.bits()[i] : RTLIL::State::S0; RTLIL::State b = i < arg2.size() ? arg2.bits()[i] : RTLIL::State::S0; result.bits()[i] = logic_func(a, b); } return result; } RTLIL::Const RTLIL::const_and(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { return logic_wrapper(logic_and, arg1, arg2, signed1, signed2, result_len); } RTLIL::Const RTLIL::const_or(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { return logic_wrapper(logic_or, arg1, arg2, signed1, signed2, result_len); } RTLIL::Const RTLIL::const_xor(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { return logic_wrapper(logic_xor, arg1, arg2, signed1, signed2, result_len); } RTLIL::Const RTLIL::const_xnor(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { return logic_wrapper(logic_xnor, arg1, arg2, signed1, signed2, result_len); } static RTLIL::Const logic_reduce_wrapper(RTLIL::State initial, RTLIL::State(*logic_func)(RTLIL::State, RTLIL::State), const RTLIL::Const &arg1, int result_len) { RTLIL::State temp = initial; for (size_t i = 0; i < arg1.size(); i++) temp = logic_func(temp, arg1[i]); RTLIL::Const result(temp); while (int(result.size()) < result_len) result.bits().push_back(RTLIL::State::S0); return result; } RTLIL::Const RTLIL::const_reduce_and(const RTLIL::Const &arg1, const RTLIL::Const&, bool, bool, int result_len) { return logic_reduce_wrapper(RTLIL::State::S1, logic_and, arg1, result_len); } RTLIL::Const RTLIL::const_reduce_or(const RTLIL::Const &arg1, const RTLIL::Const&, bool, bool, int result_len) { return logic_reduce_wrapper(RTLIL::State::S0, logic_or, arg1, result_len); } RTLIL::Const RTLIL::const_reduce_xor(const RTLIL::Const &arg1, const RTLIL::Const&, bool, bool, int result_len) { return logic_reduce_wrapper(RTLIL::State::S0, logic_xor, arg1, result_len); } RTLIL::Const RTLIL::const_reduce_xnor(const RTLIL::Const &arg1, const RTLIL::Const&, bool, bool, int result_len) { RTLIL::Const buffer = logic_reduce_wrapper(RTLIL::State::S0, logic_xor, arg1, result_len); if (!buffer.empty()) { if (buffer.front() == RTLIL::State::S0) buffer.bits().front() = RTLIL::State::S1; else if (buffer.front() == RTLIL::State::S1) buffer.bits().front() = RTLIL::State::S0; } return buffer; } RTLIL::Const RTLIL::const_reduce_bool(const RTLIL::Const &arg1, const RTLIL::Const&, bool, bool, int result_len) { return logic_reduce_wrapper(RTLIL::State::S0, logic_or, arg1, result_len); } RTLIL::Const RTLIL::const_logic_not(const RTLIL::Const &arg1, const RTLIL::Const&, bool signed1, bool, int result_len) { int undef_bit_pos_a = -1; BigInteger a = const2big(arg1, signed1, undef_bit_pos_a); RTLIL::Const result(a.isZero() ? undef_bit_pos_a >= 0 ? RTLIL::State::Sx : RTLIL::State::S1 : RTLIL::State::S0); while (int(result.size()) < result_len) result.bits().push_back(RTLIL::State::S0); return result; } RTLIL::Const RTLIL::const_logic_and(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos_a = -1, undef_bit_pos_b = -1; BigInteger a = const2big(arg1, signed1, undef_bit_pos_a); BigInteger b = const2big(arg2, signed2, undef_bit_pos_b); RTLIL::State bit_a = a.isZero() ? undef_bit_pos_a >= 0 ? RTLIL::State::Sx : RTLIL::State::S0 : RTLIL::State::S1; RTLIL::State bit_b = b.isZero() ? undef_bit_pos_b >= 0 ? RTLIL::State::Sx : RTLIL::State::S0 : RTLIL::State::S1; RTLIL::Const result(logic_and(bit_a, bit_b)); while (int(result.size()) < result_len) result.bits().push_back(RTLIL::State::S0); return result; } RTLIL::Const RTLIL::const_logic_or(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos_a = -1, undef_bit_pos_b = -1; BigInteger a = const2big(arg1, signed1, undef_bit_pos_a); BigInteger b = const2big(arg2, signed2, undef_bit_pos_b); RTLIL::State bit_a = a.isZero() ? undef_bit_pos_a >= 0 ? RTLIL::State::Sx : RTLIL::State::S0 : RTLIL::State::S1; RTLIL::State bit_b = b.isZero() ? undef_bit_pos_b >= 0 ? RTLIL::State::Sx : RTLIL::State::S0 : RTLIL::State::S1; RTLIL::Const result(logic_or(bit_a, bit_b)); while (int(result.size()) < result_len) result.bits().push_back(RTLIL::State::S0); return result; } // Shift `arg1` by `arg2` bits. // If `direction` is +1, `arg1` is shifted right by `arg2` bits; if `direction` is -1, `arg1` is shifted left by `arg2` bits. // If `signed2` is true, `arg2` is interpreted as a signed integer; a negative `arg2` will cause a shift in the opposite direction. // Any required bits outside the bounds of `arg1` are padded with `vacant_bits` unless `sign_ext` is true, in which case any bits outside the left // bounds are filled with the leftmost bit of `arg1` (arithmetic shift). static RTLIL::Const const_shift_worker(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool sign_ext, bool signed2, int direction, int result_len, RTLIL::State vacant_bits = RTLIL::State::S0) { int undef_bit_pos = -1; BigInteger offset = const2big(arg2, signed2, undef_bit_pos) * direction; if (result_len < 0) result_len = arg1.size(); RTLIL::Const result(RTLIL::State::Sx, result_len); if (undef_bit_pos >= 0) return result; for (int i = 0; i < result_len; i++) { BigInteger pos = BigInteger(i) + offset; if (pos < 0) result.bits()[i] = vacant_bits; else if (pos >= BigInteger(int(arg1.size()))) result.bits()[i] = sign_ext ? arg1.back() : vacant_bits; else result.bits()[i] = arg1[pos.toInt()]; } return result; } RTLIL::Const RTLIL::const_shl(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool, int result_len) { RTLIL::Const arg1_ext = arg1; extend_u0(arg1_ext, result_len, signed1); return const_shift_worker(arg1_ext, arg2, false, false, -1, result_len); } RTLIL::Const RTLIL::const_shr(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool, int result_len) { RTLIL::Const arg1_ext = arg1; extend_u0(arg1_ext, max(result_len, GetSize(arg1)), signed1); return const_shift_worker(arg1_ext, arg2, false, false, +1, result_len); } RTLIL::Const RTLIL::const_sshl(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool, int result_len) { return const_shift_worker(arg1, arg2, signed1, false, -1, result_len); } RTLIL::Const RTLIL::const_sshr(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool, int result_len) { return const_shift_worker(arg1, arg2, signed1, false, +1, result_len); } RTLIL::Const RTLIL::const_shift(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { RTLIL::Const arg1_ext = arg1; extend_u0(arg1_ext, max(result_len, GetSize(arg1)), signed1); return const_shift_worker(arg1_ext, arg2, false, signed2, +1, result_len); } RTLIL::Const RTLIL::const_shiftx(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool, bool signed2, int result_len) { return const_shift_worker(arg1, arg2, false, signed2, +1, result_len, RTLIL::State::Sx); } RTLIL::Const RTLIL::const_lt(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos = -1; bool y = const2big(arg1, signed1, undef_bit_pos) < const2big(arg2, signed2, undef_bit_pos); RTLIL::Const result(undef_bit_pos >= 0 ? RTLIL::State::Sx : y ? RTLIL::State::S1 : RTLIL::State::S0); while (int(result.size()) < result_len) result.bits().push_back(RTLIL::State::S0); return result; } RTLIL::Const RTLIL::const_le(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos = -1; bool y = const2big(arg1, signed1, undef_bit_pos) <= const2big(arg2, signed2, undef_bit_pos); RTLIL::Const result(undef_bit_pos >= 0 ? RTLIL::State::Sx : y ? RTLIL::State::S1 : RTLIL::State::S0); while (int(result.size()) < result_len) result.bits().push_back(RTLIL::State::S0); return result; } RTLIL::Const RTLIL::const_eq(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { RTLIL::Const arg1_ext = arg1; RTLIL::Const arg2_ext = arg2; RTLIL::Const result(RTLIL::State::S0, result_len); int width = max(arg1_ext.size(), arg2_ext.size()); extend_u0(arg1_ext, width, signed1 && signed2); extend_u0(arg2_ext, width, signed1 && signed2); RTLIL::State matched_status = RTLIL::State::S1; for (size_t i = 0; i < arg1_ext.size(); i++) { if (arg1_ext.at(i) == RTLIL::State::S0 && arg2_ext.at(i) == RTLIL::State::S1) return result; if (arg1_ext.at(i) == RTLIL::State::S1 && arg2_ext.at(i) == RTLIL::State::S0) return result; if (arg1_ext.at(i) > RTLIL::State::S1 || arg2_ext.at(i) > RTLIL::State::S1) matched_status = RTLIL::State::Sx; } result.bits().front() = matched_status; return result; } RTLIL::Const RTLIL::const_ne(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { RTLIL::Const result = RTLIL::const_eq(arg1, arg2, signed1, signed2, result_len); if (result.front() == RTLIL::State::S0) result.bits().front() = RTLIL::State::S1; else if (result.front() == RTLIL::State::S1) result.bits().front() = RTLIL::State::S0; return result; } RTLIL::Const RTLIL::const_eqx(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { RTLIL::Const arg1_ext = arg1; RTLIL::Const arg2_ext = arg2; RTLIL::Const result(RTLIL::State::S0, result_len); int width = max(arg1_ext.size(), arg2_ext.size()); extend_u0(arg1_ext, width, signed1 && signed2); extend_u0(arg2_ext, width, signed1 && signed2); for (size_t i = 0; i < arg1_ext.size(); i++) { if (arg1_ext.at(i) != arg2_ext.at(i)) return result; } result.bits().front() = RTLIL::State::S1; return result; } RTLIL::Const RTLIL::const_nex(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { RTLIL::Const result = RTLIL::const_eqx(arg1, arg2, signed1, signed2, result_len); if (result.front() == RTLIL::State::S0) result.bits().front() = RTLIL::State::S1; else if (result.front() == RTLIL::State::S1) result.bits().front() = RTLIL::State::S0; return result; } RTLIL::Const RTLIL::const_ge(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos = -1; bool y = const2big(arg1, signed1, undef_bit_pos) >= const2big(arg2, signed2, undef_bit_pos); RTLIL::Const result(undef_bit_pos >= 0 ? RTLIL::State::Sx : y ? RTLIL::State::S1 : RTLIL::State::S0); while (int(result.size()) < result_len) result.bits().push_back(RTLIL::State::S0); return result; } RTLIL::Const RTLIL::const_gt(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos = -1; bool y = const2big(arg1, signed1, undef_bit_pos) > const2big(arg2, signed2, undef_bit_pos); RTLIL::Const result(undef_bit_pos >= 0 ? RTLIL::State::Sx : y ? RTLIL::State::S1 : RTLIL::State::S0); while (int(result.size()) < result_len) result.bits().push_back(RTLIL::State::S0); return result; } RTLIL::Const RTLIL::const_add(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos = -1; BigInteger y = const2big(arg1, signed1, undef_bit_pos) + const2big(arg2, signed2, undef_bit_pos); return big2const(y, result_len >= 0 ? result_len : max(arg1.size(), arg2.size()), undef_bit_pos); } RTLIL::Const RTLIL::const_sub(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos = -1; BigInteger y = const2big(arg1, signed1, undef_bit_pos) - const2big(arg2, signed2, undef_bit_pos); return big2const(y, result_len >= 0 ? result_len : max(arg1.size(), arg2.size()), undef_bit_pos); } RTLIL::Const RTLIL::const_mul(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos = -1; BigInteger y = const2big(arg1, signed1, undef_bit_pos) * const2big(arg2, signed2, undef_bit_pos); return big2const(y, result_len >= 0 ? result_len : max(arg1.size(), arg2.size()), min(undef_bit_pos, 0)); } // truncating division RTLIL::Const RTLIL::const_div(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos = -1; BigInteger a = const2big(arg1, signed1, undef_bit_pos); BigInteger b = const2big(arg2, signed2, undef_bit_pos); if (b.isZero()) return RTLIL::Const(RTLIL::State::Sx, result_len); bool result_neg = (a.getSign() == BigInteger::negative) != (b.getSign() == BigInteger::negative); a = a.getSign() == BigInteger::negative ? -a : a; b = b.getSign() == BigInteger::negative ? -b : b; return big2const(result_neg ? -(a / b) : (a / b), result_len >= 0 ? result_len : max(arg1.size(), arg2.size()), min(undef_bit_pos, 0)); } // truncating modulo RTLIL::Const RTLIL::const_mod(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos = -1; BigInteger a = const2big(arg1, signed1, undef_bit_pos); BigInteger b = const2big(arg2, signed2, undef_bit_pos); if (b.isZero()) return RTLIL::Const(RTLIL::State::Sx, result_len); bool result_neg = a.getSign() == BigInteger::negative; a = a.getSign() == BigInteger::negative ? -a : a; b = b.getSign() == BigInteger::negative ? -b : b; return big2const(result_neg ? -(a % b) : (a % b), result_len >= 0 ? result_len : max(arg1.size(), arg2.size()), min(undef_bit_pos, 0)); } RTLIL::Const RTLIL::const_divfloor(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos = -1; BigInteger a = const2big(arg1, signed1, undef_bit_pos); BigInteger b = const2big(arg2, signed2, undef_bit_pos); if (b.isZero()) return RTLIL::Const(RTLIL::State::Sx, result_len); bool result_pos = (a.getSign() == BigInteger::negative) == (b.getSign() == BigInteger::negative); a = a.getSign() == BigInteger::negative ? -a : a; b = b.getSign() == BigInteger::negative ? -b : b; BigInteger result; if (result_pos || a == 0) { result = a / b; } else { // bigint division with negative numbers is wonky, make sure we only negate at the very end result = -((a + b - 1) / b); } return big2const(result, result_len >= 0 ? result_len : max(arg1.size(), arg2.size()), min(undef_bit_pos, 0)); } RTLIL::Const RTLIL::const_modfloor(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos = -1; BigInteger a = const2big(arg1, signed1, undef_bit_pos); BigInteger b = const2big(arg2, signed2, undef_bit_pos); if (b.isZero()) return RTLIL::Const(RTLIL::State::Sx, result_len); BigInteger::Sign a_sign = a.getSign(); BigInteger::Sign b_sign = b.getSign(); a = a_sign == BigInteger::negative ? -a : a; b = b_sign == BigInteger::negative ? -b : b; BigInteger truncated = a_sign == BigInteger::negative ? -(a % b) : (a % b); BigInteger modulo; if (truncated == 0 || (a_sign == b_sign)) { modulo = truncated; } else { modulo = b_sign == BigInteger::negative ? truncated - b : truncated + b; } return big2const(modulo, result_len >= 0 ? result_len : max(arg1.size(), arg2.size()), min(undef_bit_pos, 0)); } RTLIL::Const RTLIL::const_pow(const RTLIL::Const &arg1, const RTLIL::Const &arg2, bool signed1, bool signed2, int result_len) { int undef_bit_pos = -1; BigInteger a = const2big(arg1, signed1, undef_bit_pos); BigInteger b = const2big(arg2, signed2, undef_bit_pos); BigInteger y = 1; if (a == 0 && b < 0) return RTLIL::Const(RTLIL::State::Sx, result_len); if (a == 0 && b > 0) return RTLIL::Const(RTLIL::State::S0, result_len); if (b < 0) { if (a < -1 || a > 1) y = 0; if (a == -1) y = (-b % 2) == 0 ? 1 : -1; } if (b > 0) { // Power-modulo with 2^result_len as modulus BigInteger modulus = 1; int modulus_bits = (result_len >= 0 ? result_len : 1024); for (int i = 0; i < modulus_bits; i++) modulus *= 2; bool flip_result_sign = false; if (a < 0) { a *= -1; if (b % 2 == 1) flip_result_sign = true; } while (b > 0) { if (b % 2 == 1) y = (y * a) % modulus; b = b / 2; a = (a * a) % modulus; } if (flip_result_sign) y *= -1; } return big2const(y, result_len >= 0 ? result_len : max(arg1.size(), arg2.size()), min(undef_bit_pos, 0)); } RTLIL::Const RTLIL::const_pos(const RTLIL::Const &arg1, const RTLIL::Const&, bool signed1, bool, int result_len) { RTLIL::Const arg1_ext = arg1; extend_u0(arg1_ext, result_len, signed1); return arg1_ext; } RTLIL::Const RTLIL::const_buf(const RTLIL::Const &arg1, const RTLIL::Const&, bool signed1, bool, int result_len) { RTLIL::Const arg1_ext = arg1; extend_u0(arg1_ext, result_len, signed1); return arg1_ext; } RTLIL::Const RTLIL::const_neg(const RTLIL::Const &arg1, const RTLIL::Const&, bool signed1, bool, int result_len) { RTLIL::Const arg1_ext = arg1; RTLIL::Const zero(RTLIL::State::S0, 1); return RTLIL::const_sub(zero, arg1_ext, true, signed1, result_len); } RTLIL::Const RTLIL::const_mux(const RTLIL::Const &arg1, const RTLIL::Const &arg2, const RTLIL::Const &arg3) { log_assert(arg2.size() == arg1.size()); if (arg3[0] == State::S0) return arg1; else if (arg3[0] == State::S1) return arg2; RTLIL::Const ret = arg1; for (int i = 0; i < ret.size(); i++) if (ret[i] != arg2[i]) ret.bits()[i] = State::Sx; return ret; } RTLIL::Const RTLIL::const_pmux(const RTLIL::Const &arg1, const RTLIL::Const &arg2, const RTLIL::Const &arg3) { if (arg3.is_fully_zero()) return arg1; if (!arg3.is_onehot()) return RTLIL::Const(State::Sx, arg1.size()); for (int i = 0; i < arg3.size(); i++) if (arg3[i] == State::S1) return RTLIL::Const(std::vector(arg2.begin() + i*arg1.size(), arg2.begin() + (i+1)*arg1.size())); log_abort(); // unreachable } RTLIL::Const RTLIL::const_bmux(const RTLIL::Const &arg1, const RTLIL::Const &arg2) { std::vector t = arg1.to_bits(); for (int i = GetSize(arg2)-1; i >= 0; i--) { RTLIL::State sel = arg2.at(i); std::vector new_t; if (sel == State::S0) new_t = std::vector(t.begin(), t.begin() + GetSize(t)/2); else if (sel == State::S1) new_t = std::vector(t.begin() + GetSize(t)/2, t.end()); else for (int j = 0; j < GetSize(t)/2; j++) new_t.push_back(t[j] == t[j + GetSize(t)/2] ? t[j] : RTLIL::Sx); t.swap(new_t); } return t; } RTLIL::Const RTLIL::const_demux(const RTLIL::Const &arg1, const RTLIL::Const &arg2) { int width = GetSize(arg1); int s_width = GetSize(arg2); std::vector res; for (int i = 0; i < (1 << s_width); i++) { bool ne = false; bool x = false; for (int j = 0; j < s_width; j++) { bool bit = i & 1 << j; if (arg2[j] == (bit ? RTLIL::S0 : RTLIL::S1)) ne = true; else if (arg2[j] != RTLIL::S0 && arg2[j] != RTLIL::S1) x = true; } if (ne) { for (int j = 0; j < width; j++) res.push_back(State::S0); } else if (x) { for (int j = 0; j < width; j++) res.push_back(arg1[j] == State::S0 ? State::S0 : State::Sx); } else { for (int j = 0; j < width; j++) res.push_back(arg1[j]); } } return res; } RTLIL::Const RTLIL::const_bweqx(const RTLIL::Const &arg1, const RTLIL::Const &arg2) { log_assert(arg2.size() == arg1.size()); RTLIL::Const result(RTLIL::State::S0, arg1.size()); for (int i = 0; i < arg1.size(); i++) result.bits()[i] = arg1[i] == arg2[i] ? State::S1 : State::S0; return result; } RTLIL::Const RTLIL::const_bwmux(const RTLIL::Const &arg1, const RTLIL::Const &arg2, const RTLIL::Const &arg3) { log_assert(arg2.size() == arg1.size()); log_assert(arg3.size() == arg1.size()); RTLIL::Const result(RTLIL::State::Sx, arg1.size()); for (int i = 0; i < arg1.size(); i++) { if (arg3[i] != State::Sx || arg1[i] == arg2[i]) result.bits()[i] = arg3[i] == State::S1 ? arg2[i] : arg1[i]; } return result; } YOSYS_NAMESPACE_END