/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Claire Xenia Wolf <claire@yosyshq.com> * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/satgen.h" #include "kernel/ff.h" USING_YOSYS_NAMESPACE bool SatGen::importCell(RTLIL::Cell *cell, int timestep) { bool arith_undef_handled = false; bool is_arith_compare = cell->type.in(ID($lt), ID($le), ID($ge), ID($gt)); if (model_undef && (cell->type.in(ID($add), ID($sub), ID($mul), ID($div), ID($mod), ID($divfloor), ID($modfloor)) || is_arith_compare)) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); if (is_arith_compare) extendSignalWidth(undef_a, undef_b, cell, true); else extendSignalWidth(undef_a, undef_b, undef_y, cell, true); int undef_any_a = ez->expression(ezSAT::OpOr, undef_a); int undef_any_b = ez->expression(ezSAT::OpOr, undef_b); int undef_y_bit = ez->OR(undef_any_a, undef_any_b); if (cell->type.in(ID($div), ID($mod), ID($divfloor), ID($modfloor))) { std::vector<int> b = importSigSpec(cell->getPort(ID::B), timestep); undef_y_bit = ez->OR(undef_y_bit, ez->NOT(ez->expression(ezSAT::OpOr, b))); } if (is_arith_compare) { for (size_t i = 1; i < undef_y.size(); i++) ez->SET(ez->CONST_FALSE, undef_y.at(i)); ez->SET(undef_y_bit, undef_y.at(0)); } else { std::vector<int> undef_y_bits(undef_y.size(), undef_y_bit); ez->assume(ez->vec_eq(undef_y_bits, undef_y)); } arith_undef_handled = true; } if (cell->type.in(ID($_AND_), ID($_NAND_), ID($_OR_), ID($_NOR_), ID($_XOR_), ID($_XNOR_), ID($_ANDNOT_), ID($_ORNOT_), ID($and), ID($or), ID($xor), ID($xnor), ID($add), ID($sub))) { std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep); std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); extendSignalWidth(a, b, y, cell); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; if (cell->type.in(ID($and), ID($_AND_))) ez->assume(ez->vec_eq(ez->vec_and(a, b), yy)); if (cell->type == ID($_NAND_)) ez->assume(ez->vec_eq(ez->vec_not(ez->vec_and(a, b)), yy)); if (cell->type.in(ID($or), ID($_OR_))) ez->assume(ez->vec_eq(ez->vec_or(a, b), yy)); if (cell->type == ID($_NOR_)) ez->assume(ez->vec_eq(ez->vec_not(ez->vec_or(a, b)), yy)); if (cell->type.in(ID($xor), ID($_XOR_))) ez->assume(ez->vec_eq(ez->vec_xor(a, b), yy)); if (cell->type.in(ID($xnor), ID($_XNOR_))) ez->assume(ez->vec_eq(ez->vec_not(ez->vec_xor(a, b)), yy)); if (cell->type == ID($_ANDNOT_)) ez->assume(ez->vec_eq(ez->vec_and(a, ez->vec_not(b)), yy)); if (cell->type == ID($_ORNOT_)) ez->assume(ez->vec_eq(ez->vec_or(a, ez->vec_not(b)), yy)); if (cell->type == ID($add)) ez->assume(ez->vec_eq(ez->vec_add(a, b), yy)); if (cell->type == ID($sub)) ez->assume(ez->vec_eq(ez->vec_sub(a, b), yy)); if (model_undef && !arith_undef_handled) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); extendSignalWidth(undef_a, undef_b, undef_y, cell, false); if (cell->type.in(ID($and), ID($_AND_), ID($_NAND_))) { std::vector<int> a0 = ez->vec_and(ez->vec_not(a), ez->vec_not(undef_a)); std::vector<int> b0 = ez->vec_and(ez->vec_not(b), ez->vec_not(undef_b)); std::vector<int> yX = ez->vec_and(ez->vec_or(undef_a, undef_b), ez->vec_not(ez->vec_or(a0, b0))); ez->assume(ez->vec_eq(yX, undef_y)); } else if (cell->type.in(ID($or), ID($_OR_), ID($_NOR_))) { std::vector<int> a1 = ez->vec_and(a, ez->vec_not(undef_a)); std::vector<int> b1 = ez->vec_and(b, ez->vec_not(undef_b)); std::vector<int> yX = ez->vec_and(ez->vec_or(undef_a, undef_b), ez->vec_not(ez->vec_or(a1, b1))); ez->assume(ez->vec_eq(yX, undef_y)); } else if (cell->type.in(ID($xor), ID($xnor), ID($_XOR_), ID($_XNOR_))) { std::vector<int> yX = ez->vec_or(undef_a, undef_b); ez->assume(ez->vec_eq(yX, undef_y)); } else if (cell->type == ID($_ANDNOT_)) { std::vector<int> a0 = ez->vec_and(ez->vec_not(a), ez->vec_not(undef_a)); std::vector<int> b1 = ez->vec_and(b, ez->vec_not(undef_b)); std::vector<int> yX = ez->vec_and(ez->vec_or(undef_a, undef_b), ez->vec_not(ez->vec_or(a0, b1))); ez->assume(ez->vec_eq(yX, undef_y)); } else if (cell->type == ID($_ORNOT_)) { std::vector<int> a1 = ez->vec_and(a, ez->vec_not(undef_a)); std::vector<int> b0 = ez->vec_and(ez->vec_not(b), ez->vec_not(undef_b)); std::vector<int> yX = ez->vec_and(ez->vec_or(undef_a, undef_b), ez->vec_not(ez->vec_or(a1, b0))); ez->assume(ez->vec_eq(yX, undef_y)); } else log_abort(); undefGating(y, yy, undef_y); } else if (model_undef) { std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); undefGating(y, yy, undef_y); } return true; } if (cell->type.in(ID($_AOI3_), ID($_OAI3_), ID($_AOI4_), ID($_OAI4_))) { bool aoi_mode = cell->type.in(ID($_AOI3_), ID($_AOI4_)); bool three_mode = cell->type.in(ID($_AOI3_), ID($_OAI3_)); int a = importDefSigSpec(cell->getPort(ID::A), timestep).at(0); int b = importDefSigSpec(cell->getPort(ID::B), timestep).at(0); int c = importDefSigSpec(cell->getPort(ID::C), timestep).at(0); int d = three_mode ? (aoi_mode ? ez->CONST_TRUE : ez->CONST_FALSE) : importDefSigSpec(cell->getPort(ID::D), timestep).at(0); int y = importDefSigSpec(cell->getPort(ID::Y), timestep).at(0); int yy = model_undef ? ez->literal() : y; if (cell->type.in(ID($_AOI3_), ID($_AOI4_))) ez->assume(ez->IFF(ez->NOT(ez->OR(ez->AND(a, b), ez->AND(c, d))), yy)); else ez->assume(ez->IFF(ez->NOT(ez->AND(ez->OR(a, b), ez->OR(c, d))), yy)); if (model_undef) { int undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep).at(0); int undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep).at(0); int undef_c = importUndefSigSpec(cell->getPort(ID::C), timestep).at(0); int undef_d = three_mode ? ez->CONST_FALSE : importUndefSigSpec(cell->getPort(ID::D), timestep).at(0); int undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep).at(0); if (aoi_mode) { int a0 = ez->AND(ez->NOT(a), ez->NOT(undef_a)); int b0 = ez->AND(ez->NOT(b), ez->NOT(undef_b)); int c0 = ez->AND(ez->NOT(c), ez->NOT(undef_c)); int d0 = ez->AND(ez->NOT(d), ez->NOT(undef_d)); int ab = ez->AND(a, b), cd = ez->AND(c, d); int undef_ab = ez->AND(ez->OR(undef_a, undef_b), ez->NOT(ez->OR(a0, b0))); int undef_cd = ez->AND(ez->OR(undef_c, undef_d), ez->NOT(ez->OR(c0, d0))); int ab1 = ez->AND(ab, ez->NOT(undef_ab)); int cd1 = ez->AND(cd, ez->NOT(undef_cd)); int yX = ez->AND(ez->OR(undef_ab, undef_cd), ez->NOT(ez->OR(ab1, cd1))); ez->assume(ez->IFF(yX, undef_y)); } else { int a1 = ez->AND(a, ez->NOT(undef_a)); int b1 = ez->AND(b, ez->NOT(undef_b)); int c1 = ez->AND(c, ez->NOT(undef_c)); int d1 = ez->AND(d, ez->NOT(undef_d)); int ab = ez->OR(a, b), cd = ez->OR(c, d); int undef_ab = ez->AND(ez->OR(undef_a, undef_b), ez->NOT(ez->OR(a1, b1))); int undef_cd = ez->AND(ez->OR(undef_c, undef_d), ez->NOT(ez->OR(c1, d1))); int ab0 = ez->AND(ez->NOT(ab), ez->NOT(undef_ab)); int cd0 = ez->AND(ez->NOT(cd), ez->NOT(undef_cd)); int yX = ez->AND(ez->OR(undef_ab, undef_cd), ez->NOT(ez->OR(ab0, cd0))); ez->assume(ez->IFF(yX, undef_y)); } undefGating(y, yy, undef_y); } return true; } if (cell->type.in(ID($_NOT_), ID($not))) { std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); extendSignalWidthUnary(a, y, cell); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; ez->assume(ez->vec_eq(ez->vec_not(a), yy)); if (model_undef) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); extendSignalWidthUnary(undef_a, undef_y, cell, false); ez->assume(ez->vec_eq(undef_a, undef_y)); undefGating(y, yy, undef_y); } return true; } if (cell->type == ID($bweqx)) { std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep); std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); std::vector<int> bweqx = ez->vec_not(ez->vec_xor(a, b)); if (model_undef) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); std::vector<int> both_undef = ez->vec_and(undef_a, undef_b); std::vector<int> both_def = ez->vec_and(ez->vec_not(undef_a), ez->vec_not(undef_b)); bweqx = ez->vec_or(both_undef, ez->vec_and(both_def, bweqx)); for (int yx : undef_y) ez->assume(ez->NOT(yx)); } ez->assume(ez->vec_eq(bweqx, y)); return true; } if (cell->type.in(ID($_MUX_), ID($mux), ID($_NMUX_), ID($bwmux))) { std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep); std::vector<int> s = importDefSigSpec(cell->getPort(ID::S), timestep); std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; if (cell->type == ID($_NMUX_)) ez->assume(ez->vec_eq(ez->vec_not(ez->vec_ite(s.at(0), b, a)), yy)); else if (cell->type == ID($bwmux)) ez->assume(ez->vec_eq(ez->vec_ite(s, b, a), yy)); else ez->assume(ez->vec_eq(ez->vec_ite(s.at(0), b, a), yy)); if (model_undef) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep); std::vector<int> undef_s = importUndefSigSpec(cell->getPort(ID::S), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); std::vector<int> unequal_ab = ez->vec_not(ez->vec_iff(a, b)); std::vector<int> undef_ab = ez->vec_or(unequal_ab, ez->vec_or(undef_a, undef_b)); std::vector<int> yX; if (cell->type == ID($bwmux)) yX = ez->vec_ite(undef_s, undef_ab, ez->vec_ite(s, undef_b, undef_a)); else yX = ez->vec_ite(undef_s.at(0), undef_ab, ez->vec_ite(s.at(0), undef_b, undef_a)); ez->assume(ez->vec_eq(yX, undef_y)); undefGating(y, yy, undef_y); } return true; } if (cell->type == ID($bmux)) { std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> s = importDefSigSpec(cell->getPort(ID::S), timestep); std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); std::vector<int> undef_a, undef_s, undef_y; if (model_undef) { undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); undef_s = importUndefSigSpec(cell->getPort(ID::S), timestep); undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); } if (GetSize(s) == 0) { ez->vec_set(a, y); if (model_undef) ez->vec_set(undef_a, undef_y); } else { for (int i = GetSize(s)-1; i >= 0; i--) { std::vector<int> out = (i == 0) ? y : ez->vec_var(a.size() / 2); std::vector<int> yy = model_undef ? ez->vec_var(out.size()) : out; std::vector<int> a0(a.begin(), a.begin() + a.size() / 2); std::vector<int> a1(a.begin() + a.size() / 2, a.end()); ez->assume(ez->vec_eq(ez->vec_ite(s.at(i), a1, a0), yy)); if (model_undef) { std::vector<int> undef_out = (i == 0) ? undef_y : ez->vec_var(a.size() / 2); std::vector<int> undef_a0(undef_a.begin(), undef_a.begin() + a.size() / 2); std::vector<int> undef_a1(undef_a.begin() + a.size() / 2, undef_a.end()); std::vector<int> unequal_ab = ez->vec_not(ez->vec_iff(a0, a1)); std::vector<int> undef_ab = ez->vec_or(unequal_ab, ez->vec_or(undef_a0, undef_a1)); std::vector<int> yX = ez->vec_ite(undef_s.at(i), undef_ab, ez->vec_ite(s.at(i), undef_a1, undef_a0)); ez->assume(ez->vec_eq(yX, undef_out)); undefGating(out, yy, undef_out); undef_a = undef_out; } a = out; } } return true; } if (cell->type == ID($demux)) { std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> s = importDefSigSpec(cell->getPort(ID::S), timestep); std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; std::vector<int> undef_a, undef_s, undef_y; if (model_undef) { undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); undef_s = importUndefSigSpec(cell->getPort(ID::S), timestep); undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); } if (GetSize(s) == 0) { ez->vec_set(a, y); if (model_undef) ez->vec_set(undef_a, undef_y); } else { for (int i = 0; i < (1 << GetSize(s)); i++) { std::vector<int> ss; for (int j = 0; j < GetSize(s); j++) { if (i & 1 << j) ss.push_back(s[j]); else ss.push_back(ez->NOT(s[j])); } int sss = ez->expression(ezSAT::OpAnd, ss); for (int j = 0; j < GetSize(a); j++) { ez->SET(ez->AND(sss, a[j]), yy.at(i * GetSize(a) + j)); } if (model_undef) { int s0 = ez->expression(ezSAT::OpOr, ez->vec_and(ez->vec_not(ss), ez->vec_not(undef_s))); int us = ez->AND(ez->NOT(s0), ez->expression(ezSAT::OpOr, undef_s)); for (int j = 0; j < GetSize(a); j++) { int a0 = ez->AND(ez->NOT(a[j]), ez->NOT(undef_a[j])); int yX = ez->AND(ez->OR(us, undef_a[j]), ez->NOT(ez->OR(s0, a0))); ez->SET(yX, undef_y.at(i * GetSize(a) + j)); } } } if (model_undef) undefGating(y, yy, undef_y); } return true; } if (cell->type == ID($pmux)) { std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep); std::vector<int> s = importDefSigSpec(cell->getPort(ID::S), timestep); std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; std::vector<int> tmp = a; for (size_t i = 0; i < s.size(); i++) { std::vector<int> part_of_b(b.begin()+i*a.size(), b.begin()+(i+1)*a.size()); tmp = ez->vec_ite(s.at(i), part_of_b, tmp); } ez->assume(ez->vec_eq(tmp, yy)); if (model_undef) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep); std::vector<int> undef_s = importUndefSigSpec(cell->getPort(ID::S), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); int all_undef = ez->CONST_FALSE; int found_active = ez->CONST_FALSE; std::vector<int> undef_tmp = undef_a; for (size_t i = 0; i < s.size(); i++) { std::vector<int> part_of_undef_b(undef_b.begin()+i*a.size(), undef_b.begin()+(i+1)*a.size()); undef_tmp = ez->vec_ite(s.at(i), part_of_undef_b, undef_tmp); all_undef = ez->OR(all_undef, undef_s.at(i)); all_undef = ez->OR(all_undef, ez->AND(s.at(i), found_active)); found_active = ez->OR(found_active, s.at(i)); } undef_tmp = ez->vec_or(undef_tmp, std::vector<int>(a.size(), all_undef)); ez->assume(ez->vec_eq(undef_tmp, undef_y)); undefGating(y, yy, undef_y); } return true; } if (cell->type.in(ID($pos), ID($buf), ID($neg))) { std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); extendSignalWidthUnary(a, y, cell); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; if (cell->type.in(ID($pos), ID($buf))) { ez->assume(ez->vec_eq(a, yy)); } else { std::vector<int> zero(a.size(), ez->CONST_FALSE); ez->assume(ez->vec_eq(ez->vec_sub(zero, a), yy)); } if (model_undef) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); extendSignalWidthUnary(undef_a, undef_y, cell); if (cell->type.in(ID($pos), ID($buf))) { ez->assume(ez->vec_eq(undef_a, undef_y)); } else { int undef_any_a = ez->expression(ezSAT::OpOr, undef_a); std::vector<int> undef_y_bits(undef_y.size(), undef_any_a); ez->assume(ez->vec_eq(undef_y_bits, undef_y)); } undefGating(y, yy, undef_y); } return true; } if (cell->type.in(ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool), ID($logic_not))) { std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; if (cell->type == ID($reduce_and)) ez->SET(ez->expression(ez->OpAnd, a), yy.at(0)); if (cell->type.in(ID($reduce_or), ID($reduce_bool))) ez->SET(ez->expression(ez->OpOr, a), yy.at(0)); if (cell->type == ID($reduce_xor)) ez->SET(ez->expression(ez->OpXor, a), yy.at(0)); if (cell->type == ID($reduce_xnor)) ez->SET(ez->NOT(ez->expression(ez->OpXor, a)), yy.at(0)); if (cell->type == ID($logic_not)) ez->SET(ez->NOT(ez->expression(ez->OpOr, a)), yy.at(0)); for (size_t i = 1; i < y.size(); i++) ez->SET(ez->CONST_FALSE, yy.at(i)); if (model_undef) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); int aX = ez->expression(ezSAT::OpOr, undef_a); if (cell->type == ID($reduce_and)) { int a0 = ez->expression(ezSAT::OpOr, ez->vec_and(ez->vec_not(a), ez->vec_not(undef_a))); ez->assume(ez->IFF(ez->AND(ez->NOT(a0), aX), undef_y.at(0))); } else if (cell->type.in(ID($reduce_or), ID($reduce_bool), ID($logic_not))) { int a1 = ez->expression(ezSAT::OpOr, ez->vec_and(a, ez->vec_not(undef_a))); ez->assume(ez->IFF(ez->AND(ez->NOT(a1), aX), undef_y.at(0))); } else if (cell->type.in(ID($reduce_xor), ID($reduce_xnor))) { ez->assume(ez->IFF(aX, undef_y.at(0))); } else log_abort(); for (size_t i = 1; i < undef_y.size(); i++) ez->SET(ez->CONST_FALSE, undef_y.at(i)); undefGating(y, yy, undef_y); } return true; } if (cell->type.in(ID($logic_and), ID($logic_or))) { std::vector<int> vec_a = importDefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> vec_b = importDefSigSpec(cell->getPort(ID::B), timestep); int a = ez->expression(ez->OpOr, vec_a); int b = ez->expression(ez->OpOr, vec_b); std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; if (cell->type == ID($logic_and)) ez->SET(ez->expression(ez->OpAnd, a, b), yy.at(0)); else ez->SET(ez->expression(ez->OpOr, a, b), yy.at(0)); for (size_t i = 1; i < y.size(); i++) ez->SET(ez->CONST_FALSE, yy.at(i)); if (model_undef) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); int a0 = ez->NOT(ez->OR(ez->expression(ezSAT::OpOr, vec_a), ez->expression(ezSAT::OpOr, undef_a))); int b0 = ez->NOT(ez->OR(ez->expression(ezSAT::OpOr, vec_b), ez->expression(ezSAT::OpOr, undef_b))); int a1 = ez->expression(ezSAT::OpOr, ez->vec_and(vec_a, ez->vec_not(undef_a))); int b1 = ez->expression(ezSAT::OpOr, ez->vec_and(vec_b, ez->vec_not(undef_b))); int aX = ez->expression(ezSAT::OpOr, undef_a); int bX = ez->expression(ezSAT::OpOr, undef_b); if (cell->type == ID($logic_and)) ez->SET(ez->AND(ez->OR(aX, bX), ez->NOT(ez->AND(a1, b1)), ez->NOT(a0), ez->NOT(b0)), undef_y.at(0)); else if (cell->type == ID($logic_or)) ez->SET(ez->AND(ez->OR(aX, bX), ez->NOT(ez->AND(a0, b0)), ez->NOT(a1), ez->NOT(b1)), undef_y.at(0)); else log_abort(); for (size_t i = 1; i < undef_y.size(); i++) ez->SET(ez->CONST_FALSE, undef_y.at(i)); undefGating(y, yy, undef_y); } return true; } if (cell->type.in(ID($lt), ID($le), ID($eq), ID($ne), ID($eqx), ID($nex), ID($ge), ID($gt))) { bool is_signed = cell->parameters[ID::A_SIGNED].as_bool() && cell->parameters[ID::B_SIGNED].as_bool(); std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep); std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); extendSignalWidth(a, b, cell); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; if (model_undef && cell->type.in(ID($eqx), ID($nex))) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep); extendSignalWidth(undef_a, undef_b, cell, true); a = ez->vec_or(a, undef_a); b = ez->vec_or(b, undef_b); } if (cell->type == ID($lt)) ez->SET(is_signed ? ez->vec_lt_signed(a, b) : ez->vec_lt_unsigned(a, b), yy.at(0)); if (cell->type == ID($le)) ez->SET(is_signed ? ez->vec_le_signed(a, b) : ez->vec_le_unsigned(a, b), yy.at(0)); if (cell->type.in(ID($eq), ID($eqx))) ez->SET(ez->vec_eq(a, b), yy.at(0)); if (cell->type.in(ID($ne), ID($nex))) ez->SET(ez->vec_ne(a, b), yy.at(0)); if (cell->type == ID($ge)) ez->SET(is_signed ? ez->vec_ge_signed(a, b) : ez->vec_ge_unsigned(a, b), yy.at(0)); if (cell->type == ID($gt)) ez->SET(is_signed ? ez->vec_gt_signed(a, b) : ez->vec_gt_unsigned(a, b), yy.at(0)); for (size_t i = 1; i < y.size(); i++) ez->SET(ez->CONST_FALSE, yy.at(i)); if (model_undef && cell->type.in(ID($eqx), ID($nex))) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); extendSignalWidth(undef_a, undef_b, cell, true); if (cell->type == ID($eqx)) yy.at(0) = ez->AND(yy.at(0), ez->vec_eq(undef_a, undef_b)); else yy.at(0) = ez->OR(yy.at(0), ez->vec_ne(undef_a, undef_b)); for (size_t i = 0; i < y.size(); i++) ez->SET(ez->CONST_FALSE, undef_y.at(i)); ez->assume(ez->vec_eq(y, yy)); } else if (model_undef && cell->type.in(ID($eq), ID($ne))) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); extendSignalWidth(undef_a, undef_b, cell, true); int undef_any_a = ez->expression(ezSAT::OpOr, undef_a); int undef_any_b = ez->expression(ezSAT::OpOr, undef_b); int undef_any = ez->OR(undef_any_a, undef_any_b); std::vector<int> masked_a_bits = ez->vec_or(a, ez->vec_or(undef_a, undef_b)); std::vector<int> masked_b_bits = ez->vec_or(b, ez->vec_or(undef_a, undef_b)); int masked_ne = ez->vec_ne(masked_a_bits, masked_b_bits); int undef_y_bit = ez->AND(undef_any, ez->NOT(masked_ne)); for (size_t i = 1; i < undef_y.size(); i++) ez->SET(ez->CONST_FALSE, undef_y.at(i)); ez->SET(undef_y_bit, undef_y.at(0)); undefGating(y, yy, undef_y); } else { if (model_undef) { std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); undefGating(y, yy, undef_y); } log_assert(!model_undef || arith_undef_handled); } return true; } if (cell->type.in(ID($shl), ID($shr), ID($sshl), ID($sshr), ID($shift), ID($shiftx))) { std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep); std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); int extend_bit = ez->CONST_FALSE; if (cell->parameters[ID::A_SIGNED].as_bool()) extend_bit = a.back(); while (y.size() < a.size()) y.push_back(ez->literal()); while (y.size() > a.size()) a.push_back(extend_bit); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; std::vector<int> shifted_a; if (cell->type.in( ID($shl), ID($sshl))) shifted_a = ez->vec_shift_left(a, b, false, ez->CONST_FALSE, ez->CONST_FALSE); if (cell->type == ID($shr)) shifted_a = ez->vec_shift_right(a, b, false, ez->CONST_FALSE, ez->CONST_FALSE); if (cell->type == ID($sshr)) shifted_a = ez->vec_shift_right(a, b, false, cell->parameters[ID::A_SIGNED].as_bool() ? a.back() : ez->CONST_FALSE, ez->CONST_FALSE); if (cell->type.in(ID($shift), ID($shiftx))) shifted_a = ez->vec_shift_right(a, b, cell->parameters[ID::B_SIGNED].as_bool(), ez->CONST_FALSE, ez->CONST_FALSE); ez->assume(ez->vec_eq(shifted_a, yy)); if (model_undef) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); std::vector<int> undef_a_shifted; extend_bit = cell->type == ID($shiftx) ? ez->CONST_TRUE : ez->CONST_FALSE; if (cell->parameters[ID::A_SIGNED].as_bool()) extend_bit = undef_a.back(); while (undef_y.size() < undef_a.size()) undef_y.push_back(ez->literal()); while (undef_y.size() > undef_a.size()) undef_a.push_back(extend_bit); if (cell->type.in(ID($shl), ID($sshl))) undef_a_shifted = ez->vec_shift_left(undef_a, b, false, ez->CONST_FALSE, ez->CONST_FALSE); if (cell->type == ID($shr)) undef_a_shifted = ez->vec_shift_right(undef_a, b, false, ez->CONST_FALSE, ez->CONST_FALSE); if (cell->type == ID($sshr)) undef_a_shifted = ez->vec_shift_right(undef_a, b, false, cell->parameters[ID::A_SIGNED].as_bool() ? undef_a.back() : ez->CONST_FALSE, ez->CONST_FALSE); if (cell->type == ID($shift)) undef_a_shifted = ez->vec_shift_right(undef_a, b, cell->parameters[ID::B_SIGNED].as_bool(), ez->CONST_FALSE, ez->CONST_FALSE); if (cell->type == ID($shiftx)) undef_a_shifted = ez->vec_shift_right(undef_a, b, cell->parameters[ID::B_SIGNED].as_bool(), ez->CONST_TRUE, ez->CONST_TRUE); int undef_any_b = ez->expression(ezSAT::OpOr, undef_b); std::vector<int> undef_all_y_bits(undef_y.size(), undef_any_b); ez->assume(ez->vec_eq(ez->vec_or(undef_a_shifted, undef_all_y_bits), undef_y)); undefGating(y, yy, undef_y); } return true; } if (cell->type == ID($mul)) { std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep); std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); extendSignalWidth(a, b, y, cell); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; std::vector<int> tmp(a.size(), ez->CONST_FALSE); for (int i = 0; i < int(a.size()); i++) { std::vector<int> shifted_a(a.size(), ez->CONST_FALSE); for (int j = i; j < int(a.size()); j++) shifted_a.at(j) = a.at(j-i); tmp = ez->vec_ite(b.at(i), ez->vec_add(tmp, shifted_a), tmp); } ez->assume(ez->vec_eq(tmp, yy)); if (model_undef) { log_assert(arith_undef_handled); std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); undefGating(y, yy, undef_y); } return true; } if (cell->type == ID($macc)) { std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); Macc macc; macc.from_cell(cell); std::vector<int> tmp(GetSize(y), ez->CONST_FALSE); for (auto &port : macc.ports) { std::vector<int> in_a = importDefSigSpec(port.in_a, timestep); std::vector<int> in_b = importDefSigSpec(port.in_b, timestep); while (GetSize(in_a) < GetSize(y)) in_a.push_back(port.is_signed && !in_a.empty() ? in_a.back() : ez->CONST_FALSE); in_a.resize(GetSize(y)); if (GetSize(in_b)) { while (GetSize(in_b) < GetSize(y)) in_b.push_back(port.is_signed && !in_b.empty() ? in_b.back() : ez->CONST_FALSE); in_b.resize(GetSize(y)); for (int i = 0; i < GetSize(in_b); i++) { std::vector<int> shifted_a(in_a.size(), ez->CONST_FALSE); for (int j = i; j < int(in_a.size()); j++) shifted_a.at(j) = in_a.at(j-i); if (port.do_subtract) tmp = ez->vec_ite(in_b.at(i), ez->vec_sub(tmp, shifted_a), tmp); else tmp = ez->vec_ite(in_b.at(i), ez->vec_add(tmp, shifted_a), tmp); } } else { if (port.do_subtract) tmp = ez->vec_sub(tmp, in_a); else tmp = ez->vec_add(tmp, in_a); } } if (model_undef) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep); int undef_any_a = ez->expression(ezSAT::OpOr, undef_a); int undef_any_b = ez->expression(ezSAT::OpOr, undef_b); std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); ez->assume(ez->vec_eq(undef_y, std::vector<int>(GetSize(y), ez->OR(undef_any_a, undef_any_b)))); undefGating(y, tmp, undef_y); } else ez->assume(ez->vec_eq(y, tmp)); return true; } if (cell->type.in(ID($div), ID($mod), ID($divfloor), ID($modfloor))) { std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep); std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); extendSignalWidth(a, b, y, cell); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; std::vector<int> a_u, b_u; if (cell->parameters[ID::A_SIGNED].as_bool() && cell->parameters[ID::B_SIGNED].as_bool()) { a_u = ez->vec_ite(a.back(), ez->vec_neg(a), a); b_u = ez->vec_ite(b.back(), ez->vec_neg(b), b); } else { a_u = a; b_u = b; } std::vector<int> chain_buf = a_u; std::vector<int> y_u(a_u.size(), ez->CONST_FALSE); for (int i = int(a.size())-1; i >= 0; i--) { chain_buf.insert(chain_buf.end(), chain_buf.size(), ez->CONST_FALSE); std::vector<int> b_shl(i, ez->CONST_FALSE); b_shl.insert(b_shl.end(), b_u.begin(), b_u.end()); b_shl.insert(b_shl.end(), chain_buf.size()-b_shl.size(), ez->CONST_FALSE); y_u.at(i) = ez->vec_ge_unsigned(chain_buf, b_shl); chain_buf = ez->vec_ite(y_u.at(i), ez->vec_sub(chain_buf, b_shl), chain_buf); chain_buf.erase(chain_buf.begin() + a_u.size(), chain_buf.end()); } std::vector<int> y_tmp = ignore_div_by_zero ? yy : ez->vec_var(y.size()); // modulo calculation std::vector<int> modulo_trunc; int floored_eq_trunc; if (cell->parameters[ID::A_SIGNED].as_bool() && cell->parameters[ID::B_SIGNED].as_bool()) { modulo_trunc = ez->vec_ite(a.back(), ez->vec_neg(chain_buf), chain_buf); // floor == trunc when sgn(a) == sgn(b) or trunc == 0 floored_eq_trunc = ez->OR(ez->IFF(a.back(), b.back()), ez->NOT(ez->expression(ezSAT::OpOr, modulo_trunc))); } else { modulo_trunc = chain_buf; floored_eq_trunc = ez->CONST_TRUE; } if (cell->type == ID($div)) { if (cell->parameters[ID::A_SIGNED].as_bool() && cell->parameters[ID::B_SIGNED].as_bool()) ez->assume(ez->vec_eq(y_tmp, ez->vec_ite(ez->XOR(a.back(), b.back()), ez->vec_neg(y_u), y_u))); else ez->assume(ez->vec_eq(y_tmp, y_u)); } else if (cell->type == ID($mod)) { ez->assume(ez->vec_eq(y_tmp, modulo_trunc)); } else if (cell->type == ID($divfloor)) { if (cell->parameters[ID::A_SIGNED].as_bool() && cell->parameters[ID::B_SIGNED].as_bool()) ez->assume(ez->vec_eq(y_tmp, ez->vec_ite( ez->XOR(a.back(), b.back()), ez->vec_neg(ez->vec_ite( ez->vec_reduce_or(modulo_trunc), ez->vec_add(y_u, ez->vec_const_unsigned(1, y_u.size())), y_u )), y_u ))); else ez->assume(ez->vec_eq(y_tmp, y_u)); } else if (cell->type == ID($modfloor)) { ez->assume(ez->vec_eq(y_tmp, ez->vec_ite(floored_eq_trunc, modulo_trunc, ez->vec_add(modulo_trunc, b)))); } if (ignore_div_by_zero) { ez->assume(ez->expression(ezSAT::OpOr, b)); } else { std::vector<int> div_zero_result; if (cell->type.in(ID($div), ID($divfloor))) { if (cell->parameters[ID::A_SIGNED].as_bool() && cell->parameters[ID::B_SIGNED].as_bool()) { std::vector<int> all_ones(y.size(), ez->CONST_TRUE); std::vector<int> only_first_one(y.size(), ez->CONST_FALSE); only_first_one.at(0) = ez->CONST_TRUE; div_zero_result = ez->vec_ite(a.back(), only_first_one, all_ones); } else { div_zero_result.insert(div_zero_result.end(), cell->getPort(ID::A).size(), ez->CONST_TRUE); div_zero_result.insert(div_zero_result.end(), y.size() - div_zero_result.size(), ez->CONST_FALSE); } } else if (cell->type.in(ID($mod), ID($modfloor))) { // a mod 0 = a int copy_a_bits = min(cell->getPort(ID::A).size(), cell->getPort(ID::B).size()); div_zero_result.insert(div_zero_result.end(), a.begin(), a.begin() + copy_a_bits); if (cell->parameters[ID::A_SIGNED].as_bool() && cell->parameters[ID::B_SIGNED].as_bool()) div_zero_result.insert(div_zero_result.end(), y.size() - div_zero_result.size(), div_zero_result.back()); else div_zero_result.insert(div_zero_result.end(), y.size() - div_zero_result.size(), ez->CONST_FALSE); } ez->assume(ez->vec_eq(yy, ez->vec_ite(ez->expression(ezSAT::OpOr, b), y_tmp, div_zero_result))); } if (model_undef) { log_assert(arith_undef_handled); std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); undefGating(y, yy, undef_y); } return true; } if (cell->type == ID($lut)) { std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); std::vector<int> lut; for (auto bit : cell->getParam(ID::LUT)) lut.push_back(bit == State::S1 ? ez->CONST_TRUE : ez->CONST_FALSE); while (GetSize(lut) < (1 << GetSize(a))) lut.push_back(ez->CONST_FALSE); lut.resize(1 << GetSize(a)); if (model_undef) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> t(lut), u(GetSize(t), ez->CONST_FALSE); for (int i = GetSize(a)-1; i >= 0; i--) { std::vector<int> t0(t.begin(), t.begin() + GetSize(t)/2); std::vector<int> t1(t.begin() + GetSize(t)/2, t.end()); std::vector<int> u0(u.begin(), u.begin() + GetSize(u)/2); std::vector<int> u1(u.begin() + GetSize(u)/2, u.end()); t = ez->vec_ite(a[i], t1, t0); u = ez->vec_ite(undef_a[i], ez->vec_or(ez->vec_xor(t0, t1), ez->vec_or(u0, u1)), ez->vec_ite(a[i], u1, u0)); } log_assert(GetSize(t) == 1); log_assert(GetSize(u) == 1); undefGating(y, t, u); ez->assume(ez->vec_eq(importUndefSigSpec(cell->getPort(ID::Y), timestep), u)); } else { std::vector<int> t = lut; for (int i = GetSize(a)-1; i >= 0; i--) { std::vector<int> t0(t.begin(), t.begin() + GetSize(t)/2); std::vector<int> t1(t.begin() + GetSize(t)/2, t.end()); t = ez->vec_ite(a[i], t1, t0); } log_assert(GetSize(t) == 1); ez->assume(ez->vec_eq(y, t)); } return true; } if (cell->type == ID($sop)) { std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); int y = importDefSigSpec(cell->getPort(ID::Y), timestep).at(0); int width = cell->getParam(ID::WIDTH).as_int(); int depth = cell->getParam(ID::DEPTH).as_int(); vector<State> table_raw = cell->getParam(ID::TABLE).to_bits(); while (GetSize(table_raw) < 2*width*depth) table_raw.push_back(State::S0); vector<vector<int>> table(depth); for (int i = 0; i < depth; i++) for (int j = 0; j < width; j++) { bool pat0 = (table_raw[2*width*i + 2*j + 0] == State::S1); bool pat1 = (table_raw[2*width*i + 2*j + 1] == State::S1); if (pat0 && !pat1) table.at(i).push_back(0); else if (!pat0 && pat1) table.at(i).push_back(1); else table.at(i).push_back(-1); } if (model_undef) { std::vector<int> products, undef_products; std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); int undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep).at(0); for (int i = 0; i < depth; i++) { std::vector<int> cmp_a, cmp_ua, cmp_b; for (int j = 0; j < width; j++) if (table.at(i).at(j) >= 0) { cmp_a.push_back(a.at(j)); cmp_ua.push_back(undef_a.at(j)); cmp_b.push_back(table.at(i).at(j) ? ez->CONST_TRUE : ez->CONST_FALSE); } std::vector<int> masked_a = ez->vec_or(cmp_a, cmp_ua); std::vector<int> masked_b = ez->vec_or(cmp_b, cmp_ua); int masked_eq = ez->vec_eq(masked_a, masked_b); int any_undef = ez->expression(ezSAT::OpOr, cmp_ua); undef_products.push_back(ez->AND(any_undef, masked_eq)); products.push_back(ez->AND(ez->NOT(any_undef), masked_eq)); } int yy = ez->expression(ezSAT::OpOr, products); ez->SET(undef_y, ez->AND(ez->NOT(yy), ez->expression(ezSAT::OpOr, undef_products))); undefGating(y, yy, undef_y); } else { std::vector<int> products; for (int i = 0; i < depth; i++) { std::vector<int> cmp_a, cmp_b; for (int j = 0; j < width; j++) if (table.at(i).at(j) >= 0) { cmp_a.push_back(a.at(j)); cmp_b.push_back(table.at(i).at(j) ? ez->CONST_TRUE : ez->CONST_FALSE); } products.push_back(ez->vec_eq(cmp_a, cmp_b)); } ez->SET(y, ez->expression(ezSAT::OpOr, products)); } return true; } if (cell->type == ID($fa)) { std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep); std::vector<int> c = importDefSigSpec(cell->getPort(ID::C), timestep); std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); std::vector<int> x = importDefSigSpec(cell->getPort(ID::X), timestep); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; std::vector<int> xx = model_undef ? ez->vec_var(x.size()) : x; std::vector<int> t1 = ez->vec_xor(a, b); ez->assume(ez->vec_eq(yy, ez->vec_xor(t1, c))); std::vector<int> t2 = ez->vec_and(a, b); std::vector<int> t3 = ez->vec_and(c, t1); ez->assume(ez->vec_eq(xx, ez->vec_or(t2, t3))); if (model_undef) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep); std::vector<int> undef_c = importUndefSigSpec(cell->getPort(ID::C), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); std::vector<int> undef_x = importUndefSigSpec(cell->getPort(ID::X), timestep); ez->assume(ez->vec_eq(undef_y, ez->vec_or(ez->vec_or(undef_a, undef_b), undef_c))); ez->assume(ez->vec_eq(undef_x, undef_y)); undefGating(y, yy, undef_y); undefGating(x, xx, undef_x); } return true; } if (cell->type == ID($lcu)) { std::vector<int> p = importDefSigSpec(cell->getPort(ID::P), timestep); std::vector<int> g = importDefSigSpec(cell->getPort(ID::G), timestep); std::vector<int> ci = importDefSigSpec(cell->getPort(ID::CI), timestep); std::vector<int> co = importDefSigSpec(cell->getPort(ID::CO), timestep); std::vector<int> yy = model_undef ? ez->vec_var(co.size()) : co; for (int i = 0; i < GetSize(co); i++) ez->SET(yy[i], ez->OR(g[i], ez->AND(p[i], i ? yy[i-1] : ci[0]))); if (model_undef) { std::vector<int> undef_p = importUndefSigSpec(cell->getPort(ID::P), timestep); std::vector<int> undef_g = importUndefSigSpec(cell->getPort(ID::G), timestep); std::vector<int> undef_ci = importUndefSigSpec(cell->getPort(ID::CI), timestep); std::vector<int> undef_co = importUndefSigSpec(cell->getPort(ID::CO), timestep); int undef_any_p = ez->expression(ezSAT::OpOr, undef_p); int undef_any_g = ez->expression(ezSAT::OpOr, undef_g); int undef_any_ci = ez->expression(ezSAT::OpOr, undef_ci); int undef_co_bit = ez->OR(undef_any_p, undef_any_g, undef_any_ci); std::vector<int> undef_co_bits(undef_co.size(), undef_co_bit); ez->assume(ez->vec_eq(undef_co_bits, undef_co)); undefGating(co, yy, undef_co); } return true; } if (cell->type == ID($alu)) { std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> b = importDefSigSpec(cell->getPort(ID::B), timestep); std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); std::vector<int> x = importDefSigSpec(cell->getPort(ID::X), timestep); std::vector<int> ci = importDefSigSpec(cell->getPort(ID::CI), timestep); std::vector<int> bi = importDefSigSpec(cell->getPort(ID::BI), timestep); std::vector<int> co = importDefSigSpec(cell->getPort(ID::CO), timestep); extendSignalWidth(a, b, y, cell); extendSignalWidth(a, b, x, cell); extendSignalWidth(a, b, co, cell); std::vector<int> def_y = model_undef ? ez->vec_var(y.size()) : y; std::vector<int> def_x = model_undef ? ez->vec_var(x.size()) : x; std::vector<int> def_co = model_undef ? ez->vec_var(co.size()) : co; log_assert(GetSize(y) == GetSize(x)); log_assert(GetSize(y) == GetSize(co)); log_assert(GetSize(ci) == 1); log_assert(GetSize(bi) == 1); for (int i = 0; i < GetSize(y); i++) { int s1 = a.at(i), s2 = ez->XOR(b.at(i), bi.at(0)), s3 = i ? co.at(i-1) : ci.at(0); ez->SET(def_x.at(i), ez->XOR(s1, s2)); ez->SET(def_y.at(i), ez->XOR(def_x.at(i), s3)); ez->SET(def_co.at(i), ez->OR(ez->AND(s1, s2), ez->AND(s1, s3), ez->AND(s2, s3))); } if (model_undef) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> undef_b = importUndefSigSpec(cell->getPort(ID::B), timestep); std::vector<int> undef_ci = importUndefSigSpec(cell->getPort(ID::CI), timestep); std::vector<int> undef_bi = importUndefSigSpec(cell->getPort(ID::BI), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); std::vector<int> undef_x = importUndefSigSpec(cell->getPort(ID::X), timestep); std::vector<int> undef_co = importUndefSigSpec(cell->getPort(ID::CO), timestep); extendSignalWidth(undef_a, undef_b, undef_y, cell); extendSignalWidth(undef_a, undef_b, undef_x, cell); extendSignalWidth(undef_a, undef_b, undef_co, cell); std::vector<int> all_inputs_undef; all_inputs_undef.insert(all_inputs_undef.end(), undef_a.begin(), undef_a.end()); all_inputs_undef.insert(all_inputs_undef.end(), undef_b.begin(), undef_b.end()); all_inputs_undef.insert(all_inputs_undef.end(), undef_ci.begin(), undef_ci.end()); all_inputs_undef.insert(all_inputs_undef.end(), undef_bi.begin(), undef_bi.end()); int undef_any = ez->expression(ezSAT::OpOr, all_inputs_undef); for (int i = 0; i < GetSize(undef_y); i++) { ez->SET(undef_y.at(i), undef_any); ez->SET(undef_x.at(i), ez->OR(undef_a.at(i), undef_b.at(i), undef_bi.at(0))); ez->SET(undef_co.at(i), undef_any); } undefGating(y, def_y, undef_y); undefGating(x, def_x, undef_x); undefGating(co, def_co, undef_co); } return true; } if (cell->type == ID($slice)) { RTLIL::SigSpec a = cell->getPort(ID::A); RTLIL::SigSpec y = cell->getPort(ID::Y); ez->assume(signals_eq(a.extract(cell->parameters.at(ID::OFFSET).as_int(), y.size()), y, timestep)); return true; } if (cell->type == ID($concat)) { RTLIL::SigSpec a = cell->getPort(ID::A); RTLIL::SigSpec b = cell->getPort(ID::B); RTLIL::SigSpec y = cell->getPort(ID::Y); RTLIL::SigSpec ab = a; ab.append(b); ez->assume(signals_eq(ab, y, timestep)); return true; } if (timestep > 0 && (RTLIL::builtin_ff_cell_types().count(cell->type) || cell->type == ID($anyinit))) { FfData ff(nullptr, cell); // Latches and FFs with async inputs are not supported — use clk2fflogic or async2sync first. if (ff.has_aload || ff.has_arst || ff.has_sr) return false; if (timestep == 1) { initial_state.add((*sigmap)(cell->getPort(ID::Q))); if (model_undef && def_formal) { std::vector<int> undef_q = importUndefSigSpec(cell->getPort(ID::Q), timestep); ez->assume(ez->NOT(ez->vec_reduce_or(undef_q))); } } else { std::vector<int> d = importDefSigSpec(cell->getPort(ID::D), timestep-1); std::vector<int> undef_d; if (model_undef) undef_d = importUndefSigSpec(cell->getPort(ID::D), timestep-1); if (ff.has_srst && ff.has_ce && ff.ce_over_srst) { int srst = importDefSigSpec(ff.sig_srst, timestep-1).at(0); std::vector<int> rval = importDefSigSpec(ff.val_srst, timestep-1); int undef_srst = -1; std::vector<int> undef_rval; if (model_undef) { undef_srst = importUndefSigSpec(ff.sig_srst, timestep-1).at(0); undef_rval = importUndefSigSpec(ff.val_srst, timestep-1); } if (ff.pol_srst) std::tie(d, undef_d) = mux(srst, undef_srst, d, undef_d, rval, undef_rval); else std::tie(d, undef_d) = mux(srst, undef_srst, rval, undef_rval, d, undef_d); } if (ff.has_ce) { int ce = importDefSigSpec(ff.sig_ce, timestep-1).at(0); std::vector<int> old_q = importDefSigSpec(ff.sig_q, timestep-1); int undef_ce = -1; std::vector<int> undef_old_q; if (model_undef) { undef_ce = importUndefSigSpec(ff.sig_ce, timestep-1).at(0); undef_old_q = importUndefSigSpec(ff.sig_q, timestep-1); } if (ff.pol_ce) std::tie(d, undef_d) = mux(ce, undef_ce, old_q, undef_old_q, d, undef_d); else std::tie(d, undef_d) = mux(ce, undef_ce, d, undef_d, old_q, undef_old_q); } if (ff.has_srst && !(ff.has_ce && ff.ce_over_srst)) { int srst = importDefSigSpec(ff.sig_srst, timestep-1).at(0); std::vector<int> rval = importDefSigSpec(ff.val_srst, timestep-1); int undef_srst = -1; std::vector<int> undef_rval; if (model_undef) { undef_srst = importUndefSigSpec(ff.sig_srst, timestep-1).at(0); undef_rval = importUndefSigSpec(ff.val_srst, timestep-1); } if (ff.pol_srst) std::tie(d, undef_d) = mux(srst, undef_srst, d, undef_d, rval, undef_rval); else std::tie(d, undef_d) = mux(srst, undef_srst, rval, undef_rval, d, undef_d); } std::vector<int> q = importDefSigSpec(cell->getPort(ID::Q), timestep); std::vector<int> qq = model_undef ? ez->vec_var(q.size()) : q; ez->assume(ez->vec_eq(d, qq)); if (model_undef) { std::vector<int> undef_q = importUndefSigSpec(cell->getPort(ID::Q), timestep); ez->assume(ez->vec_eq(undef_d, undef_q)); undefGating(q, qq, undef_q); } } return true; } if (cell->type == ID($anyconst)) { if (timestep < 2) { if (model_undef && def_formal) { std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); ez->assume(ez->NOT(ez->vec_reduce_or(undef_y))); } return true; } std::vector<int> d = importDefSigSpec(cell->getPort(ID::Y), timestep-1); std::vector<int> q = importDefSigSpec(cell->getPort(ID::Y), timestep); std::vector<int> qq = (model_undef && !def_formal) ? ez->vec_var(q.size()) : q; ez->assume(ez->vec_eq(d, qq)); if (model_undef) { std::vector<int> undef_d = importUndefSigSpec(cell->getPort(ID::Y), timestep-1); std::vector<int> undef_q = importUndefSigSpec(cell->getPort(ID::Y), timestep); if (def_formal) { for (auto &undef_q_bit : undef_q) ez->SET(ez->CONST_FALSE, undef_q_bit); } else { ez->assume(ez->vec_eq(undef_d, undef_q)); undefGating(q, qq, undef_q); } } return true; } if (cell->type == ID($anyseq)) { if (model_undef && def_formal) { std::vector<int> undef_q = importUndefSigSpec(cell->getPort(ID::Y), timestep); for (auto &undef_q_bit : undef_q) ez->SET(ez->CONST_FALSE, undef_q_bit); } return true; } if (cell->type.in(ID($_BUF_), ID($equiv))) { std::vector<int> a = importDefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); extendSignalWidthUnary(a, y, cell); std::vector<int> yy = model_undef ? ez->vec_var(y.size()) : y; ez->assume(ez->vec_eq(a, yy)); if (model_undef) { std::vector<int> undef_a = importUndefSigSpec(cell->getPort(ID::A), timestep); std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); extendSignalWidthUnary(undef_a, undef_y, cell, false); ez->assume(ez->vec_eq(undef_a, undef_y)); undefGating(y, yy, undef_y); } return true; } if (cell->type == ID($initstate)) { auto key = make_pair(prefix, timestep); if (initstates.count(key) == 0) initstates[key] = false; std::vector<int> y = importDefSigSpec(cell->getPort(ID::Y), timestep); log_assert(GetSize(y) == 1); ez->SET(y[0], initstates[key] ? ez->CONST_TRUE : ez->CONST_FALSE); if (model_undef) { std::vector<int> undef_y = importUndefSigSpec(cell->getPort(ID::Y), timestep); log_assert(GetSize(undef_y) == 1); ez->SET(undef_y[0], ez->CONST_FALSE); } return true; } if (cell->type == ID($assert)) { std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); asserts_a[pf].append((*sigmap)(cell->getPort(ID::A))); asserts_en[pf].append((*sigmap)(cell->getPort(ID::EN))); return true; } if (cell->type == ID($assume)) { std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); assumes_a[pf].append((*sigmap)(cell->getPort(ID::A))); assumes_en[pf].append((*sigmap)(cell->getPort(ID::EN))); return true; } if (cell->type == ID($scopeinfo)) { return true; } // Unsupported internal cell types: $pow $fsm $mem* // .. and all sequential cells with asynchronous inputs return false; }