/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/compatibility.h" #include "kernel/rtlil.h" #include "kernel/log.h" #include "frontends/verilog/verilog_frontend.h" #include "backends/ilang/ilang_backend.h" #include #include #include int RTLIL::autoidx = 1; RTLIL::Const::Const() { flags = RTLIL::CONST_FLAG_NONE; } RTLIL::Const::Const(std::string str) { flags = RTLIL::CONST_FLAG_STRING; for (int i = str.size()-1; i >= 0; i--) { unsigned char ch = str[i]; for (int j = 0; j < 8; j++) { bits.push_back((ch & 1) != 0 ? RTLIL::S1 : RTLIL::S0); ch = ch >> 1; } } } RTLIL::Const::Const(int val, int width) { flags = RTLIL::CONST_FLAG_NONE; for (int i = 0; i < width; i++) { bits.push_back((val & 1) != 0 ? RTLIL::S1 : RTLIL::S0); val = val >> 1; } } RTLIL::Const::Const(RTLIL::State bit, int width) { flags = RTLIL::CONST_FLAG_NONE; for (int i = 0; i < width; i++) bits.push_back(bit); } bool RTLIL::Const::operator <(const RTLIL::Const &other) const { if (bits.size() != other.bits.size()) return bits.size() < other.bits.size(); for (size_t i = 0; i < bits.size(); i++) if (bits[i] != other.bits[i]) return bits[i] < other.bits[i]; return false; } bool RTLIL::Const::operator ==(const RTLIL::Const &other) const { return bits == other.bits; } bool RTLIL::Const::operator !=(const RTLIL::Const &other) const { return bits != other.bits; } bool RTLIL::Const::as_bool() const { for (size_t i = 0; i < bits.size(); i++) if (bits[i] == RTLIL::S1) return true; return false; } int RTLIL::Const::as_int() const { int ret = 0; for (size_t i = 0; i < bits.size() && i < 32; i++) if (bits[i] == RTLIL::S1) ret |= 1 << i; return ret; } std::string RTLIL::Const::as_string() const { std::string ret; for (size_t i = bits.size(); i > 0; i--) switch (bits[i-1]) { case S0: ret += "0"; break; case S1: ret += "1"; break; case Sx: ret += "x"; break; case Sz: ret += "z"; break; case Sa: ret += "-"; break; case Sm: ret += "m"; break; } return ret; } std::string RTLIL::Const::decode_string() const { std::string string; std::vector string_chars; for (int i = 0; i < int (bits.size()); i += 8) { char ch = 0; for (int j = 0; j < 8 && i + j < int (bits.size()); j++) if (bits[i + j] == RTLIL::State::S1) ch |= 1 << j; if (ch != 0) string_chars.push_back(ch); } for (int i = int (string_chars.size()) - 1; i >= 0; i--) string += string_chars[i]; return string; } bool RTLIL::Selection::selected_module(RTLIL::IdString mod_name) const { if (full_selection) return true; if (selected_modules.count(mod_name) > 0) return true; if (selected_members.count(mod_name) > 0) return true; return false; } bool RTLIL::Selection::selected_whole_module(RTLIL::IdString mod_name) const { if (full_selection) return true; if (selected_modules.count(mod_name) > 0) return true; return false; } bool RTLIL::Selection::selected_member(RTLIL::IdString mod_name, RTLIL::IdString memb_name) const { if (full_selection) return true; if (selected_modules.count(mod_name) > 0) return true; if (selected_members.count(mod_name) > 0) if (selected_members.at(mod_name).count(memb_name) > 0) return true; return false; } void RTLIL::Selection::optimize(RTLIL::Design *design) { if (full_selection) { selected_modules.clear(); selected_members.clear(); return; } std::vector del_list, add_list; del_list.clear(); for (auto mod_name : selected_modules) { if (design->modules.count(mod_name) == 0) del_list.push_back(mod_name); selected_members.erase(mod_name); } for (auto mod_name : del_list) selected_modules.erase(mod_name); del_list.clear(); for (auto &it : selected_members) if (design->modules.count(it.first) == 0) del_list.push_back(it.first); for (auto mod_name : del_list) selected_members.erase(mod_name); for (auto &it : selected_members) { del_list.clear(); for (auto memb_name : it.second) if (design->modules[it.first]->count_id(memb_name) == 0) del_list.push_back(memb_name); for (auto memb_name : del_list) it.second.erase(memb_name); } del_list.clear(); add_list.clear(); for (auto &it : selected_members) if (it.second.size() == 0) del_list.push_back(it.first); else if (it.second.size() == design->modules[it.first]->wires.size() + design->modules[it.first]->memories.size() + design->modules[it.first]->cells.size() + design->modules[it.first]->processes.size()) add_list.push_back(it.first); for (auto mod_name : del_list) selected_members.erase(mod_name); for (auto mod_name : add_list) { selected_members.erase(mod_name); selected_modules.insert(mod_name); } if (selected_modules.size() == design->modules.size()) { full_selection = true; selected_modules.clear(); selected_members.clear(); } } RTLIL::Design::~Design() { for (auto it = modules.begin(); it != modules.end(); it++) delete it->second; } void RTLIL::Design::check() { #ifndef NDEBUG for (auto &it : modules) { assert(it.first == it.second->name); assert(it.first.size() > 0 && (it.first[0] == '\\' || it.first[0] == '$')); it.second->check(); } #endif } void RTLIL::Design::optimize() { for (auto &it : modules) it.second->optimize(); for (auto &it : selection_stack) it.optimize(this); for (auto &it : selection_vars) it.second.optimize(this); } bool RTLIL::Design::selected_module(RTLIL::IdString mod_name) const { if (!selected_active_module.empty() && mod_name != selected_active_module) return false; if (selection_stack.size() == 0) return true; return selection_stack.back().selected_module(mod_name); } bool RTLIL::Design::selected_whole_module(RTLIL::IdString mod_name) const { if (!selected_active_module.empty() && mod_name != selected_active_module) return false; if (selection_stack.size() == 0) return true; return selection_stack.back().selected_whole_module(mod_name); } bool RTLIL::Design::selected_member(RTLIL::IdString mod_name, RTLIL::IdString memb_name) const { if (!selected_active_module.empty() && mod_name != selected_active_module) return false; if (selection_stack.size() == 0) return true; return selection_stack.back().selected_member(mod_name, memb_name); } RTLIL::Module::~Module() { for (auto it = wires.begin(); it != wires.end(); it++) delete it->second; for (auto it = memories.begin(); it != memories.end(); it++) delete it->second; for (auto it = cells.begin(); it != cells.end(); it++) delete it->second; for (auto it = processes.begin(); it != processes.end(); it++) delete it->second; } RTLIL::IdString RTLIL::Module::derive(RTLIL::Design*, std::map) { log_error("Module `%s' is used with parameters but is not parametric!\n", id2cstr(name)); } size_t RTLIL::Module::count_id(RTLIL::IdString id) { return wires.count(id) + memories.count(id) + cells.count(id) + processes.count(id); } #ifndef NDEBUG namespace { struct InternalCellChecker { RTLIL::Module *module; RTLIL::Cell *cell; std::set expected_params, expected_ports; InternalCellChecker(RTLIL::Module *module, RTLIL::Cell *cell) : module(module), cell(cell) { } void error(int linenr) { char *ptr; size_t size; FILE *f = open_memstream(&ptr, &size); ILANG_BACKEND::dump_cell(f, " ", cell); fputc(0, f); fclose(f); log_error("Found error in internal cell %s%s%s (%s) at %s:%d:\n%s", module ? module->name.c_str() : "", module ? "." : "", cell->name.c_str(), cell->type.c_str(), __FILE__, linenr, ptr); } int param(const char *name) { if (cell->parameters.count(name) == 0) error(__LINE__); expected_params.insert(name); return cell->parameters.at(name).as_int(); } int param_bool(const char *name) { int v = param(name); if (cell->parameters.at(name).bits.size() > 32) error(__LINE__); if (v != 0 && v != 1) error(__LINE__); return v; } void param_bits(const char *name, int width) { param(name); if (int(cell->parameters.at(name).bits.size()) != width) error(__LINE__); } void port(const char *name, int width) { if (cell->connections.count(name) == 0) error(__LINE__); if (cell->connections.at(name).size() != width) error(__LINE__); expected_ports.insert(name); } void check_expected(bool check_matched_sign = true) { for (auto ¶ : cell->parameters) if (expected_params.count(para.first) == 0) error(__LINE__); for (auto &conn : cell->connections) if (expected_ports.count(conn.first) == 0) error(__LINE__); if (expected_params.count("\\A_SIGNED") != 0 && expected_params.count("\\B_SIGNED") && check_matched_sign) { bool a_is_signed = param("\\A_SIGNED") != 0; bool b_is_signed = param("\\B_SIGNED") != 0; if (a_is_signed != b_is_signed) error(__LINE__); } } void check_gate(const char *ports) { if (cell->parameters.size() != 0) error(__LINE__); for (const char *p = ports; *p; p++) { char portname[3] = { '\\', *p, 0 }; if (cell->connections.count(portname) == 0) error(__LINE__); if (cell->connections.at(portname).size() != 1) error(__LINE__); } for (auto &conn : cell->connections) { if (conn.first.size() != 2 || conn.first.at(0) != '\\') error(__LINE__); if (strchr(ports, conn.first.at(1)) == NULL) error(__LINE__); } } void check() { if (cell->type[0] != '$' || cell->type.substr(0, 3) == "$__" || cell->type.substr(0, 8) == "$paramod" || cell->type.substr(0, 9) == "$verific$" || cell->type.substr(0, 7) == "$array:") return; if (cell->type == "$not" || cell->type == "$pos" || cell->type == "$bu0" || cell->type == "$neg") { param_bool("\\A_SIGNED"); port("\\A", param("\\A_WIDTH")); port("\\Y", param("\\Y_WIDTH")); check_expected(); return; } if (cell->type == "$and" || cell->type == "$or" || cell->type == "$xor" || cell->type == "$xnor") { param_bool("\\A_SIGNED"); param_bool("\\B_SIGNED"); port("\\A", param("\\A_WIDTH")); port("\\B", param("\\B_WIDTH")); port("\\Y", param("\\Y_WIDTH")); check_expected(); return; } if (cell->type == "$reduce_and" || cell->type == "$reduce_or" || cell->type == "$reduce_xor" || cell->type == "$reduce_xnor" || cell->type == "$reduce_bool") { param_bool("\\A_SIGNED"); port("\\A", param("\\A_WIDTH")); port("\\Y", param("\\Y_WIDTH")); check_expected(); return; } if (cell->type == "$shl" || cell->type == "$shr" || cell->type == "$sshl" || cell->type == "$sshr") { param_bool("\\A_SIGNED"); param_bool("\\B_SIGNED"); port("\\A", param("\\A_WIDTH")); port("\\B", param("\\B_WIDTH")); port("\\Y", param("\\Y_WIDTH")); check_expected(false); return; } if (cell->type == "$lt" || cell->type == "$le" || cell->type == "$eq" || cell->type == "$ne" || cell->type == "$eqx" || cell->type == "$nex" || cell->type == "$ge" || cell->type == "$gt") { param_bool("\\A_SIGNED"); param_bool("\\B_SIGNED"); port("\\A", param("\\A_WIDTH")); port("\\B", param("\\B_WIDTH")); port("\\Y", param("\\Y_WIDTH")); check_expected(); return; } if (cell->type == "$add" || cell->type == "$sub" || cell->type == "$mul" || cell->type == "$div" || cell->type == "$mod" || cell->type == "$pow") { param_bool("\\A_SIGNED"); param_bool("\\B_SIGNED"); port("\\A", param("\\A_WIDTH")); port("\\B", param("\\B_WIDTH")); port("\\Y", param("\\Y_WIDTH")); check_expected(cell->type != "$pow"); return; } if (cell->type == "$logic_not") { param_bool("\\A_SIGNED"); port("\\A", param("\\A_WIDTH")); port("\\Y", param("\\Y_WIDTH")); check_expected(); return; } if (cell->type == "$logic_and" || cell->type == "$logic_or") { param_bool("\\A_SIGNED"); param_bool("\\B_SIGNED"); port("\\A", param("\\A_WIDTH")); port("\\B", param("\\B_WIDTH")); port("\\Y", param("\\Y_WIDTH")); check_expected(false); return; } if (cell->type == "$slice") { param("\\OFFSET"); port("\\A", param("\\A_WIDTH")); port("\\Y", param("\\Y_WIDTH")); if (param("\\OFFSET") + param("\\Y_WIDTH") > param("\\A_WIDTH")) error(__LINE__); check_expected(); return; } if (cell->type == "$concat") { port("\\A", param("\\A_WIDTH")); port("\\B", param("\\B_WIDTH")); port("\\Y", param("\\A_WIDTH") + param("\\B_WIDTH")); check_expected(); return; } if (cell->type == "$mux") { port("\\A", param("\\WIDTH")); port("\\B", param("\\WIDTH")); port("\\S", 1); port("\\Y", param("\\WIDTH")); check_expected(); return; } if (cell->type == "$pmux" || cell->type == "$safe_pmux") { port("\\A", param("\\WIDTH")); port("\\B", param("\\WIDTH") * param("\\S_WIDTH")); port("\\S", param("\\S_WIDTH")); port("\\Y", param("\\WIDTH")); check_expected(); return; } if (cell->type == "$lut") { param("\\LUT"); port("\\I", param("\\WIDTH")); port("\\O", 1); check_expected(); return; } if (cell->type == "$sr") { param_bool("\\SET_POLARITY"); param_bool("\\CLR_POLARITY"); port("\\SET", param("\\WIDTH")); port("\\CLR", param("\\WIDTH")); port("\\Q", param("\\WIDTH")); check_expected(); return; } if (cell->type == "$dff") { param_bool("\\CLK_POLARITY"); port("\\CLK", 1); port("\\D", param("\\WIDTH")); port("\\Q", param("\\WIDTH")); check_expected(); return; } if (cell->type == "$dffsr") { param_bool("\\CLK_POLARITY"); param_bool("\\SET_POLARITY"); param_bool("\\CLR_POLARITY"); port("\\CLK", 1); port("\\SET", param("\\WIDTH")); port("\\CLR", param("\\WIDTH")); port("\\D", param("\\WIDTH")); port("\\Q", param("\\WIDTH")); check_expected(); return; } if (cell->type == "$adff") { param_bool("\\CLK_POLARITY"); param_bool("\\ARST_POLARITY"); param_bits("\\ARST_VALUE", param("\\WIDTH")); port("\\CLK", 1); port("\\ARST", 1); port("\\D", param("\\WIDTH")); port("\\Q", param("\\WIDTH")); check_expected(); return; } if (cell->type == "$dlatch") { param_bool("\\EN_POLARITY"); port("\\EN", 1); port("\\D", param("\\WIDTH")); port("\\Q", param("\\WIDTH")); check_expected(); return; } if (cell->type == "$dlatchsr") { param_bool("\\EN_POLARITY"); param_bool("\\SET_POLARITY"); param_bool("\\CLR_POLARITY"); port("\\EN", 1); port("\\SET", param("\\WIDTH")); port("\\CLR", param("\\WIDTH")); port("\\D", param("\\WIDTH")); port("\\Q", param("\\WIDTH")); check_expected(); return; } if (cell->type == "$fsm") { param("\\NAME"); param_bool("\\CLK_POLARITY"); param_bool("\\ARST_POLARITY"); param("\\STATE_BITS"); param("\\STATE_NUM"); param("\\STATE_NUM_LOG2"); param("\\STATE_RST"); param_bits("\\STATE_TABLE", param("\\STATE_BITS") * param("\\STATE_NUM")); param("\\TRANS_NUM"); param_bits("\\TRANS_TABLE", param("\\TRANS_NUM") * (2*param("\\STATE_NUM_LOG2") + param("\\CTRL_IN_WIDTH") + param("\\CTRL_OUT_WIDTH"))); port("\\CLK", 1); port("\\ARST", 1); port("\\CTRL_IN", param("\\CTRL_IN_WIDTH")); port("\\CTRL_OUT", param("\\CTRL_OUT_WIDTH")); check_expected(); return; } if (cell->type == "$memrd") { param("\\MEMID"); param_bool("\\CLK_ENABLE"); param_bool("\\CLK_POLARITY"); param_bool("\\TRANSPARENT"); port("\\CLK", 1); port("\\ADDR", param("\\ABITS")); port("\\DATA", param("\\WIDTH")); check_expected(); return; } if (cell->type == "$memwr") { param("\\MEMID"); param_bool("\\CLK_ENABLE"); param_bool("\\CLK_POLARITY"); param("\\PRIORITY"); port("\\CLK", 1); port("\\EN", param("\\WIDTH")); port("\\ADDR", param("\\ABITS")); port("\\DATA", param("\\WIDTH")); check_expected(); return; } if (cell->type == "$mem") { param("\\MEMID"); param("\\SIZE"); param("\\OFFSET"); param_bits("\\RD_CLK_ENABLE", param("\\RD_PORTS")); param_bits("\\RD_CLK_POLARITY", param("\\RD_PORTS")); param_bits("\\RD_TRANSPARENT", param("\\RD_PORTS")); param_bits("\\WR_CLK_ENABLE", param("\\WR_PORTS")); param_bits("\\WR_CLK_POLARITY", param("\\WR_PORTS")); port("\\RD_CLK", param("\\RD_PORTS")); port("\\RD_ADDR", param("\\RD_PORTS") * param("\\ABITS")); port("\\RD_DATA", param("\\RD_PORTS") * param("\\WIDTH")); port("\\WR_CLK", param("\\WR_PORTS")); port("\\WR_EN", param("\\WR_PORTS") * param("\\WIDTH")); port("\\WR_ADDR", param("\\WR_PORTS") * param("\\ABITS")); port("\\WR_DATA", param("\\WR_PORTS") * param("\\WIDTH")); check_expected(); return; } if (cell->type == "$assert") { port("\\A", 1); port("\\EN", 1); check_expected(); return; } if (cell->type == "$_INV_") { check_gate("AY"); return; } if (cell->type == "$_AND_") { check_gate("ABY"); return; } if (cell->type == "$_OR_") { check_gate("ABY"); return; } if (cell->type == "$_XOR_") { check_gate("ABY"); return; } if (cell->type == "$_MUX_") { check_gate("ABSY"); return; } if (cell->type == "$_SR_NN_") { check_gate("SRQ"); return; } if (cell->type == "$_SR_NP_") { check_gate("SRQ"); return; } if (cell->type == "$_SR_PN_") { check_gate("SRQ"); return; } if (cell->type == "$_SR_PP_") { check_gate("SRQ"); return; } if (cell->type == "$_DFF_N_") { check_gate("DQC"); return; } if (cell->type == "$_DFF_P_") { check_gate("DQC"); return; } if (cell->type == "$_DFF_NN0_") { check_gate("DQCR"); return; } if (cell->type == "$_DFF_NN1_") { check_gate("DQCR"); return; } if (cell->type == "$_DFF_NP0_") { check_gate("DQCR"); return; } if (cell->type == "$_DFF_NP1_") { check_gate("DQCR"); return; } if (cell->type == "$_DFF_PN0_") { check_gate("DQCR"); return; } if (cell->type == "$_DFF_PN1_") { check_gate("DQCR"); return; } if (cell->type == "$_DFF_PP0_") { check_gate("DQCR"); return; } if (cell->type == "$_DFF_PP1_") { check_gate("DQCR"); return; } if (cell->type == "$_DFFSR_NNN_") { check_gate("CSRDQ"); return; } if (cell->type == "$_DFFSR_NNP_") { check_gate("CSRDQ"); return; } if (cell->type == "$_DFFSR_NPN_") { check_gate("CSRDQ"); return; } if (cell->type == "$_DFFSR_NPP_") { check_gate("CSRDQ"); return; } if (cell->type == "$_DFFSR_PNN_") { check_gate("CSRDQ"); return; } if (cell->type == "$_DFFSR_PNP_") { check_gate("CSRDQ"); return; } if (cell->type == "$_DFFSR_PPN_") { check_gate("CSRDQ"); return; } if (cell->type == "$_DFFSR_PPP_") { check_gate("CSRDQ"); return; } if (cell->type == "$_DLATCH_N_") { check_gate("EDQ"); return; } if (cell->type == "$_DLATCH_P_") { check_gate("EDQ"); return; } if (cell->type == "$_DLATCHSR_NNN_") { check_gate("ESRDQ"); return; } if (cell->type == "$_DLATCHSR_NNP_") { check_gate("ESRDQ"); return; } if (cell->type == "$_DLATCHSR_NPN_") { check_gate("ESRDQ"); return; } if (cell->type == "$_DLATCHSR_NPP_") { check_gate("ESRDQ"); return; } if (cell->type == "$_DLATCHSR_PNN_") { check_gate("ESRDQ"); return; } if (cell->type == "$_DLATCHSR_PNP_") { check_gate("ESRDQ"); return; } if (cell->type == "$_DLATCHSR_PPN_") { check_gate("ESRDQ"); return; } if (cell->type == "$_DLATCHSR_PPP_") { check_gate("ESRDQ"); return; } error(__LINE__); } }; } #endif void RTLIL::Module::check() { #ifndef NDEBUG for (auto &it : wires) { assert(it.first == it.second->name); assert(it.first.size() > 0 && (it.first[0] == '\\' || it.first[0] == '$')); assert(it.second->width >= 0); assert(it.second->port_id >= 0); for (auto &it2 : it.second->attributes) { assert(it2.first.size() > 0 && (it2.first[0] == '\\' || it2.first[0] == '$')); } } for (auto &it : memories) { assert(it.first == it.second->name); assert(it.first.size() > 0 && (it.first[0] == '\\' || it.first[0] == '$')); assert(it.second->width >= 0); assert(it.second->size >= 0); for (auto &it2 : it.second->attributes) { assert(it2.first.size() > 0 && (it2.first[0] == '\\' || it2.first[0] == '$')); } } for (auto &it : cells) { assert(it.first == it.second->name); assert(it.first.size() > 0 && (it.first[0] == '\\' || it.first[0] == '$')); assert(it.second->type.size() > 0 && (it.second->type[0] == '\\' || it.second->type[0] == '$')); for (auto &it2 : it.second->connections) { assert(it2.first.size() > 0 && (it2.first[0] == '\\' || it2.first[0] == '$')); it2.second.check(); } for (auto &it2 : it.second->attributes) { assert(it2.first.size() > 0 && (it2.first[0] == '\\' || it2.first[0] == '$')); } for (auto &it2 : it.second->parameters) { assert(it2.first.size() > 0 && (it2.first[0] == '\\' || it2.first[0] == '$')); } InternalCellChecker checker(this, it.second); checker.check(); } for (auto &it : processes) { assert(it.first == it.second->name); assert(it.first.size() > 0 && (it.first[0] == '\\' || it.first[0] == '$')); // FIXME: More checks here.. } for (auto &it : connections) { assert(it.first.size() == it.second.size()); it.first.check(); it.second.check(); } for (auto &it : attributes) { assert(it.first.size() > 0 && (it.first[0] == '\\' || it.first[0] == '$')); } #endif } void RTLIL::Module::optimize() { } void RTLIL::Module::cloneInto(RTLIL::Module *new_mod) const { new_mod->name = name; new_mod->connections = connections; new_mod->attributes = attributes; for (auto &it : wires) new_mod->wires[it.first] = new RTLIL::Wire(*it.second); for (auto &it : memories) new_mod->memories[it.first] = new RTLIL::Memory(*it.second); for (auto &it : cells) new_mod->cells[it.first] = new RTLIL::Cell(*it.second); for (auto &it : processes) new_mod->processes[it.first] = it.second->clone(); struct RewriteSigSpecWorker { RTLIL::Module *mod; void operator()(RTLIL::SigSpec &sig) { std::vector chunks = sig.chunks(); for (auto &c : chunks) if (c.wire != NULL) c.wire = mod->wires.at(c.wire->name); sig = chunks; } }; RewriteSigSpecWorker rewriteSigSpecWorker; rewriteSigSpecWorker.mod = new_mod; new_mod->rewrite_sigspecs(rewriteSigSpecWorker); } RTLIL::Module *RTLIL::Module::clone() const { RTLIL::Module *new_mod = new RTLIL::Module; cloneInto(new_mod); return new_mod; } void RTLIL::Module::add(RTLIL::Wire *wire) { assert(!wire->name.empty()); assert(count_id(wire->name) == 0); wires[wire->name] = wire; } void RTLIL::Module::add(RTLIL::Cell *cell) { assert(!cell->name.empty()); assert(count_id(cell->name) == 0); cells[cell->name] = cell; } void RTLIL::Module::remove(RTLIL::Cell *cell) { assert(cells.count(cell->name) != 0); cells.erase(cell->name); delete cell; } static bool fixup_ports_compare(const RTLIL::Wire *a, const RTLIL::Wire *b) { if (a->port_id && !b->port_id) return true; if (!a->port_id && b->port_id) return false; if (a->port_id == b->port_id) return a->name < b->name; return a->port_id < b->port_id; } void RTLIL::Module::fixup_ports() { std::vector all_ports; for (auto &w : wires) if (w.second->port_input || w.second->port_output) all_ports.push_back(w.second); else w.second->port_id = 0; std::sort(all_ports.begin(), all_ports.end(), fixup_ports_compare); for (size_t i = 0; i < all_ports.size(); i++) all_ports[i]->port_id = i+1; } RTLIL::Wire *RTLIL::Module::addWire(RTLIL::IdString name, int width) { RTLIL::Wire *wire = new RTLIL::Wire; wire->name = name; wire->width = width; add(wire); return wire; } RTLIL::Cell *RTLIL::Module::addCell(RTLIL::IdString name, RTLIL::IdString type) { RTLIL::Cell *cell = new RTLIL::Cell; cell->name = name; cell->type = type; add(cell); return cell; } #define DEF_METHOD(_func, _y_size, _type) \ RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_y, bool is_signed) { \ RTLIL::Cell *cell = new RTLIL::Cell; \ cell->name = name; \ cell->type = _type; \ cell->parameters["\\A_SIGNED"] = is_signed; \ cell->parameters["\\A_WIDTH"] = sig_a.size(); \ cell->parameters["\\Y_WIDTH"] = sig_y.size(); \ cell->connections["\\A"] = sig_a; \ cell->connections["\\Y"] = sig_y; \ add(cell); \ return cell; \ } \ RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, RTLIL::SigSpec sig_a, bool is_signed) { \ RTLIL::SigSpec sig_y = addWire(NEW_ID, _y_size); \ add ## _func(name, sig_a, sig_y, is_signed); \ return sig_y; \ } DEF_METHOD(Not, sig_a.size(), "$not") DEF_METHOD(Pos, sig_a.size(), "$pos") DEF_METHOD(Bu0, sig_a.size(), "$bu0") DEF_METHOD(Neg, sig_a.size(), "$neg") DEF_METHOD(ReduceAnd, 1, "$reduce_and") DEF_METHOD(ReduceOr, 1, "$reduce_or") DEF_METHOD(ReduceXor, 1, "$reduce_xor") DEF_METHOD(ReduceXnor, 1, "$reduce_xnor") DEF_METHOD(ReduceBool, 1, "$reduce_bool") DEF_METHOD(LogicNot, 1, "$logic_not") #undef DEF_METHOD #define DEF_METHOD(_func, _y_size, _type) \ RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_b, RTLIL::SigSpec sig_y, bool is_signed) { \ RTLIL::Cell *cell = new RTLIL::Cell; \ cell->name = name; \ cell->type = _type; \ cell->parameters["\\A_SIGNED"] = is_signed; \ cell->parameters["\\B_SIGNED"] = is_signed; \ cell->parameters["\\A_WIDTH"] = sig_a.size(); \ cell->parameters["\\B_WIDTH"] = sig_b.size(); \ cell->parameters["\\Y_WIDTH"] = sig_y.size(); \ cell->connections["\\A"] = sig_a; \ cell->connections["\\B"] = sig_b; \ cell->connections["\\Y"] = sig_y; \ add(cell); \ return cell; \ } \ RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_b, bool is_signed) { \ RTLIL::SigSpec sig_y = addWire(NEW_ID, _y_size); \ add ## _func(name, sig_a, sig_b, sig_y, is_signed); \ return sig_y; \ } DEF_METHOD(And, std::max(sig_a.size(), sig_b.size()), "$and") DEF_METHOD(Or, std::max(sig_a.size(), sig_b.size()), "$or") DEF_METHOD(Xor, std::max(sig_a.size(), sig_b.size()), "$xor") DEF_METHOD(Xnor, std::max(sig_a.size(), sig_b.size()), "$xnor") DEF_METHOD(Shl, sig_a.size(), "$shl") DEF_METHOD(Shr, sig_a.size(), "$shr") DEF_METHOD(Sshl, sig_a.size(), "$sshl") DEF_METHOD(Sshr, sig_a.size(), "$sshr") DEF_METHOD(Lt, 1, "$lt") DEF_METHOD(Le, 1, "$le") DEF_METHOD(Eq, 1, "$eq") DEF_METHOD(Ne, 1, "$ne") DEF_METHOD(Eqx, 1, "$eqx") DEF_METHOD(Nex, 1, "$nex") DEF_METHOD(Ge, 1, "$ge") DEF_METHOD(Gt, 1, "$gt") DEF_METHOD(Add, std::max(sig_a.size(), sig_b.size()), "$add") DEF_METHOD(Sub, std::max(sig_a.size(), sig_b.size()), "$sub") DEF_METHOD(Mul, std::max(sig_a.size(), sig_b.size()), "$mul") DEF_METHOD(Div, std::max(sig_a.size(), sig_b.size()), "$div") DEF_METHOD(Mod, std::max(sig_a.size(), sig_b.size()), "$mod") DEF_METHOD(LogicAnd, 1, "$logic_and") DEF_METHOD(LogicOr, 1, "$logic_or") #undef DEF_METHOD #define DEF_METHOD(_func, _type, _pmux) \ RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_b, RTLIL::SigSpec sig_s, RTLIL::SigSpec sig_y) { \ RTLIL::Cell *cell = new RTLIL::Cell; \ cell->name = name; \ cell->type = _type; \ cell->parameters["\\WIDTH"] = sig_a.size(); \ cell->parameters["\\WIDTH"] = sig_b.size(); \ if (_pmux) cell->parameters["\\S_WIDTH"] = sig_s.size(); \ cell->connections["\\A"] = sig_a; \ cell->connections["\\B"] = sig_b; \ cell->connections["\\S"] = sig_s; \ cell->connections["\\Y"] = sig_y; \ add(cell); \ return cell; \ } \ RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_b, RTLIL::SigSpec sig_s) { \ RTLIL::SigSpec sig_y = addWire(NEW_ID, sig_a.size()); \ add ## _func(name, sig_a, sig_b, sig_s, sig_y); \ return sig_y; \ } DEF_METHOD(Mux, "$mux", 0) DEF_METHOD(Pmux, "$pmux", 1) DEF_METHOD(SafePmux, "$safe_pmux", 1) #undef DEF_METHOD #define DEF_METHOD_2(_func, _type, _P1, _P2) \ RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, RTLIL::SigSpec sig1, RTLIL::SigSpec sig2) { \ RTLIL::Cell *cell = new RTLIL::Cell; \ cell->name = name; \ cell->type = _type; \ cell->connections["\\" #_P1] = sig1; \ cell->connections["\\" #_P2] = sig2; \ add(cell); \ return cell; \ } \ RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, RTLIL::SigSpec sig1) { \ RTLIL::SigSpec sig2 = addWire(NEW_ID); \ add ## _func(name, sig1, sig2); \ return sig2; \ } #define DEF_METHOD_3(_func, _type, _P1, _P2, _P3) \ RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, RTLIL::SigSpec sig1, RTLIL::SigSpec sig2, RTLIL::SigSpec sig3) { \ RTLIL::Cell *cell = new RTLIL::Cell; \ cell->name = name; \ cell->type = _type; \ cell->connections["\\" #_P1] = sig1; \ cell->connections["\\" #_P2] = sig2; \ cell->connections["\\" #_P3] = sig3; \ add(cell); \ return cell; \ } \ RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, RTLIL::SigSpec sig1, RTLIL::SigSpec sig2) { \ RTLIL::SigSpec sig3 = addWire(NEW_ID); \ add ## _func(name, sig1, sig2, sig3); \ return sig3; \ } #define DEF_METHOD_4(_func, _type, _P1, _P2, _P3, _P4) \ RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, RTLIL::SigSpec sig1, RTLIL::SigSpec sig2, RTLIL::SigSpec sig3, RTLIL::SigSpec sig4) { \ RTLIL::Cell *cell = new RTLIL::Cell; \ cell->name = name; \ cell->type = _type; \ cell->connections["\\" #_P1] = sig1; \ cell->connections["\\" #_P2] = sig2; \ cell->connections["\\" #_P3] = sig3; \ cell->connections["\\" #_P4] = sig4; \ add(cell); \ return cell; \ } \ RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, RTLIL::SigSpec sig1, RTLIL::SigSpec sig2, RTLIL::SigSpec sig3) { \ RTLIL::SigSpec sig4 = addWire(NEW_ID); \ add ## _func(name, sig1, sig2, sig3, sig4); \ return sig4; \ } DEF_METHOD_2(InvGate, "$_INV_", A, Y) DEF_METHOD_3(AndGate, "$_AND_", A, B, Y) DEF_METHOD_3(OrGate, "$_OR_", A, B, Y) DEF_METHOD_3(XorGate, "$_XOR_", A, B, Y) DEF_METHOD_4(MuxGate, "$_MUX_", A, B, S, Y) #undef DEF_METHOD_2 #undef DEF_METHOD_3 #undef DEF_METHOD_4 RTLIL::Cell* RTLIL::Module::addPow(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_b, RTLIL::SigSpec sig_y, bool a_signed, bool b_signed) { RTLIL::Cell *cell = new RTLIL::Cell; cell->name = name; cell->type = "$pow"; cell->parameters["\\A_SIGNED"] = a_signed; cell->parameters["\\B_SIGNED"] = b_signed; cell->parameters["\\A_WIDTH"] = sig_a.size(); cell->parameters["\\B_WIDTH"] = sig_b.size(); cell->parameters["\\Y_WIDTH"] = sig_y.size(); cell->connections["\\A"] = sig_a; cell->connections["\\B"] = sig_b; cell->connections["\\Y"] = sig_y; add(cell); return cell; } RTLIL::Cell* RTLIL::Module::addSlice(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_y, RTLIL::Const offset) { RTLIL::Cell *cell = new RTLIL::Cell; cell->name = name; cell->type = "$slice"; cell->parameters["\\A_WIDTH"] = sig_a.size(); cell->parameters["\\Y_WIDTH"] = sig_y.size(); cell->parameters["\\OFFSET"] = offset; cell->connections["\\A"] = sig_a; cell->connections["\\Y"] = sig_y; add(cell); return cell; } RTLIL::Cell* RTLIL::Module::addConcat(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_b, RTLIL::SigSpec sig_y) { RTLIL::Cell *cell = new RTLIL::Cell; cell->name = name; cell->type = "$concat"; cell->parameters["\\A_WIDTH"] = sig_a.size(); cell->parameters["\\B_WIDTH"] = sig_b.size(); cell->connections["\\A"] = sig_a; cell->connections["\\B"] = sig_b; cell->connections["\\Y"] = sig_y; add(cell); return cell; } RTLIL::Cell* RTLIL::Module::addLut(RTLIL::IdString name, RTLIL::SigSpec sig_i, RTLIL::SigSpec sig_o, RTLIL::Const lut) { RTLIL::Cell *cell = new RTLIL::Cell; cell->name = name; cell->type = "$lut"; cell->parameters["\\LUT"] = lut; cell->parameters["\\WIDTH"] = sig_i.size(); cell->connections["\\I"] = sig_i; cell->connections["\\O"] = sig_o; add(cell); return cell; } RTLIL::Cell* RTLIL::Module::addAssert(RTLIL::IdString name, RTLIL::SigSpec sig_a, RTLIL::SigSpec sig_en) { RTLIL::Cell *cell = new RTLIL::Cell; cell->name = name; cell->type = "$assert"; cell->connections["\\A"] = sig_a; cell->connections["\\EN"] = sig_en; add(cell); return cell; } RTLIL::Cell* RTLIL::Module::addSr(RTLIL::IdString name, RTLIL::SigSpec sig_set, RTLIL::SigSpec sig_clr, RTLIL::SigSpec sig_q, bool set_polarity, bool clr_polarity) { RTLIL::Cell *cell = new RTLIL::Cell; cell->name = name; cell->type = "$sr"; cell->parameters["\\SET_POLARITY"] = set_polarity; cell->parameters["\\CLR_POLARITY"] = clr_polarity; cell->parameters["\\WIDTH"] = sig_q.size(); cell->connections["\\SET"] = sig_set; cell->connections["\\CLR"] = sig_clr; cell->connections["\\Q"] = sig_q; add(cell); return cell; } RTLIL::Cell* RTLIL::Module::addDff(RTLIL::IdString name, RTLIL::SigSpec sig_clk, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool clk_polarity) { RTLIL::Cell *cell = new RTLIL::Cell; cell->name = name; cell->type = "$dff"; cell->parameters["\\CLK_POLARITY"] = clk_polarity; cell->parameters["\\WIDTH"] = sig_q.size(); cell->connections["\\CLK"] = sig_clk; cell->connections["\\D"] = sig_d; cell->connections["\\Q"] = sig_q; add(cell); return cell; } RTLIL::Cell* RTLIL::Module::addDffsr(RTLIL::IdString name, RTLIL::SigSpec sig_clk, RTLIL::SigSpec sig_set, RTLIL::SigSpec sig_clr, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool clk_polarity, bool set_polarity, bool clr_polarity) { RTLIL::Cell *cell = new RTLIL::Cell; cell->name = name; cell->type = "$dffsr"; cell->parameters["\\CLK_POLARITY"] = clk_polarity; cell->parameters["\\SET_POLARITY"] = set_polarity; cell->parameters["\\CLR_POLARITY"] = clr_polarity; cell->parameters["\\WIDTH"] = sig_q.size(); cell->connections["\\CLK"] = sig_clk; cell->connections["\\SET"] = sig_set; cell->connections["\\CLR"] = sig_clr; cell->connections["\\D"] = sig_d; cell->connections["\\Q"] = sig_q; add(cell); return cell; } RTLIL::Cell* RTLIL::Module::addAdff(RTLIL::IdString name, RTLIL::SigSpec sig_clk, RTLIL::SigSpec sig_arst, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, RTLIL::Const arst_value, bool clk_polarity, bool arst_polarity) { RTLIL::Cell *cell = new RTLIL::Cell; cell->name = name; cell->type = "$adff"; cell->parameters["\\CLK_POLARITY"] = clk_polarity; cell->parameters["\\ARST_POLARITY"] = arst_polarity; cell->parameters["\\ARST_VALUE"] = arst_value; cell->parameters["\\WIDTH"] = sig_q.size(); cell->connections["\\CLK"] = sig_clk; cell->connections["\\ARST"] = sig_arst; cell->connections["\\D"] = sig_d; cell->connections["\\Q"] = sig_q; add(cell); return cell; } RTLIL::Cell* RTLIL::Module::addDlatch(RTLIL::IdString name, RTLIL::SigSpec sig_en, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool en_polarity) { RTLIL::Cell *cell = new RTLIL::Cell; cell->name = name; cell->type = "$dlatch"; cell->parameters["\\EN_POLARITY"] = en_polarity; cell->parameters["\\WIDTH"] = sig_q.size(); cell->connections["\\EN"] = sig_en; cell->connections["\\D"] = sig_d; cell->connections["\\Q"] = sig_q; add(cell); return cell; } RTLIL::Cell* RTLIL::Module::addDlatchsr(RTLIL::IdString name, RTLIL::SigSpec sig_en, RTLIL::SigSpec sig_set, RTLIL::SigSpec sig_clr, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool en_polarity, bool set_polarity, bool clr_polarity) { RTLIL::Cell *cell = new RTLIL::Cell; cell->name = name; cell->type = "$dlatchsr"; cell->parameters["\\EN_POLARITY"] = en_polarity; cell->parameters["\\SET_POLARITY"] = set_polarity; cell->parameters["\\CLR_POLARITY"] = clr_polarity; cell->parameters["\\WIDTH"] = sig_q.size(); cell->connections["\\EN"] = sig_en; cell->connections["\\SET"] = sig_set; cell->connections["\\CLR"] = sig_clr; cell->connections["\\D"] = sig_d; cell->connections["\\Q"] = sig_q; add(cell); return cell; } RTLIL::Cell* RTLIL::Module::addDffGate(RTLIL::IdString name, RTLIL::SigSpec sig_clk, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool clk_polarity) { RTLIL::Cell *cell = new RTLIL::Cell; cell->name = name; cell->type = stringf("$_DFF_%c_", clk_polarity ? 'P' : 'N'); cell->connections["\\C"] = sig_clk; cell->connections["\\D"] = sig_d; cell->connections["\\Q"] = sig_q; add(cell); return cell; } RTLIL::Cell* RTLIL::Module::addDffsrGate(RTLIL::IdString name, RTLIL::SigSpec sig_clk, RTLIL::SigSpec sig_set, RTLIL::SigSpec sig_clr, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool clk_polarity, bool set_polarity, bool clr_polarity) { RTLIL::Cell *cell = new RTLIL::Cell; cell->name = name; cell->type = stringf("$_DFFSR_%c%c%c_", clk_polarity ? 'P' : 'N', set_polarity ? 'P' : 'N', clr_polarity ? 'P' : 'N'); cell->connections["\\C"] = sig_clk; cell->connections["\\S"] = sig_set; cell->connections["\\R"] = sig_clr; cell->connections["\\D"] = sig_d; cell->connections["\\Q"] = sig_q; add(cell); return cell; } RTLIL::Cell* RTLIL::Module::addAdffGate(RTLIL::IdString name, RTLIL::SigSpec sig_clk, RTLIL::SigSpec sig_arst, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool arst_value, bool clk_polarity, bool arst_polarity) { RTLIL::Cell *cell = new RTLIL::Cell; cell->name = name; cell->type = stringf("$_DFF_%c%c%c_", clk_polarity ? 'P' : 'N', arst_polarity ? 'P' : 'N', arst_value ? '1' : '0'); cell->connections["\\C"] = sig_clk; cell->connections["\\R"] = sig_arst; cell->connections["\\D"] = sig_d; cell->connections["\\Q"] = sig_q; add(cell); return cell; } RTLIL::Cell* RTLIL::Module::addDlatchGate(RTLIL::IdString name, RTLIL::SigSpec sig_en, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool en_polarity) { RTLIL::Cell *cell = new RTLIL::Cell; cell->name = name; cell->type = stringf("$_DLATCH_%c_", en_polarity ? 'P' : 'N'); cell->connections["\\E"] = sig_en; cell->connections["\\D"] = sig_d; cell->connections["\\Q"] = sig_q; add(cell); return cell; } RTLIL::Cell* RTLIL::Module::addDlatchsrGate(RTLIL::IdString name, RTLIL::SigSpec sig_en, RTLIL::SigSpec sig_set, RTLIL::SigSpec sig_clr, RTLIL::SigSpec sig_d, RTLIL::SigSpec sig_q, bool en_polarity, bool set_polarity, bool clr_polarity) { RTLIL::Cell *cell = new RTLIL::Cell; cell->name = name; cell->type = stringf("$_DLATCHSR_%c%c%c_", en_polarity ? 'P' : 'N', set_polarity ? 'P' : 'N', clr_polarity ? 'P' : 'N'); cell->connections["\\E"] = sig_en; cell->connections["\\S"] = sig_set; cell->connections["\\R"] = sig_clr; cell->connections["\\D"] = sig_d; cell->connections["\\Q"] = sig_q; add(cell); return cell; } RTLIL::Wire::Wire() { width = 1; start_offset = 0; port_id = 0; port_input = false; port_output = false; } RTLIL::Memory::Memory() { width = 1; size = 0; } void RTLIL::Cell::check() { #ifndef NDEBUG InternalCellChecker checker(NULL, this); checker.check(); #endif } RTLIL::SigChunk::SigChunk() { wire = NULL; width = 0; offset = 0; } RTLIL::SigChunk::SigChunk(const RTLIL::Const &value) { wire = NULL; data = value; width = data.bits.size(); offset = 0; } RTLIL::SigChunk::SigChunk(RTLIL::Wire *wire) { this->wire = wire; this->width = wire->width; this->offset = 0; } RTLIL::SigChunk::SigChunk(RTLIL::Wire *wire, int offset, int width) { this->wire = wire; this->width = width; this->offset = offset; } RTLIL::SigChunk::SigChunk(const std::string &str) { wire = NULL; data = RTLIL::Const(str); width = data.bits.size(); offset = 0; } RTLIL::SigChunk::SigChunk(int val, int width) { wire = NULL; data = RTLIL::Const(val, width); this->width = data.bits.size(); offset = 0; } RTLIL::SigChunk::SigChunk(RTLIL::State bit, int width) { wire = NULL; data = RTLIL::Const(bit, width); this->width = data.bits.size(); offset = 0; } RTLIL::SigChunk::SigChunk(RTLIL::SigBit bit) { wire = bit.wire; if (wire == NULL) data = RTLIL::Const(bit.data); offset = bit.offset; width = 1; } RTLIL::SigChunk RTLIL::SigChunk::extract(int offset, int length) const { RTLIL::SigChunk ret; if (wire) { ret.wire = wire; ret.offset = this->offset + offset; ret.width = length; } else { for (int i = 0; i < length; i++) ret.data.bits.push_back(data.bits[offset+i]); ret.width = length; } return ret; } bool RTLIL::SigChunk::operator <(const RTLIL::SigChunk &other) const { if (wire && other.wire) if (wire->name != other.wire->name) return wire->name < other.wire->name; if (wire != other.wire) return wire < other.wire; if (offset != other.offset) return offset < other.offset; if (width != other.width) return width < other.width; return data.bits < other.data.bits; } bool RTLIL::SigChunk::operator ==(const RTLIL::SigChunk &other) const { if (wire != other.wire || width != other.width || offset != other.offset) return false; if (data.bits != other.data.bits) return false; return true; } bool RTLIL::SigChunk::operator !=(const RTLIL::SigChunk &other) const { if (*this == other) return false; return true; } RTLIL::SigSpec::SigSpec() { width_ = 0; hash_ = 0; } RTLIL::SigSpec::SigSpec(const RTLIL::Const &value) { chunks_.push_back(RTLIL::SigChunk(value)); width_ = chunks_.back().width; hash_ = 0; check(); } RTLIL::SigSpec::SigSpec(const RTLIL::SigChunk &chunk) { chunks_.push_back(chunk); width_ = chunks_.back().width; hash_ = 0; check(); } RTLIL::SigSpec::SigSpec(RTLIL::Wire *wire) { chunks_.push_back(RTLIL::SigChunk(wire)); width_ = chunks_.back().width; hash_ = 0; check(); } RTLIL::SigSpec::SigSpec(RTLIL::Wire *wire, int offset, int width) { chunks_.push_back(RTLIL::SigChunk(wire, offset, width)); width_ = chunks_.back().width; hash_ = 0; check(); } RTLIL::SigSpec::SigSpec(const std::string &str) { chunks_.push_back(RTLIL::SigChunk(str)); width_ = chunks_.back().width; hash_ = 0; check(); } RTLIL::SigSpec::SigSpec(int val, int width) { chunks_.push_back(RTLIL::SigChunk(val, width)); width_ = width; hash_ = 0; check(); } RTLIL::SigSpec::SigSpec(RTLIL::State bit, int width) { chunks_.push_back(RTLIL::SigChunk(bit, width)); width_ = width; hash_ = 0; check(); } RTLIL::SigSpec::SigSpec(RTLIL::SigBit bit, int width) { if (bit.wire == NULL) chunks_.push_back(RTLIL::SigChunk(bit.data, width)); else for (int i = 0; i < width; i++) chunks_.push_back(bit); width_ = width; hash_ = 0; check(); } RTLIL::SigSpec::SigSpec(std::vector chunks) { width_ = 0; hash_ = 0; for (auto &c : chunks) append(c); check(); } RTLIL::SigSpec::SigSpec(std::vector bits) { width_ = 0; hash_ = 0; for (auto &bit : bits) append_bit(bit); check(); } RTLIL::SigSpec::SigSpec(std::set bits) { width_ = 0; hash_ = 0; for (auto &bit : bits) append_bit(bit); check(); } void RTLIL::SigSpec::pack() const { RTLIL::SigSpec *that = (RTLIL::SigSpec*)this; if (that->bits_.empty()) return; cover("kernel.rtlil.sigspec.convert.pack"); log_assert(that->chunks_.empty()); std::vector old_bits; old_bits.swap(that->bits_); RTLIL::SigChunk *last_const = NULL; RTLIL::SigChunk *last_wire = NULL; int last_wire_end = 0; for (auto &bit : old_bits) if (bit.wire == NULL && last_const) { last_const->data.bits.push_back(bit.data); last_const->width++; } else if (bit.wire && last_wire && last_wire->wire == bit.wire && last_wire_end == bit.offset) { last_wire->width++; last_wire_end++; } else { that->chunks_.push_back(bit); last_const = bit.wire ? NULL : &that->chunks_.back(); last_wire = bit.wire ? &that->chunks_.back() : NULL; last_wire_end = bit.offset + 1; } check(); } void RTLIL::SigSpec::unpack() const { RTLIL::SigSpec *that = (RTLIL::SigSpec*)this; if (that->chunks_.empty()) return; cover("kernel.rtlil.sigspec.convert.unpack"); log_assert(that->bits_.empty()); that->bits_.reserve(that->width_); for (auto &c : that->chunks_) for (int i = 0; i < c.width; i++) that->bits_.push_back(RTLIL::SigBit(c, i)); that->chunks_.clear(); that->hash_ = 0; } #define DJB2(_hash, _value) do { (_hash) = (((_hash) << 5) + (_hash)) + (_value); } while (0) void RTLIL::SigSpec::hash() const { RTLIL::SigSpec *that = (RTLIL::SigSpec*)this; if (that->hash_ != 0) return; cover("kernel.rtlil.sigspec.hash"); that->pack(); that->hash_ = 5381; for (auto &c : that->chunks_) if (c.wire == NULL) { for (auto &v : c.data.bits) DJB2(that->hash_, v); } else { for (auto &v : c.wire->name) DJB2(that->hash_, v); DJB2(that->hash_, c.offset); DJB2(that->hash_, c.width); } if (that->hash_ == 0) that->hash_ = 1; } void RTLIL::SigSpec::sort() { unpack(); cover("kernel.rtlil.sigspec.sort"); std::sort(bits_.begin(), bits_.end()); } void RTLIL::SigSpec::sort_and_unify() { cover("kernel.rtlil.sigspec.sort_and_unify"); *this = this->to_sigbit_set(); } void RTLIL::SigSpec::replace(const RTLIL::SigSpec &pattern, const RTLIL::SigSpec &with) { replace(pattern, with, this); } void RTLIL::SigSpec::replace(const RTLIL::SigSpec &pattern, const RTLIL::SigSpec &with, RTLIL::SigSpec *other) const { cover("kernel.rtlil.sigspec.replace"); unpack(); pattern.unpack(); with.unpack(); assert(other != NULL); assert(width_ == other->width_); other->unpack(); assert(pattern.width_ == with.width_); std::map pattern_map; for (int i = 0; i < SIZE(pattern.bits_); i++) if (pattern.bits_[i].wire != NULL) pattern_map[pattern.bits_[i]] = with.bits_[i]; for (int i = 0; i < SIZE(bits_); i++) if (pattern_map.count(bits_[i])) other->bits_[i] = pattern_map.at(bits_[i]); other->check(); } void RTLIL::SigSpec::remove(const RTLIL::SigSpec &pattern) { remove2(pattern, NULL); } void RTLIL::SigSpec::remove(const RTLIL::SigSpec &pattern, RTLIL::SigSpec *other) const { RTLIL::SigSpec tmp = *this; tmp.remove2(pattern, other); } void RTLIL::SigSpec::remove2(const RTLIL::SigSpec &pattern, RTLIL::SigSpec *other) { if (other) cover("kernel.rtlil.sigspec.remove_other"); else cover("kernel.rtlil.sigspec.remove"); unpack(); if (other != NULL) { assert(width_ == other->width_); other->unpack(); } std::set pattern_bits = pattern.to_sigbit_set(); std::vector new_bits, new_other_bits; for (int i = 0; i < SIZE(bits_); i++) { if (bits_[i].wire != NULL && pattern_bits.count(bits_[i])) continue; if (other != NULL) new_other_bits.push_back(other->bits_[i]); new_bits.push_back(bits_[i]); } bits_.swap(new_bits); width_ = SIZE(bits_); if (other != NULL) { other->bits_.swap(new_other_bits); other->width_ = SIZE(other->bits_); } check(); } RTLIL::SigSpec RTLIL::SigSpec::extract(RTLIL::SigSpec pattern, RTLIL::SigSpec *other) const { if (other) cover("kernel.rtlil.sigspec.extract_other"); else cover("kernel.rtlil.sigspec.extract"); pack(); pattern.pack(); if (other != NULL) other->pack(); assert(other == NULL || width_ == other->width_); std::set pat = pattern.to_sigbit_set(); std::vector bits_match = to_sigbit_vector(); RTLIL::SigSpec ret; if (other) { std::vector bits_other = other ? other->to_sigbit_vector() : bits_match; for (int i = 0; i < width_; i++) if (bits_match[i].wire && pat.count(bits_match[i])) ret.append_bit(bits_other[i]); } else { for (int i = 0; i < width_; i++) if (bits_match[i].wire && pat.count(bits_match[i])) ret.append_bit(bits_match[i]); } ret.check(); return ret; } void RTLIL::SigSpec::replace(int offset, const RTLIL::SigSpec &with) { cover("kernel.rtlil.sigspec.replace_pos"); unpack(); with.unpack(); assert(offset >= 0); assert(with.width_ >= 0); assert(offset+with.width_ <= width_); for (int i = 0; i < with.width_; i++) bits_.at(offset + i) = with.bits_.at(i); check(); } void RTLIL::SigSpec::remove_const() { cover("kernel.rtlil.sigspec.remove_const"); unpack(); std::vector new_bits; new_bits.reserve(width_); for (auto &bit : bits_) if (bit.wire != NULL) new_bits.push_back(bit); bits_.swap(new_bits); width_ = bits_.size(); check(); } void RTLIL::SigSpec::remove(int offset, int length) { cover("kernel.rtlil.sigspec.remove_pos"); unpack(); assert(offset >= 0); assert(length >= 0); assert(offset + length <= width_); bits_.erase(bits_.begin() + offset, bits_.begin() + offset + length); width_ = bits_.size(); check(); } RTLIL::SigSpec RTLIL::SigSpec::extract(int offset, int length) const { unpack(); cover("kernel.rtlil.sigspec.extract_pos"); return std::vector(bits_.begin() + offset, bits_.begin() + offset + length); } void RTLIL::SigSpec::append(const RTLIL::SigSpec &signal) { if (signal.width_ == 0) return; if (width_ == 0) { *this = signal; return; } cover("kernel.rtlil.sigspec.append"); if (packed() != signal.packed()) { pack(); signal.pack(); } if (packed()) for (auto &other_c : signal.chunks_) { auto &my_last_c = chunks_.back(); if (my_last_c.wire == NULL && other_c.wire == NULL) { auto &this_data = my_last_c.data.bits; auto &other_data = other_c.data.bits; this_data.insert(this_data.end(), other_data.begin(), other_data.end()); my_last_c.width += other_c.width; } else if (my_last_c.wire == other_c.wire && my_last_c.offset + my_last_c.width == other_c.offset) { my_last_c.width += other_c.width; } else chunks_.push_back(other_c); } else bits_.insert(bits_.end(), signal.bits_.begin(), signal.bits_.end()); width_ += signal.width_; check(); } void RTLIL::SigSpec::append_bit(const RTLIL::SigBit &bit) { if (packed()) { cover("kernel.rtlil.sigspec.append_bit.packed"); if (chunks_.size() == 0) chunks_.push_back(bit); else if (bit.wire == NULL) if (chunks_.back().wire == NULL) { chunks_.back().data.bits.push_back(bit.data); chunks_.back().width++; } else chunks_.push_back(bit); else if (chunks_.back().wire == bit.wire && chunks_.back().offset + chunks_.back().width == bit.offset) chunks_.back().width++; else chunks_.push_back(bit); } else { cover("kernel.rtlil.sigspec.append_bit.unpacked"); bits_.push_back(bit); } width_++; check(); } void RTLIL::SigSpec::extend(int width, bool is_signed) { cover("kernel.rtlil.sigspec.extend"); pack(); if (width_ > width) remove(width, width_ - width); if (width_ < width) { RTLIL::SigSpec padding = width_ > 0 ? extract(width_ - 1, 1) : RTLIL::SigSpec(RTLIL::State::S0); if (!is_signed && padding != RTLIL::SigSpec(RTLIL::State::Sx) && padding != RTLIL::SigSpec(RTLIL::State::Sz) && padding != RTLIL::SigSpec(RTLIL::State::Sa) && padding != RTLIL::SigSpec(RTLIL::State::Sm)) padding = RTLIL::SigSpec(RTLIL::State::S0); while (width_ < width) append(padding); } } void RTLIL::SigSpec::extend_u0(int width, bool is_signed) { cover("kernel.rtlil.sigspec.extend_0"); pack(); if (width_ > width) remove(width, width_ - width); if (width_ < width) { RTLIL::SigSpec padding = width_ > 0 ? extract(width_ - 1, 1) : RTLIL::SigSpec(RTLIL::State::S0); if (!is_signed) padding = RTLIL::SigSpec(RTLIL::State::S0); while (width_ < width) append(padding); } } RTLIL::SigSpec RTLIL::SigSpec::repeat(int num) const { cover("kernel.rtlil.sigspec.repeat"); RTLIL::SigSpec sig; for (int i = 0; i < num; i++) sig.append(*this); return sig; } #ifndef NDEBUG void RTLIL::SigSpec::check() const { if (width_ > 64) { cover("kernel.rtlil.sigspec.check.skip"); } else if (packed()) { cover("kernel.rtlil.sigspec.check.packed"); int w = 0; for (size_t i = 0; i < chunks_.size(); i++) { const RTLIL::SigChunk chunk = chunks_[i]; if (chunk.wire == NULL) { if (i > 0) assert(chunks_[i-1].wire != NULL); assert(chunk.offset == 0); assert(chunk.data.bits.size() == (size_t)chunk.width); } else { if (i > 0 && chunks_[i-1].wire == chunk.wire) assert(chunk.offset != chunks_[i-1].offset + chunks_[i-1].width); assert(chunk.offset >= 0); assert(chunk.width >= 0); assert(chunk.offset + chunk.width <= chunk.wire->width); assert(chunk.data.bits.size() == 0); } w += chunk.width; } assert(w == width_); assert(bits_.empty()); } else { cover("kernel.rtlil.sigspec.check.unpacked"); assert(width_ == SIZE(bits_)); assert(chunks_.empty()); } } #endif bool RTLIL::SigSpec::operator <(const RTLIL::SigSpec &other) const { cover("kernel.rtlil.sigspec.comp_lt"); if (this == &other) return false; if (width_ != other.width_) return width_ < other.width_; pack(); other.pack(); if (chunks_.size() != other.chunks_.size()) return chunks_.size() < other.chunks_.size(); hash(); other.hash(); if (hash_ != other.hash_) return hash_ < other.hash_; for (size_t i = 0; i < chunks_.size(); i++) if (chunks_[i] != other.chunks_[i]) { cover("kernel.rtlil.sigspec.comp_lt.hash_collision"); return chunks_[i] < other.chunks_[i]; } cover("kernel.rtlil.sigspec.comp_lt.equal"); return false; } bool RTLIL::SigSpec::operator ==(const RTLIL::SigSpec &other) const { cover("kernel.rtlil.sigspec.comp_eq"); if (this == &other) return true; if (width_ != other.width_) return false; pack(); other.pack(); if (chunks_.size() != chunks_.size()) return false; hash(); other.hash(); if (hash_ != other.hash_) return false; for (size_t i = 0; i < chunks_.size(); i++) if (chunks_[i] != other.chunks_[i]) { cover("kernel.rtlil.sigspec.comp_eq.hash_collision"); return false; } cover("kernel.rtlil.sigspec.comp_eq.equal"); return true; } bool RTLIL::SigSpec::is_wire() const { cover("kernel.rtlil.sigspec.is_wire"); pack(); return SIZE(chunks_) == 1 && chunks_[0].wire && chunks_[0].wire->width == width_; } bool RTLIL::SigSpec::is_fully_const() const { cover("kernel.rtlil.sigspec.is_fully_const"); pack(); for (auto it = chunks_.begin(); it != chunks_.end(); it++) if (it->width > 0 && it->wire != NULL) return false; return true; } bool RTLIL::SigSpec::is_fully_def() const { cover("kernel.rtlil.sigspec.is_fully_def"); pack(); for (auto it = chunks_.begin(); it != chunks_.end(); it++) { if (it->width > 0 && it->wire != NULL) return false; for (size_t i = 0; i < it->data.bits.size(); i++) if (it->data.bits[i] != RTLIL::State::S0 && it->data.bits[i] != RTLIL::State::S1) return false; } return true; } bool RTLIL::SigSpec::is_fully_undef() const { cover("kernel.rtlil.sigspec.is_fully_undef"); pack(); for (auto it = chunks_.begin(); it != chunks_.end(); it++) { if (it->width > 0 && it->wire != NULL) return false; for (size_t i = 0; i < it->data.bits.size(); i++) if (it->data.bits[i] != RTLIL::State::Sx && it->data.bits[i] != RTLIL::State::Sz) return false; } return true; } bool RTLIL::SigSpec::has_marked_bits() const { cover("kernel.rtlil.sigspec.has_marked_bits"); pack(); for (auto it = chunks_.begin(); it != chunks_.end(); it++) if (it->width > 0 && it->wire == NULL) { for (size_t i = 0; i < it->data.bits.size(); i++) if (it->data.bits[i] == RTLIL::State::Sm) return true; } return false; } bool RTLIL::SigSpec::as_bool() const { cover("kernel.rtlil.sigspec.as_bool"); pack(); assert(is_fully_const() && SIZE(chunks_) <= 1); if (width_) return chunks_[0].data.as_bool(); return false; } int RTLIL::SigSpec::as_int() const { cover("kernel.rtlil.sigspec.as_int"); pack(); assert(is_fully_const() && SIZE(chunks_) <= 1); if (width_) return chunks_[0].data.as_int(); return 0; } std::string RTLIL::SigSpec::as_string() const { cover("kernel.rtlil.sigspec.as_string"); pack(); std::string str; for (size_t i = chunks_.size(); i > 0; i--) { const RTLIL::SigChunk &chunk = chunks_[i-1]; if (chunk.wire != NULL) for (int j = 0; j < chunk.width; j++) str += "?"; else str += chunk.data.as_string(); } return str; } RTLIL::Const RTLIL::SigSpec::as_const() const { cover("kernel.rtlil.sigspec.as_const"); pack(); assert(is_fully_const() && SIZE(chunks_) <= 1); if (width_) return chunks_[0].data; return RTLIL::Const(); } RTLIL::Wire *RTLIL::SigSpec::as_wire() const { cover("kernel.rtlil.sigspec.as_wire"); pack(); assert(is_wire()); return chunks_[0].wire; } bool RTLIL::SigSpec::match(std::string pattern) const { cover("kernel.rtlil.sigspec.match"); pack(); std::string str = as_string(); assert(pattern.size() == str.size()); for (size_t i = 0; i < pattern.size(); i++) { if (pattern[i] == ' ') continue; if (pattern[i] == '*') { if (str[i] != 'z' && str[i] != 'x') return false; continue; } if (pattern[i] != str[i]) return false; } return true; } std::set RTLIL::SigSpec::to_sigbit_set() const { cover("kernel.rtlil.sigspec.to_sigbit_set"); pack(); std::set sigbits; for (auto &c : chunks_) for (int i = 0; i < c.width; i++) sigbits.insert(RTLIL::SigBit(c, i)); return sigbits; } std::vector RTLIL::SigSpec::to_sigbit_vector() const { cover("kernel.rtlil.sigspec.to_sigbit_vector"); unpack(); return bits_; } RTLIL::SigBit RTLIL::SigSpec::to_single_sigbit() const { cover("kernel.rtlil.sigspec.to_single_sigbit"); pack(); log_assert(width_ == 1); for (auto &c : chunks_) if (c.width) return RTLIL::SigBit(c); log_abort(); } static void sigspec_parse_split(std::vector &tokens, const std::string &text, char sep) { size_t start = 0, end = 0; while ((end = text.find(sep, start)) != std::string::npos) { tokens.push_back(text.substr(start, end - start)); start = end + 1; } tokens.push_back(text.substr(start)); } static int sigspec_parse_get_dummy_line_num() { return 0; } bool RTLIL::SigSpec::parse(RTLIL::SigSpec &sig, RTLIL::Module *module, std::string str) { cover("kernel.rtlil.sigspec.parse"); std::vector tokens; sigspec_parse_split(tokens, str, ','); sig = RTLIL::SigSpec(); for (int tokidx = int(tokens.size())-1; tokidx >= 0; tokidx--) { std::string netname = tokens[tokidx]; std::string indices; if (netname.size() == 0) continue; if ('0' <= netname[0] && netname[0] <= '9') { cover("kernel.rtlil.sigspec.parse.const"); AST::get_line_num = sigspec_parse_get_dummy_line_num; AST::AstNode *ast = VERILOG_FRONTEND::const2ast(netname); if (ast == NULL) return false; sig.append(RTLIL::Const(ast->bits)); delete ast; continue; } if (module == NULL) return false; cover("kernel.rtlil.sigspec.parse.net"); if (netname[0] != '$' && netname[0] != '\\') netname = "\\" + netname; if (module->wires.count(netname) == 0) { size_t indices_pos = netname.size()-1; if (indices_pos > 2 && netname[indices_pos] == ']') { indices_pos--; while (indices_pos > 0 && ('0' <= netname[indices_pos] && netname[indices_pos] <= '9')) indices_pos--; if (indices_pos > 0 && netname[indices_pos] == ':') { indices_pos--; while (indices_pos > 0 && ('0' <= netname[indices_pos] && netname[indices_pos] <= '9')) indices_pos--; } if (indices_pos > 0 && netname[indices_pos] == '[') { indices = netname.substr(indices_pos); netname = netname.substr(0, indices_pos); } } } if (module->wires.count(netname) == 0) return false; RTLIL::Wire *wire = module->wires.at(netname); if (!indices.empty()) { std::vector index_tokens; sigspec_parse_split(index_tokens, indices.substr(1, indices.size()-2), ':'); if (index_tokens.size() == 1) { cover("kernel.rtlil.sigspec.parse.bit_sel"); sig.append(RTLIL::SigSpec(wire, atoi(index_tokens.at(0).c_str()))); } else { cover("kernel.rtlil.sigspec.parse.part_sel"); int a = atoi(index_tokens.at(0).c_str()); int b = atoi(index_tokens.at(1).c_str()); if (a > b) { int tmp = a; a = b, b = tmp; } sig.append(RTLIL::SigSpec(wire, a, b-a+1)); } } else sig.append(wire); } return true; } bool RTLIL::SigSpec::parse_sel(RTLIL::SigSpec &sig, RTLIL::Design *design, RTLIL::Module *module, std::string str) { if (str.empty() || str[0] != '@') return parse(sig, module, str); cover("kernel.rtlil.sigspec.parse.sel"); str = RTLIL::escape_id(str.substr(1)); if (design->selection_vars.count(str) == 0) return false; sig = RTLIL::SigSpec(); RTLIL::Selection &sel = design->selection_vars.at(str); for (auto &it : module->wires) if (sel.selected_member(module->name, it.first)) sig.append(it.second); return true; } bool RTLIL::SigSpec::parse_rhs(const RTLIL::SigSpec &lhs, RTLIL::SigSpec &sig, RTLIL::Module *module, std::string str) { if (str == "0") { cover("kernel.rtlil.sigspec.parse.rhs_zeros"); sig = RTLIL::SigSpec(RTLIL::State::S0, lhs.width_); return true; } if (str == "~0") { cover("kernel.rtlil.sigspec.parse.rhs_ones"); sig = RTLIL::SigSpec(RTLIL::State::S1, lhs.width_); return true; } if (lhs.chunks_.size() == 1) { char *p = (char*)str.c_str(), *endptr; long long int val = strtoll(p, &endptr, 10); if (endptr && endptr != p && *endptr == 0) { sig = RTLIL::SigSpec(val, lhs.width_); cover("kernel.rtlil.sigspec.parse.rhs_dec"); return true; } } return parse(sig, module, str); } RTLIL::CaseRule::~CaseRule() { for (auto it = switches.begin(); it != switches.end(); it++) delete *it; } RTLIL::CaseRule *RTLIL::CaseRule::clone() const { RTLIL::CaseRule *new_caserule = new RTLIL::CaseRule; new_caserule->compare = compare; new_caserule->actions = actions; for (auto &it : switches) new_caserule->switches.push_back(it->clone()); return new_caserule; } RTLIL::SwitchRule::~SwitchRule() { for (auto it = cases.begin(); it != cases.end(); it++) delete *it; } RTLIL::SwitchRule *RTLIL::SwitchRule::clone() const { RTLIL::SwitchRule *new_switchrule = new RTLIL::SwitchRule; new_switchrule->signal = signal; new_switchrule->attributes = attributes; for (auto &it : cases) new_switchrule->cases.push_back(it->clone()); return new_switchrule; } RTLIL::SyncRule *RTLIL::SyncRule::clone() const { RTLIL::SyncRule *new_syncrule = new RTLIL::SyncRule; new_syncrule->type = type; new_syncrule->signal = signal; new_syncrule->actions = actions; return new_syncrule; } RTLIL::Process::~Process() { for (auto it = syncs.begin(); it != syncs.end(); it++) delete *it; } RTLIL::Process *RTLIL::Process::clone() const { RTLIL::Process *new_proc = new RTLIL::Process; new_proc->name = name; new_proc->attributes = attributes; RTLIL::CaseRule *rc_ptr = root_case.clone(); new_proc->root_case = *rc_ptr; rc_ptr->switches.clear(); delete rc_ptr; for (auto &it : syncs) new_proc->syncs.push_back(it->clone()); return new_proc; }