/* -*- c++ -*- * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2020 Alberto Gonzalez * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/yosys.h" #include "kernel/consteval.h" #include "qbfsat.h" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN static inline unsigned int difference(unsigned int a, unsigned int b) { if (a < b) return b - a; else return a - b; } pool validate_design_and_get_inputs(RTLIL::Module *module, bool assume_outputs) { bool found_input = false; bool found_hole = false; bool found_1bit_output = false; bool found_assert_assume = false; pool input_wires; for (auto wire : module->wires()) { if (wire->port_input) { found_input = true; input_wires.insert(wire->name.str()); } if (wire->port_output && wire->width == 1) found_1bit_output = true; } for (auto cell : module->cells()) { if (cell->type == "$allconst") found_input = true; if (cell->type == "$anyconst") found_hole = true; if (cell->type.in("$assert", "$assume")) found_assert_assume = true; } if (!found_input) log_cmd_error("Can't perform QBF-SAT on a miter with no inputs!\n"); if (!found_hole) log_cmd_error("Did not find any existentially-quantified variables. Use 'sat' instead.\n"); if (!found_1bit_output && !found_assert_assume) log_cmd_error("Did not find any single-bit outputs or $assert/$assume cells. Is this a miter circuit?\n"); if (!found_assert_assume && !assume_outputs) log_cmd_error("Did not find any $assert/$assume cells. Single-bit outputs were found, but `-assume-outputs` was not specified.\n"); return input_wires; } void specialize_from_file(RTLIL::Module *module, const std::string &file) { YS_REGEX_TYPE hole_bit_assn_regex = YS_REGEX_COMPILE_WITH_SUBS("^(.+) ([0-9]+) ([^ ]+) \\[([0-9]+)] = ([01])$"); YS_REGEX_TYPE hole_assn_regex = YS_REGEX_COMPILE_WITH_SUBS("^(.+) ([0-9]+) ([^ ]+) = ([01])$"); //if no index specified YS_REGEX_MATCH_TYPE bit_m, m; dict, RTLIL::Cell*> anyconst_loc_to_cell; dict hole_assignments; for (auto cell : module->cells()) if (cell->type == "$anyconst") anyconst_loc_to_cell[cell->get_strpool_attribute(ID::src)] = cell; std::ifstream fin(file.c_str()); if (!fin) log_cmd_error("could not read solution file.\n"); std::string buf; while (std::getline(fin, buf)) { bool bit_assn = true; if (!YS_REGEX_NS::regex_search(buf, bit_m, hole_bit_assn_regex)) { bit_assn = false; if (!YS_REGEX_NS::regex_search(buf, m, hole_assn_regex)) log_cmd_error("solution file is not formatted correctly: \"%s\"\n", buf.c_str()); } std::string hole_loc = bit_assn? bit_m[1].str() : m[1].str(); unsigned int hole_bit = bit_assn? atoi(bit_m[2].str().c_str()) : atoi(m[2].str().c_str()); std::string hole_name = bit_assn? bit_m[3].str() : m[3].str(); unsigned int hole_offset = bit_assn? atoi(bit_m[4].str().c_str()) : 0; RTLIL::State hole_value = bit_assn? (atoi(bit_m[5].str().c_str()) == 1? RTLIL::State::S1 : RTLIL::State::S0) : (atoi(m[4].str().c_str()) == 1? RTLIL::State::S1 : RTLIL::State::S0); //We have two options to identify holes. First, try to match wire names. If we can't find a matching wire, //then try to find a cell with a matching location. RTLIL::SigBit hole_sigbit; if (module->wire(hole_name) != nullptr) { RTLIL::Wire *hole_wire = module->wire(hole_name); hole_sigbit = RTLIL::SigSpec(hole_wire)[hole_offset]; } else { auto locs = split_tokens(hole_loc, "|"); pool hole_loc_pool(locs.begin(), locs.end()); auto hole_cell_it = anyconst_loc_to_cell.find(hole_loc_pool); if (hole_cell_it == anyconst_loc_to_cell.end()) log_cmd_error("cannot find matching wire name or $anyconst cell location for hole spec \"%s\"\n", buf.c_str()); RTLIL::Cell *hole_cell = hole_cell_it->second; hole_sigbit = hole_cell->getPort(ID::Y)[hole_bit]; } hole_assignments[hole_sigbit] = hole_value; } for (auto &it : anyconst_loc_to_cell) module->remove(it.second); for (auto &it : hole_assignments) { RTLIL::SigSpec lhs(it.first); RTLIL::SigSpec rhs(it.second); log("Specializing %s from file with %s = %d.\n", module->name.c_str(), log_signal(it.first), it.second == RTLIL::State::S1? 1 : 0); module->connect(lhs, rhs); } } void specialize(RTLIL::Module *module, const QbfSolutionType &sol, bool quiet = false) { auto hole_loc_idx_to_sigbit = sol.get_hole_loc_idx_sigbit_map(module); pool anyconsts_to_remove; for (auto cell : module->cells()) if (cell->type == "$anyconst") if (hole_loc_idx_to_sigbit.find(std::make_pair(cell->get_strpool_attribute(ID::src), 0)) != hole_loc_idx_to_sigbit.end()) anyconsts_to_remove.insert(cell); for (auto cell : anyconsts_to_remove) module->remove(cell); for (auto &it : sol.hole_to_value) { pool hole_loc = it.first; std::string hole_value = it.second; for (unsigned int i = 0; i < hole_value.size(); ++i) { int bit_idx = GetSize(hole_value) - 1 - i; auto it = hole_loc_idx_to_sigbit.find(std::make_pair(hole_loc, i)); log_assert(it != hole_loc_idx_to_sigbit.end()); RTLIL::SigBit hole_sigbit = it->second; log_assert(hole_sigbit.wire != nullptr); log_assert(hole_value[bit_idx] == '0' || hole_value[bit_idx] == '1'); RTLIL::SigSpec lhs(hole_sigbit.wire, hole_sigbit.offset, 1); RTLIL::State hole_bit_val = hole_value[bit_idx] == '1'? RTLIL::State::S1 : RTLIL::State::S0; if (!quiet) log("Specializing %s with %s = %d.\n", module->name.c_str(), log_signal(hole_sigbit), hole_bit_val == RTLIL::State::S0? 0 : 1) ; module->connect(lhs, hole_bit_val); } } } void allconstify_inputs(RTLIL::Module *module, const pool &input_wires) { for (auto &n : input_wires) { RTLIL::Wire *input = module->wire(n); log_assert(input != nullptr); RTLIL::Cell *allconst = module->addCell("$allconst$" + n, "$allconst"); allconst->setParam(ID(WIDTH), input->width); allconst->setPort(ID::Y, input); allconst->set_src_attribute(input->get_src_attribute()); input->port_input = false; log("Replaced input %s with $allconst cell.\n", n.c_str()); } module->fixup_ports(); } void assume_miter_outputs(RTLIL::Module *module, bool assume_neg) { std::vector wires_to_assume; for (auto w : module->wires()) if (w->port_output && w->width == 1) wires_to_assume.push_back(w); if (wires_to_assume.size() == 0) return; else { log("Adding $assume cell for output(s): "); for (auto w : wires_to_assume) log("\"%s\" ", w->name.c_str()); log("\n"); } if (assume_neg) { for (unsigned int i = 0; i < wires_to_assume.size(); ++i) { RTLIL::SigSpec n_wire = module->LogicNot(wires_to_assume[i]->name.str() + "__n__qbfsat", wires_to_assume[i], false, wires_to_assume[i]->get_src_attribute()); wires_to_assume[i] = n_wire.as_wire(); } } for (auto i = 0; wires_to_assume.size() > 1; ++i) { std::vector buf; for (auto j = 0; j + 1 < GetSize(wires_to_assume); j += 2) { std::stringstream strstr; strstr << i << "_" << j; RTLIL::Wire *and_wire = module->addWire("\\_qbfsat_and_" + strstr.str(), 1); module->addLogicAnd("$_qbfsat_and_" + strstr.str(), wires_to_assume[j], wires_to_assume[j+1], and_wire, false, wires_to_assume[j]->get_src_attribute()); buf.push_back(and_wire); } if (wires_to_assume.size() % 2 == 1) buf.push_back(wires_to_assume[wires_to_assume.size() - 1]); wires_to_assume.swap(buf); } log_assert(wires_to_assume.size() == 1); module->addAssume("$assume_qbfsat_miter_outputs", wires_to_assume[0], RTLIL::S1); } QbfSolutionType call_qbf_solver(RTLIL::Module *mod, const QbfSolveOptions &opt, const std::string &tempdir_name, const bool quiet = false, const int iter_num = 0) { //Execute and capture stdout from `yosys-smtbmc -s z3 -t 1 -g --binary [--dump-smt2 ]` QbfSolutionType ret; const std::string yosys_smtbmc_exe = proc_self_dirname() + "yosys-smtbmc"; const std::string smtbmc_warning = "z3: WARNING:"; const std::string smtbmc_cmd = stringf("\"%s\" -s %s %s -t 1 -g --binary %s %s/problem%d.smt2 2>&1", yosys_smtbmc_exe.c_str(), opt.get_solver_name().c_str(), (opt.timeout != 0? stringf("--timeout %d", opt.timeout) : "").c_str(), (opt.dump_final_smt2? "--dump-smt2 " + opt.dump_final_smt2_file : "").c_str(), tempdir_name.c_str(), iter_num); std::string smt2_command = "write_smt2 -stbv -wires "; for (auto &solver_opt : opt.solver_options) smt2_command += stringf("-solver-option %s %s ", solver_opt.first.c_str(), solver_opt.second.c_str()); smt2_command += stringf("%s/problem%d.smt2", tempdir_name.c_str(), iter_num); Pass::call(mod->design, smt2_command); auto process_line = [&ret, &smtbmc_warning, &opt, &quiet](const std::string &line) { ret.stdout_lines.push_back(line.substr(0, line.size()-1)); //don't include trailing newline auto warning_pos = line.find(smtbmc_warning); if (warning_pos != std::string::npos) log_warning("%s", line.substr(warning_pos + smtbmc_warning.size() + 1).c_str()); else if (opt.show_smtbmc && !quiet) log("smtbmc output: %s", line.c_str()); }; log_header(mod->design, "Solving QBF-SAT problem.\n"); if (!quiet) log("Launching \"%s\".\n", smtbmc_cmd.c_str()); int64_t begin = PerformanceTimer::query(); run_command(smtbmc_cmd, process_line); int64_t end = PerformanceTimer::query(); ret.solver_time = (end - begin) / 1e9f; if (!quiet) log("Solver finished in %.3f seconds.\n", ret.solver_time); ret.recover_solution(); return ret; } QbfSolutionType qbf_solve(RTLIL::Module *mod, const QbfSolveOptions &opt) { QbfSolutionType ret, best_soln; const std::string tempdir_name = make_temp_dir(get_base_tmpdir() + "/yosys-qbfsat-XXXXXX"); RTLIL::Module *module = mod; RTLIL::Design *design = module->design; std::string module_name = module->name.str(); RTLIL::IdString wire_to_optimize_name = ""; bool maximize = false; log_assert(module->design != nullptr); Pass::call(design, "design -push-copy"); //Replace input wires with wires assigned $allconst cells: pool input_wires = validate_design_and_get_inputs(module, opt.assume_outputs); allconstify_inputs(module, input_wires); if (opt.assume_outputs) assume_miter_outputs(module, opt.assume_neg); //Find the wire to be optimized, if any: for (auto wire : module->wires()) { if (wire->get_bool_attribute("\\maximize") || wire->get_bool_attribute("\\minimize")) { wire_to_optimize_name = wire->name; maximize = wire->get_bool_attribute("\\maximize"); if (opt.nooptimize) { if (maximize) wire->set_bool_attribute("\\maximize", false); else wire->set_bool_attribute("\\minimize", false); } } } //If -O1 or -O2 was specified, use ABC to simplify the problem: if (opt.oflag == opt.OptimizationLevel::O1) Pass::call(module->design, "abc -g AND,NAND,OR,NOR,XOR,XNOR,MUX,NMUX -script +print_stats;strash;print_stats;drwsat;print_stats;fraig;print_stats;refactor,-N,10,-lz;print_stats;&get,-n;&dch,-pem;&nf;&put " + mod->name.str()); else if (opt.oflag == opt.OptimizationLevel::O2) Pass::call(module->design, "abc -g AND,NAND,OR,NOR,XOR,XNOR,MUX,NMUX -script +print_stats;strash;print_stats;drwsat;print_stats;dch,-S,1000000,-C,100000,-p;print_stats;fraig;print_stats;refactor,-N,15,-lz;print_stats;dc2,-pbl;print_stats;drwsat;print_stats;&get,-n;&dch,-pem;&nf;&put " + mod->name.str()); if (opt.oflag != opt.OptimizationLevel::O0) { Pass::call(module->design, "techmap"); Pass::call(module->design, "opt"); } if (opt.nobisection || opt.nooptimize || wire_to_optimize_name == "") { ret = call_qbf_solver(module, opt, tempdir_name, false, 0); } else { //Do the iterated bisection method: unsigned int iter_num = 1; unsigned int success = 0; unsigned int failure = 0; unsigned int cur_thresh = 0; log_assert(wire_to_optimize_name != ""); log_assert(module->wire(wire_to_optimize_name) != nullptr); log("%s wire \"%s\".\n", (maximize? "Maximizing" : "Minimizing"), wire_to_optimize_name.c_str()); //If maximizing, grow until we get a failure. Then bisect success and failure. while (failure == 0 || difference(success, failure) > 1) { Pass::call(design, "design -push-copy"); log_header(design, "Preparing QBF-SAT problem.\n"); if (cur_thresh != 0) { //Add thresholding logic (but not on the initial run when we don't have a sense of where to start): RTLIL::SigSpec comparator = maximize? module->Ge(NEW_ID, module->wire(wire_to_optimize_name), RTLIL::Const(cur_thresh), false) : module->Le(NEW_ID, module->wire(wire_to_optimize_name), RTLIL::Const(cur_thresh), false); module->addAssume(wire_to_optimize_name.str() + "__threshold", comparator, RTLIL::Const(1, 1)); log("Trying to solve with %s %s %d.\n", wire_to_optimize_name.c_str(), (maximize? ">=" : "<="), cur_thresh); } ret = call_qbf_solver(module, opt, tempdir_name, false, iter_num); Pass::call(design, "design -pop"); module = design->module(module_name); if (!ret.unknown && ret.sat) { Pass::call(design, "design -push-copy"); specialize(module, ret, true); RTLIL::SigSpec wire, value, undef; RTLIL::SigSpec::parse_sel(wire, design, module, wire_to_optimize_name.str()); ConstEval ce(module); value = wire; if (!ce.eval(value, undef)) log_cmd_error("Failed to evaluate signal %s: Missing value for %s.\n", log_signal(wire), log_signal(undef)); log_assert(value.is_fully_const()); success = value.as_const().as_int(); best_soln = ret; log("Problem is satisfiable with %s = %d.\n", wire_to_optimize_name.c_str(), success); Pass::call(design, "design -pop"); module = design->module(module_name); //sometimes this happens if we get an 'unknown' or timeout if (!maximize && success < failure) break; else if (maximize && failure != 0 && success > failure) break; } else { //Treat 'unknown' as UNSAT failure = cur_thresh; if (failure == 0) { log("Problem is NOT satisfiable.\n"); break; } else log("Problem is NOT satisfiable with %s %s %d.\n", wire_to_optimize_name.c_str(), (maximize? ">=" : "<="), failure); } iter_num++; if (maximize && failure == 0 && success == 0) cur_thresh = 2; else if (maximize && failure == 0) cur_thresh = 2 * success; //growth else //if (!maximize || failure != 0) cur_thresh = (success + failure) / 2; //bisection } if (success != 0 || failure != 0) { log("Wire %s is %s at %d.\n", wire_to_optimize_name.c_str(), (maximize? "maximized" : "minimized"), success); ret = best_soln; } } if(!opt.nocleanup) remove_directory(tempdir_name); Pass::call(design, "design -pop"); return ret; } QbfSolveOptions parse_args(const std::vector &args) { QbfSolveOptions opt; for (opt.argidx = 1; opt.argidx < args.size(); opt.argidx++) { if (args[opt.argidx] == "-nocleanup") { opt.nocleanup = true; continue; } else if (args[opt.argidx] == "-specialize") { opt.specialize = true; continue; } else if (args[opt.argidx] == "-assume-outputs") { opt.assume_outputs = true; continue; } else if (args[opt.argidx] == "-assume-negative-polarity") { opt.assume_neg = true; continue; } else if (args[opt.argidx] == "-nooptimize") { opt.nooptimize = true; continue; } else if (args[opt.argidx] == "-nobisection") { opt.nobisection = true; continue; } else if (args[opt.argidx] == "-solver") { if (args.size() <= opt.argidx + 1) log_cmd_error("solver not specified.\n"); else { if (args[opt.argidx+1] == "z3") opt.solver = opt.Solver::Z3; else if (args[opt.argidx+1] == "yices") opt.solver = opt.Solver::Yices; else if (args[opt.argidx+1] == "cvc4") opt.solver = opt.Solver::CVC4; else log_cmd_error("Unknown solver \"%s\".\n", args[opt.argidx+1].c_str()); opt.argidx++; } continue; } else if (args[opt.argidx] == "-solver-option") { if (args.size() <= opt.argidx + 2) log_cmd_error("solver option name and value not fully specified.\n"); opt.solver_options.emplace(args[opt.argidx+1], args[opt.argidx+2]); opt.argidx += 2; continue; } else if (args[opt.argidx] == "-timeout") { if (args.size() <= opt.argidx + 1) log_cmd_error("timeout not specified.\n"); else { int timeout = atoi(args[opt.argidx+1].c_str()); if (timeout > 0) opt.timeout = timeout; else log_cmd_error("timeout must be greater than 0.\n"); opt.argidx++; } continue; } else if (args[opt.argidx].substr(0, 2) == "-O" && args[opt.argidx].size() == 3) { switch (args[opt.argidx][2]) { case '0': opt.oflag = opt.OptimizationLevel::O0; break; case '1': opt.oflag = opt.OptimizationLevel::O1; break; case '2': opt.oflag = opt.OptimizationLevel::O2; break; default: log_cmd_error("unknown argument %s\n", args[opt.argidx].c_str()); } continue; } else if (args[opt.argidx] == "-sat") { opt.sat = true; continue; } else if (args[opt.argidx] == "-unsat") { opt.unsat = true; continue; } else if (args[opt.argidx] == "-show-smtbmc") { opt.show_smtbmc = true; continue; } else if (args[opt.argidx] == "-dump-final-smt2") { opt.dump_final_smt2 = true; if (args.size() <= opt.argidx + 1) log_cmd_error("smt2 file not specified.\n"); else opt.dump_final_smt2_file = args[++opt.argidx]; continue; } else if (args[opt.argidx] == "-specialize-from-file") { opt.specialize_from_file = true; if (args.size() <= opt.argidx + 1) log_cmd_error("solution file not specified.\n"); else opt.specialize_soln_file = args[++opt.argidx]; continue; } else if (args[opt.argidx] == "-write-solution") { opt.write_solution = true; if (args.size() <= opt.argidx + 1) log_cmd_error("solution file not specified.\n"); else opt.write_soln_soln_file = args[++opt.argidx]; continue; } break; } return opt; } struct QbfSatPass : public Pass { QbfSatPass() : Pass("qbfsat", "solve a 2QBF-SAT problem in the circuit") { } void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" qbfsat [options] [selection]\n"); log("\n"); log("This command solves an \"exists-forall\" 2QBF-SAT problem defined over the currently\n"); log("selected module. Existentially-quantified variables are declared by assigning a wire\n"); log("\"$anyconst\". Universally-quantified variables may be explicitly declared by assigning\n"); log("a wire \"$allconst\", but module inputs will be treated as universally-quantified\n"); log("variables by default.\n"); log("\n"); log(" -nocleanup\n"); log(" Do not delete temporary files and directories. Useful for debugging.\n"); log("\n"); log(" -dump-final-smt2 \n"); log(" Pass the --dump-smt2 option to yosys-smtbmc.\n"); log("\n"); log(" -assume-outputs\n"); log(" Add an \"$assume\" cell for the conjunction of all one-bit module output wires.\n"); log("\n"); log(" -assume-negative-polarity\n"); log(" When adding $assume cells for one-bit module output wires, assume they are\n"); log(" negative polarity signals and should always be low, for example like the\n"); log(" miters created with the `miter` command.\n"); log("\n"); log(" -nooptimize\n"); log(" Ignore \"\\minimize\" and \"\\maximize\" attributes, do not emit \"(maximize)\" or\n"); log(" \"(minimize)\" in the SMT-LIBv2, and generally make no attempt to optimize anything.\n"); log("\n"); log(" -nobisection\n"); log(" If a wire is marked with the \"\\minimize\" or \"\\maximize\" attribute, do not\n"); log(" attempt to optimize that value with the default iterated solving and threshold\n"); log(" bisection approach. Instead, have yosys-smtbmc emit a \"(minimize)\" or \"(maximize)\"\n"); log(" command in the SMT-LIBv2 output and hope that the solver supports optimizing\n"); log(" quantified bitvector problems.\n"); log("\n"); log(" -solver \n"); log(" Use a particular solver. Choose one of: \"z3\", \"yices\", and \"cvc4\".\n"); log(" (default: yices)\n"); log("\n"); log(" -solver-option \n"); log(" Set the specified solver option in the SMT-LIBv2 problem file.\n"); log("\n"); log(" -timeout \n"); log(" Set the per-iteration timeout in seconds.\n"); log(" (default: no timeout)\n"); log("\n"); log(" -O0, -O1, -O2\n"); log(" Control the use of ABC to simplify the QBF-SAT problem before solving.\n"); log("\n"); log(" -sat\n"); log(" Generate an error if the solver does not return \"sat\".\n"); log("\n"); log(" -unsat\n"); log(" Generate an error if the solver does not return \"unsat\".\n"); log("\n"); log(" -show-smtbmc\n"); log(" Print the output from yosys-smtbmc.\n"); log("\n"); log(" -specialize\n"); log(" If the problem is satisfiable, replace each \"$anyconst\" cell with its\n"); log(" corresponding constant value from the model produced by the solver.\n"); log("\n"); log(" -specialize-from-file \n"); log(" Do not run the solver, but instead only attempt to replace each \"$anyconst\"\n"); log(" cell in the current module with a constant value provided by the specified file.\n"); log("\n"); log(" -write-solution \n"); log(" If the problem is satisfiable, write the corresponding constant value for each\n"); log(" \"$anyconst\" cell from the model produced by the solver to the specified file."); log("\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) override { log_header(design, "Executing QBFSAT pass (solving QBF-SAT problems in the circuit).\n"); QbfSolveOptions opt = parse_args(args); extra_args(args, opt.argidx, design); RTLIL::Module *module = nullptr; for (auto mod : design->selected_modules()) { if (module) log_cmd_error("Only one module must be selected for the QBF-SAT pass! (selected: %s and %s)\n", log_id(module), log_id(mod)); module = mod; } if (module == nullptr) log_cmd_error("Can't perform QBF-SAT on an empty selection!\n"); log_push(); if (!opt.specialize_from_file) { //Save the design to restore after modiyfing the current module. std::string module_name = module->name.str(); QbfSolutionType ret = qbf_solve(module, opt); module = design->module(module_name); if (ret.unknown) { if (opt.sat || opt.unsat) log_cmd_error("expected problem to be %s\n", opt.sat? "SAT" : "UNSAT"); } else if (ret.sat) { print_qed(); if (opt.write_solution) { ret.write_solution(module, opt.write_soln_soln_file); } if (opt.specialize) { specialize(module, ret); } else { ret.dump_model(module); } if (opt.unsat) log_cmd_error("expected problem to be UNSAT\n"); } else { print_proof_failed(); if (opt.sat) log_cmd_error("expected problem to be SAT\n"); } } else specialize_from_file(module, opt.specialize_soln_file); log_pop(); } } QbfSatPass; PRIVATE_NAMESPACE_END