// This is free and unencumbered software released into the public domain. // // Anyone is free to copy, modify, publish, use, compile, sell, or // distribute this software, either in source code form or as a compiled // binary, for any purpose, commercial or non-commercial, and by any // means. // ------------------------------------------------------- // Written by Claire Xenia Wolf in 2014 // ------------------------------------------------------- #ifndef HASHLIB_H #define HASHLIB_H #include #include #include #include #include #include #include #define YS_HASHING_VERSION 1 namespace hashlib { /** * HASHING * * Also refer to docs/source/yosys_internals/hashing.rst * * The Hasher knows how to hash 32 and 64-bit integers. That's it. * In the future, it could be expanded to do vectors with SIMD. * * The Hasher doesn't know how to hash common standard containers * and compositions. However, hashlib provides centralized wrappers. * * Hashlib doesn't know how to hash silly Yosys-specific types. * Hashlib doesn't depend on Yosys and can be used standalone. * Please don't use hashlib standalone for new projects. * Never directly include kernel/hashlib.h in Yosys code. * Instead include kernel/yosys_common.h * * The hash_ops type is now always left to its default value, derived * from templated functions through SFINAE. Providing custom ops is * still supported. * * HASH TABLES * * We implement associative data structures with separate chaining. * Linked lists use integers into the indirection hashtable array * instead of pointers. */ const int hashtable_size_trigger = 2; const int hashtable_size_factor = 3; namespace legacy { inline uint32_t djb2_add(uint32_t a, uint32_t b) { return ((a << 5) + a) + b; } }; /** * Hash a type with an accumulator in a record or array context */ template struct hash_ops; /** * Hash a single instance in isolation. * Can have explicit specialization, but the default redirects to hash_ops */ template struct hash_top_ops; inline unsigned int mkhash_xorshift(unsigned int a) { if (sizeof(a) == 4) { a ^= a << 13; a ^= a >> 17; a ^= a << 5; } else if (sizeof(a) == 8) { a ^= a << 13; a ^= a >> 7; a ^= a << 17; } else throw std::runtime_error("mkhash_xorshift() only implemented for 32 bit and 64 bit ints"); return a; } class HasherDJB32 { public: using hash_t = uint32_t; HasherDJB32() { // traditionally 5381 is used as starting value for the djb2 hash state = 5381; } static void set_fudge(hash_t f) { fudge = f; } private: uint32_t state; static uint32_t fudge; // The XOR version of DJB2 [[nodiscard]] static uint32_t djb2_xor(uint32_t a, uint32_t b) { uint32_t hash = ((a << 5) + a) ^ b; return hash; } public: void hash32(uint32_t i) { state = djb2_xor(i, state); state = mkhash_xorshift(fudge ^ state); return; } void hash64(uint64_t i) { state = djb2_xor((uint32_t)(i & 0xFFFFFFFFULL), state); state = djb2_xor((uint32_t)(i >> 32ULL), state); state = mkhash_xorshift(fudge ^ state); return; } [[nodiscard]] hash_t yield() { return (hash_t)state; } template void eat(T&& t) { *this = hash_ops>>::hash_into(std::forward(t), *this); } template void eat(const T& t) { *this = hash_ops::hash_into(t, *this); } void commutative_eat(hash_t t) { state ^= t; } void force(hash_t new_state) { state = new_state; } }; using Hasher = HasherDJB32; template struct hash_top_ops { static inline bool cmp(const T &a, const T &b) { return hash_ops::cmp(a, b); } static inline Hasher hash(const T &a) { return hash_ops::hash_into(a, Hasher()); } }; template struct hash_ops { static inline bool cmp(const T &a, const T &b) { return a == b; } static inline Hasher hash_into(const T &a, Hasher h) { if constexpr (std::is_integral_v) { static_assert(sizeof(T) <= sizeof(uint64_t)); if (sizeof(T) == sizeof(uint64_t)) h.hash64(a); else h.hash32(a); return h; } else if constexpr (std::is_enum_v) { using u_type = std::underlying_type_t; return hash_ops::hash_into((u_type) a, h); } else if constexpr (std::is_pointer_v) { return hash_ops::hash_into((uintptr_t) a, h); } else if constexpr (std::is_same_v) { for (auto c : a) h.hash32(c); return h; } else { return a.hash_into(h); } } }; template struct hash_ops> { static inline bool cmp(std::pair a, std::pair b) { return a == b; } static inline Hasher hash_into(std::pair a, Hasher h) { h = hash_ops

::hash_into(a.first, h); h = hash_ops::hash_into(a.second, h); return h; } }; template struct hash_ops> { static inline bool cmp(std::tuple a, std::tuple b) { return a == b; } template static inline typename std::enable_if::type hash_into(std::tuple, Hasher h) { return h; } template static inline typename std::enable_if::type hash_into(std::tuple a, Hasher h) { typedef hash_ops>::type> element_ops_t; h = hash_into(a, h); h = element_ops_t::hash_into(std::get(a), h); return h; } }; template struct hash_ops> { static inline bool cmp(std::vector a, std::vector b) { return a == b; } static inline Hasher hash_into(std::vector a, Hasher h) { h.eat((uint32_t)a.size()); for (auto k : a) h.eat(k); return h; } }; template struct hash_ops> { static inline bool cmp(std::array a, std::array b) { return a == b; } static inline Hasher hash_into(std::array a, Hasher h) { for (const auto& k : a) h = hash_ops::hash_into(k, h); return h; } }; struct hash_cstr_ops { static inline bool cmp(const char *a, const char *b) { return strcmp(a, b) == 0; } static inline Hasher hash_into(const char *a, Hasher h) { while (*a) h.hash32(*(a++)); return h; } }; template <> struct hash_ops : hash_cstr_ops {}; struct hash_ptr_ops { static inline bool cmp(const void *a, const void *b) { return a == b; } static inline Hasher hash_into(const void *a, Hasher h) { return hash_ops::hash_into((uintptr_t)a, h); } }; struct hash_obj_ops { static inline bool cmp(const void *a, const void *b) { return a == b; } template static inline Hasher hash_into(const T *a, Hasher h) { if (a) a->hash_into(h); else h.eat(0); return h; } }; /** * If you find yourself using this function, think hard * about if it's the right thing to do. Mixing finalized * hashes together with XORs or worse can destroy * desirable qualities of the hash function */ template [[nodiscard]] Hasher::hash_t run_hash(const T& obj) { return hash_top_ops::hash(obj).yield(); } /** Refer to docs/source/yosys_internals/hashing.rst */ template [[nodiscard]] [[deprecated]] inline unsigned int mkhash(const T &v) { return (unsigned int) run_hash(v); } template<> struct hash_ops { static inline bool cmp(std::monostate a, std::monostate b) { return a == b; } static inline Hasher hash_into(std::monostate, Hasher h) { return h; } }; template struct hash_ops> { static inline bool cmp(std::variant a, std::variant b) { return a == b; } static inline Hasher hash_into(std::variant a, Hasher h) { std::visit([& h](const auto &v) { h.eat(v); }, a); h.eat(a.index()); return h; } }; template struct hash_ops> { static inline bool cmp(std::optional a, std::optional b) { return a == b; } static inline Hasher hash_into(std::optional a, Hasher h) { if(a.has_value()) h.eat(*a); else h.eat(0); return h; } }; inline int hashtable_size(int min_size) { // Primes as generated by https://oeis.org/A175953 static std::vector zero_and_some_primes = { 0, 23, 29, 37, 47, 59, 79, 101, 127, 163, 211, 269, 337, 431, 541, 677, 853, 1069, 1361, 1709, 2137, 2677, 3347, 4201, 5261, 6577, 8231, 10289, 12889, 16127, 20161, 25219, 31531, 39419, 49277, 61603, 77017, 96281, 120371, 150473, 188107, 235159, 293957, 367453, 459317, 574157, 717697, 897133, 1121423, 1401791, 1752239, 2190299, 2737937, 3422429, 4278037, 5347553, 6684443, 8355563, 10444457, 13055587, 16319519, 20399411, 25499291, 31874149, 39842687, 49803361, 62254207, 77817767, 97272239, 121590311, 151987889, 189984863, 237481091, 296851369, 371064217, 463830313, 579787991, 724735009, 905918777, 1132398479, 1415498113, 1769372713 }; for (auto p : zero_and_some_primes) if (p >= min_size) return p; if (sizeof(int) == 4) throw std::length_error("hash table exceeded maximum size.\nDesign is likely too large for yosys to handle, if possible try not to flatten the design."); for (auto p : zero_and_some_primes) if (100129 * p > min_size) return 100129 * p; throw std::length_error("hash table exceeded maximum size."); } template> class dict; template> class idict; template> class pool; template> class mfp; template class dict { struct entry_t { std::pair udata; int next; entry_t() { } entry_t(const std::pair &udata, int next) : udata(udata), next(next) { } entry_t(std::pair &&udata, int next) : udata(std::move(udata)), next(next) { } bool operator<(const entry_t &other) const { return udata.first < other.udata.first; } }; std::vector hashtable; std::vector entries; OPS ops; #ifdef NDEBUG static inline void do_assert(bool) { } #else static inline void do_assert(bool cond) { if (!cond) throw std::runtime_error("dict<> assert failed."); } #endif Hasher::hash_t do_hash(const K &key) const { Hasher::hash_t hash = 0; if (!hashtable.empty()) hash = ops.hash(key).yield() % (unsigned int)(hashtable.size()); return hash; } void do_rehash() { hashtable.clear(); hashtable.resize(hashtable_size(entries.capacity() * hashtable_size_factor), -1); for (int i = 0; i < int(entries.size()); i++) { do_assert(-1 <= entries[i].next && entries[i].next < int(entries.size())); Hasher::hash_t hash = do_hash(entries[i].udata.first); entries[i].next = hashtable[hash]; hashtable[hash] = i; } } int do_erase(int index, Hasher::hash_t hash) { do_assert(index < int(entries.size())); if (hashtable.empty() || index < 0) return 0; int k = hashtable[hash]; do_assert(0 <= k && k < int(entries.size())); if (k == index) { hashtable[hash] = entries[index].next; } else { while (entries[k].next != index) { k = entries[k].next; do_assert(0 <= k && k < int(entries.size())); } entries[k].next = entries[index].next; } int back_idx = entries.size()-1; if (index != back_idx) { Hasher::hash_t back_hash = do_hash(entries[back_idx].udata.first); k = hashtable[back_hash]; do_assert(0 <= k && k < int(entries.size())); if (k == back_idx) { hashtable[back_hash] = index; } else { while (entries[k].next != back_idx) { k = entries[k].next; do_assert(0 <= k && k < int(entries.size())); } entries[k].next = index; } entries[index] = std::move(entries[back_idx]); } entries.pop_back(); if (entries.empty()) hashtable.clear(); return 1; } int do_lookup(const K &key, Hasher::hash_t &hash) const { if (hashtable.empty()) return -1; if (entries.size() * hashtable_size_trigger > hashtable.size()) { ((dict*)this)->do_rehash(); hash = do_hash(key); } int index = hashtable[hash]; while (index >= 0 && !ops.cmp(entries[index].udata.first, key)) { index = entries[index].next; do_assert(-1 <= index && index < int(entries.size())); } return index; } int do_insert(const K &key, Hasher::hash_t &hash) { if (hashtable.empty()) { entries.emplace_back(std::pair(key, T()), -1); do_rehash(); hash = do_hash(key); } else { entries.emplace_back(std::pair(key, T()), hashtable[hash]); hashtable[hash] = entries.size() - 1; } return entries.size() - 1; } int do_insert(const std::pair &value, Hasher::hash_t &hash) { if (hashtable.empty()) { entries.emplace_back(value, -1); do_rehash(); hash = do_hash(value.first); } else { entries.emplace_back(value, hashtable[hash]); hashtable[hash] = entries.size() - 1; } return entries.size() - 1; } int do_insert(std::pair &&rvalue, Hasher::hash_t &hash) { if (hashtable.empty()) { auto key = rvalue.first; entries.emplace_back(std::forward>(rvalue), -1); do_rehash(); hash = do_hash(key); } else { entries.emplace_back(std::forward>(rvalue), hashtable[hash]); hashtable[hash] = entries.size() - 1; } return entries.size() - 1; } public: class const_iterator { friend class dict; protected: const dict *ptr; int index; const_iterator(const dict *ptr, int index) : ptr(ptr), index(index) { } public: typedef std::forward_iterator_tag iterator_category; typedef std::pair value_type; typedef ptrdiff_t difference_type; typedef std::pair* pointer; typedef std::pair& reference; const_iterator() { } const_iterator operator++() { index--; return *this; } const_iterator operator+=(int amt) { index -= amt; return *this; } bool operator<(const const_iterator &other) const { return index > other.index; } bool operator==(const const_iterator &other) const { return index == other.index; } bool operator!=(const const_iterator &other) const { return index != other.index; } const std::pair &operator*() const { return ptr->entries[index].udata; } const std::pair *operator->() const { return &ptr->entries[index].udata; } }; class iterator { friend class dict; protected: dict *ptr; int index; iterator(dict *ptr, int index) : ptr(ptr), index(index) { } public: typedef std::forward_iterator_tag iterator_category; typedef std::pair value_type; typedef ptrdiff_t difference_type; typedef std::pair* pointer; typedef std::pair& reference; iterator() { } iterator operator++() { index--; return *this; } iterator operator+=(int amt) { index -= amt; return *this; } bool operator<(const iterator &other) const { return index > other.index; } bool operator==(const iterator &other) const { return index == other.index; } bool operator!=(const iterator &other) const { return index != other.index; } std::pair &operator*() { return ptr->entries[index].udata; } std::pair *operator->() { return &ptr->entries[index].udata; } const std::pair &operator*() const { return ptr->entries[index].udata; } const std::pair *operator->() const { return &ptr->entries[index].udata; } operator const_iterator() const { return const_iterator(ptr, index); } }; constexpr dict() { } dict(const dict &other) { entries = other.entries; do_rehash(); } dict(dict &&other) { swap(other); } dict &operator=(const dict &other) { entries = other.entries; do_rehash(); return *this; } dict &operator=(dict &&other) { clear(); swap(other); return *this; } dict(const std::initializer_list> &list) { for (auto &it : list) insert(it); } template dict(InputIterator first, InputIterator last) { insert(first, last); } template void insert(InputIterator first, InputIterator last) { for (; first != last; ++first) insert(*first); } std::pair insert(const K &key) { Hasher::hash_t hash = do_hash(key); int i = do_lookup(key, hash); if (i >= 0) return std::pair(iterator(this, i), false); i = do_insert(key, hash); return std::pair(iterator(this, i), true); } std::pair insert(const std::pair &value) { Hasher::hash_t hash = do_hash(value.first); int i = do_lookup(value.first, hash); if (i >= 0) return std::pair(iterator(this, i), false); i = do_insert(value, hash); return std::pair(iterator(this, i), true); } std::pair insert(std::pair &&rvalue) { Hasher::hash_t hash = do_hash(rvalue.first); int i = do_lookup(rvalue.first, hash); if (i >= 0) return std::pair(iterator(this, i), false); i = do_insert(std::forward>(rvalue), hash); return std::pair(iterator(this, i), true); } std::pair emplace(K const &key, T const &value) { Hasher::hash_t hash = do_hash(key); int i = do_lookup(key, hash); if (i >= 0) return std::pair(iterator(this, i), false); i = do_insert(std::make_pair(key, value), hash); return std::pair(iterator(this, i), true); } std::pair emplace(K const &key, T &&rvalue) { Hasher::hash_t hash = do_hash(key); int i = do_lookup(key, hash); if (i >= 0) return std::pair(iterator(this, i), false); i = do_insert(std::make_pair(key, std::forward(rvalue)), hash); return std::pair(iterator(this, i), true); } std::pair emplace(K &&rkey, T const &value) { Hasher::hash_t hash = do_hash(rkey); int i = do_lookup(rkey, hash); if (i >= 0) return std::pair(iterator(this, i), false); i = do_insert(std::make_pair(std::forward(rkey), value), hash); return std::pair(iterator(this, i), true); } std::pair emplace(K &&rkey, T &&rvalue) { Hasher::hash_t hash = do_hash(rkey); int i = do_lookup(rkey, hash); if (i >= 0) return std::pair(iterator(this, i), false); i = do_insert(std::make_pair(std::forward(rkey), std::forward(rvalue)), hash); return std::pair(iterator(this, i), true); } int erase(const K &key) { Hasher::hash_t hash = do_hash(key); int index = do_lookup(key, hash); return do_erase(index, hash); } iterator erase(iterator it) { Hasher::hash_t hash = do_hash(it->first); do_erase(it.index, hash); return ++it; } int count(const K &key) const { Hasher::hash_t hash = do_hash(key); int i = do_lookup(key, hash); return i < 0 ? 0 : 1; } int count(const K &key, const_iterator it) const { Hasher::hash_t hash = do_hash(key); int i = do_lookup(key, hash); return i < 0 || i > it.index ? 0 : 1; } iterator find(const K &key) { Hasher::hash_t hash = do_hash(key); int i = do_lookup(key, hash); if (i < 0) return end(); return iterator(this, i); } const_iterator find(const K &key) const { Hasher::hash_t hash = do_hash(key); int i = do_lookup(key, hash); if (i < 0) return end(); return const_iterator(this, i); } T& at(const K &key) { Hasher::hash_t hash = do_hash(key); int i = do_lookup(key, hash); if (i < 0) throw std::out_of_range("dict::at()"); return entries[i].udata.second; } const T& at(const K &key) const { Hasher::hash_t hash = do_hash(key); int i = do_lookup(key, hash); if (i < 0) throw std::out_of_range("dict::at()"); return entries[i].udata.second; } const T& at(const K &key, const T &defval) const { Hasher::hash_t hash = do_hash(key); int i = do_lookup(key, hash); if (i < 0) return defval; return entries[i].udata.second; } T& operator[](const K &key) { Hasher::hash_t hash = do_hash(key); int i = do_lookup(key, hash); if (i < 0) i = do_insert(std::pair(key, T()), hash); return entries[i].udata.second; } template> void sort(Compare comp = Compare()) { std::sort(entries.begin(), entries.end(), [comp](const entry_t &a, const entry_t &b){ return comp(b.udata.first, a.udata.first); }); do_rehash(); } void swap(dict &other) { hashtable.swap(other.hashtable); entries.swap(other.entries); } bool operator==(const dict &other) const { if (size() != other.size()) return false; for (auto &it : entries) { auto oit = other.find(it.udata.first); if (oit == other.end() || !(oit->second == it.udata.second)) return false; } return true; } bool operator!=(const dict &other) const { return !operator==(other); } Hasher hash_into(Hasher h) const { for (auto &it : entries) { Hasher entry_hash; entry_hash.eat(it.udata.first); entry_hash.eat(it.udata.second); h.commutative_eat(entry_hash.yield()); } h.eat(entries.size()); return h; } void reserve(size_t n) { entries.reserve(n); } size_t size() const { return entries.size(); } bool empty() const { return entries.empty(); } void clear() { hashtable.clear(); entries.clear(); } iterator begin() { return iterator(this, int(entries.size())-1); } iterator element(int n) { return iterator(this, int(entries.size())-1-n); } iterator end() { return iterator(nullptr, -1); } const_iterator begin() const { return const_iterator(this, int(entries.size())-1); } const_iterator element(int n) const { return const_iterator(this, int(entries.size())-1-n); } const_iterator end() const { return const_iterator(nullptr, -1); } }; template class pool { template friend class idict; protected: struct entry_t { K udata; int next; entry_t() { } entry_t(const K &udata, int next) : udata(udata), next(next) { } entry_t(K &&udata, int next) : udata(std::move(udata)), next(next) { } }; std::vector hashtable; std::vector entries; OPS ops; #ifdef NDEBUG static inline void do_assert(bool) { } #else static inline void do_assert(bool cond) { if (!cond) throw std::runtime_error("pool<> assert failed."); } #endif Hasher::hash_t do_hash(const K &key) const { Hasher::hash_t hash = 0; if (!hashtable.empty()) hash = ops.hash(key).yield() % (unsigned int)(hashtable.size()); return hash; } void do_rehash() { hashtable.clear(); hashtable.resize(hashtable_size(entries.capacity() * hashtable_size_factor), -1); for (int i = 0; i < int(entries.size()); i++) { do_assert(-1 <= entries[i].next && entries[i].next < int(entries.size())); Hasher::hash_t hash = do_hash(entries[i].udata); entries[i].next = hashtable[hash]; hashtable[hash] = i; } } int do_erase(int index, Hasher::hash_t hash) { do_assert(index < int(entries.size())); if (hashtable.empty() || index < 0) return 0; int k = hashtable[hash]; if (k == index) { hashtable[hash] = entries[index].next; } else { while (entries[k].next != index) { k = entries[k].next; do_assert(0 <= k && k < int(entries.size())); } entries[k].next = entries[index].next; } int back_idx = entries.size()-1; if (index != back_idx) { Hasher::hash_t back_hash = do_hash(entries[back_idx].udata); k = hashtable[back_hash]; if (k == back_idx) { hashtable[back_hash] = index; } else { while (entries[k].next != back_idx) { k = entries[k].next; do_assert(0 <= k && k < int(entries.size())); } entries[k].next = index; } entries[index] = std::move(entries[back_idx]); } entries.pop_back(); if (entries.empty()) hashtable.clear(); return 1; } int do_lookup(const K &key, Hasher::hash_t &hash) const { if (hashtable.empty()) return -1; if (entries.size() * hashtable_size_trigger > hashtable.size()) { ((pool*)this)->do_rehash(); hash = do_hash(key); } int index = hashtable[hash]; while (index >= 0 && !ops.cmp(entries[index].udata, key)) { index = entries[index].next; do_assert(-1 <= index && index < int(entries.size())); } return index; } int do_insert(const K &value, Hasher::hash_t &hash) { if (hashtable.empty()) { entries.emplace_back(value, -1); do_rehash(); hash = do_hash(value); } else { entries.emplace_back(value, hashtable[hash]); hashtable[hash] = entries.size() - 1; } return entries.size() - 1; } int do_insert(K &&rvalue, Hasher::hash_t &hash) { if (hashtable.empty()) { entries.emplace_back(std::forward(rvalue), -1); do_rehash(); hash = do_hash(rvalue); } else { entries.emplace_back(std::forward(rvalue), hashtable[hash]); hashtable[hash] = entries.size() - 1; } return entries.size() - 1; } public: class const_iterator { friend class pool; protected: const pool *ptr; int index; const_iterator(const pool *ptr, int index) : ptr(ptr), index(index) { } public: typedef std::forward_iterator_tag iterator_category; typedef K value_type; typedef ptrdiff_t difference_type; typedef K* pointer; typedef K& reference; const_iterator() { } const_iterator operator++() { index--; return *this; } bool operator==(const const_iterator &other) const { return index == other.index; } bool operator!=(const const_iterator &other) const { return index != other.index; } const K &operator*() const { return ptr->entries[index].udata; } const K *operator->() const { return &ptr->entries[index].udata; } }; class iterator { friend class pool; protected: pool *ptr; int index; iterator(pool *ptr, int index) : ptr(ptr), index(index) { } public: typedef std::forward_iterator_tag iterator_category; typedef K value_type; typedef ptrdiff_t difference_type; typedef K* pointer; typedef K& reference; iterator() { } iterator operator++() { index--; return *this; } bool operator==(const iterator &other) const { return index == other.index; } bool operator!=(const iterator &other) const { return index != other.index; } K &operator*() { return ptr->entries[index].udata; } K *operator->() { return &ptr->entries[index].udata; } const K &operator*() const { return ptr->entries[index].udata; } const K *operator->() const { return &ptr->entries[index].udata; } operator const_iterator() const { return const_iterator(ptr, index); } }; constexpr pool() { } pool(const pool &other) { entries = other.entries; do_rehash(); } pool(pool &&other) { swap(other); } pool &operator=(const pool &other) { entries = other.entries; do_rehash(); return *this; } pool &operator=(pool &&other) { clear(); swap(other); return *this; } pool(const std::initializer_list &list) { for (auto &it : list) insert(it); } template pool(InputIterator first, InputIterator last) { insert(first, last); } template void insert(InputIterator first, InputIterator last) { for (; first != last; ++first) insert(*first); } std::pair insert(const K &value) { Hasher::hash_t hash = do_hash(value); int i = do_lookup(value, hash); if (i >= 0) return std::pair(iterator(this, i), false); i = do_insert(value, hash); return std::pair(iterator(this, i), true); } std::pair insert(K &&rvalue) { Hasher::hash_t hash = do_hash(rvalue); int i = do_lookup(rvalue, hash); if (i >= 0) return std::pair(iterator(this, i), false); i = do_insert(std::forward(rvalue), hash); return std::pair(iterator(this, i), true); } template std::pair emplace(Args&&... args) { return insert(K(std::forward(args)...)); } int erase(const K &key) { Hasher::hash_t hash = do_hash(key); int index = do_lookup(key, hash); return do_erase(index, hash); } iterator erase(iterator it) { Hasher::hash_t hash = do_hash(*it); do_erase(it.index, hash); return ++it; } int count(const K &key) const { Hasher::hash_t hash = do_hash(key); int i = do_lookup(key, hash); return i < 0 ? 0 : 1; } int count(const K &key, const_iterator it) const { Hasher::hash_t hash = do_hash(key); int i = do_lookup(key, hash); return i < 0 || i > it.index ? 0 : 1; } iterator find(const K &key) { Hasher::hash_t hash = do_hash(key); int i = do_lookup(key, hash); if (i < 0) return end(); return iterator(this, i); } const_iterator find(const K &key) const { Hasher::hash_t hash = do_hash(key); int i = do_lookup(key, hash); if (i < 0) return end(); return const_iterator(this, i); } bool operator[](const K &key) { Hasher::hash_t hash = do_hash(key); int i = do_lookup(key, hash); return i >= 0; } template> void sort(Compare comp = Compare()) { std::sort(entries.begin(), entries.end(), [comp](const entry_t &a, const entry_t &b){ return comp(b.udata, a.udata); }); do_rehash(); } K pop() { iterator it = begin(); K ret = *it; erase(it); return ret; } void swap(pool &other) { hashtable.swap(other.hashtable); entries.swap(other.entries); } bool operator==(const pool &other) const { if (size() != other.size()) return false; for (auto &it : entries) if (!other.count(it.udata)) return false; return true; } bool operator!=(const pool &other) const { return !operator==(other); } Hasher hash_into(Hasher h) const { for (auto &it : entries) { h.commutative_eat(ops.hash(it.udata).yield()); } h.eat(entries.size()); return h; } void reserve(size_t n) { entries.reserve(n); } size_t size() const { return entries.size(); } bool empty() const { return entries.empty(); } void clear() { hashtable.clear(); entries.clear(); } iterator begin() { return iterator(this, int(entries.size())-1); } iterator element(int n) { return iterator(this, int(entries.size())-1-n); } iterator end() { return iterator(nullptr, -1); } const_iterator begin() const { return const_iterator(this, int(entries.size())-1); } const_iterator element(int n) const { return const_iterator(this, int(entries.size())-1-n); } const_iterator end() const { return const_iterator(nullptr, -1); } }; template class idict { pool database; public: class const_iterator { friend class idict; protected: const idict &container; int index; const_iterator(const idict &container, int index) : container(container), index(index) { } public: typedef std::forward_iterator_tag iterator_category; typedef K value_type; typedef ptrdiff_t difference_type; typedef K* pointer; typedef K& reference; const_iterator() { } const_iterator operator++() { index++; return *this; } bool operator==(const const_iterator &other) const { return index == other.index; } bool operator!=(const const_iterator &other) const { return index != other.index; } const K &operator*() const { return container[index]; } const K *operator->() const { return &container[index]; } }; constexpr idict() { } int operator()(const K &key) { Hasher::hash_t hash = database.do_hash(key); int i = database.do_lookup(key, hash); if (i < 0) i = database.do_insert(key, hash); return i + offset; } int at(const K &key) const { Hasher::hash_t hash = database.do_hash(key); int i = database.do_lookup(key, hash); if (i < 0) throw std::out_of_range("idict::at()"); return i + offset; } int at(const K &key, int defval) const { Hasher::hash_t hash = database.do_hash(key); int i = database.do_lookup(key, hash); if (i < 0) return defval; return i + offset; } int count(const K &key) const { Hasher::hash_t hash = database.do_hash(key); int i = database.do_lookup(key, hash); return i < 0 ? 0 : 1; } void expect(const K &key, int i) { int j = (*this)(key); if (i != j) throw std::out_of_range("idict::expect()"); } const K &operator[](int index) const { return database.entries.at(index - offset).udata; } void swap(idict &other) { database.swap(other.database); } void reserve(size_t n) { database.reserve(n); } size_t size() const { return database.size(); } bool empty() const { return database.empty(); } void clear() { database.clear(); } const_iterator begin() const { return const_iterator(*this, offset); } const_iterator element(int n) const { return const_iterator(*this, n); } const_iterator end() const { return const_iterator(*this, offset + size()); } }; /** * Union-find data structure with a promotion method * mfp stands for "merge, find, promote" * i-prefixed methods operate on indices in parents */ template class mfp { mutable idict database; mutable std::vector parents; public: typedef typename idict::const_iterator const_iterator; constexpr mfp() { } // Finds a given element's index. If it isn't in the data structure, // it is added as its own set int operator()(const K &key) const { int i = database(key); // If the lookup caused the database to grow, // also add a corresponding entry in parents initialized to -1 (no parent) parents.resize(database.size(), -1); return i; } // Finds an element at given index const K &operator[](int index) const { return database[index]; } int ifind(int i) const { int p = i, k = i; while (parents[p] != -1) p = parents[p]; // p is now the representative of i // Now we traverse from i up to the representative again // and make p the parent of all the nodes along the way. // This is a side effect and doesn't affect the return value. // It speeds up future find operations while (k != p) { int next_k = parents[k]; parents[k] = p; k = next_k; } return p; } // Merge sets if the given indices belong to different sets void imerge(int i, int j) { i = ifind(i); j = ifind(j); if (i != j) parents[i] = j; } void ipromote(int i) { int k = i; while (k != -1) { int next_k = parents[k]; parents[k] = i; k = next_k; } parents[i] = -1; } int lookup(const K &a) const { return ifind((*this)(a)); } const K &find(const K &a) const { int i = database.at(a, -1); if (i < 0) return a; return (*this)[ifind(i)]; } void merge(const K &a, const K &b) { imerge((*this)(a), (*this)(b)); } void promote(const K &a) { int i = database.at(a, -1); if (i >= 0) ipromote(i); } void swap(mfp &other) { database.swap(other.database); parents.swap(other.parents); } void reserve(size_t n) { database.reserve(n); } size_t size() const { return database.size(); } bool empty() const { return database.empty(); } void clear() { database.clear(); parents.clear(); } const_iterator begin() const { return database.begin(); } const_iterator element(int n) const { return database.element(n); } const_iterator end() const { return database.end(); } }; } /* namespace hashlib */ #endif