/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Claire Xenia Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/yosys.h" #include "kernel/macc.h" #include "kernel/celltypes.h" #include "kernel/binding.h" #include "kernel/sigtools.h" #include "frontends/verilog/verilog_frontend.h" #include "frontends/verilog/preproc.h" #include "backends/rtlil/rtlil_backend.h" #include #include #include YOSYS_NAMESPACE_BEGIN bool RTLIL::IdString::destruct_guard_ok = false; RTLIL::IdString::destruct_guard_t RTLIL::IdString::destruct_guard; std::vector RTLIL::IdString::global_id_storage_; dict RTLIL::IdString::global_id_index_; #ifndef YOSYS_NO_IDS_REFCNT std::vector RTLIL::IdString::global_refcount_storage_; std::vector RTLIL::IdString::global_free_idx_list_; #endif #ifdef YOSYS_USE_STICKY_IDS int RTLIL::IdString::last_created_idx_[8]; int RTLIL::IdString::last_created_idx_ptr_; #endif #define X(_id) IdString RTLIL::ID::_id; #include "kernel/constids.inc" #undef X dict RTLIL::constpad; const pool &RTLIL::builtin_ff_cell_types() { static const pool res = { ID($sr), ID($ff), ID($dff), ID($dffe), ID($dffsr), ID($dffsre), ID($adff), ID($adffe), ID($aldff), ID($aldffe), ID($sdff), ID($sdffe), ID($sdffce), ID($dlatch), ID($adlatch), ID($dlatchsr), ID($_DFFE_NN_), ID($_DFFE_NP_), ID($_DFFE_PN_), ID($_DFFE_PP_), ID($_DFFSR_NNN_), ID($_DFFSR_NNP_), ID($_DFFSR_NPN_), ID($_DFFSR_NPP_), ID($_DFFSR_PNN_), ID($_DFFSR_PNP_), ID($_DFFSR_PPN_), ID($_DFFSR_PPP_), ID($_DFFSRE_NNNN_), ID($_DFFSRE_NNNP_), ID($_DFFSRE_NNPN_), ID($_DFFSRE_NNPP_), ID($_DFFSRE_NPNN_), ID($_DFFSRE_NPNP_), ID($_DFFSRE_NPPN_), ID($_DFFSRE_NPPP_), ID($_DFFSRE_PNNN_), ID($_DFFSRE_PNNP_), ID($_DFFSRE_PNPN_), ID($_DFFSRE_PNPP_), ID($_DFFSRE_PPNN_), ID($_DFFSRE_PPNP_), ID($_DFFSRE_PPPN_), ID($_DFFSRE_PPPP_), ID($_DFF_N_), ID($_DFF_P_), ID($_DFF_NN0_), ID($_DFF_NN1_), ID($_DFF_NP0_), ID($_DFF_NP1_), ID($_DFF_PN0_), ID($_DFF_PN1_), ID($_DFF_PP0_), ID($_DFF_PP1_), ID($_DFFE_NN0N_), ID($_DFFE_NN0P_), ID($_DFFE_NN1N_), ID($_DFFE_NN1P_), ID($_DFFE_NP0N_), ID($_DFFE_NP0P_), ID($_DFFE_NP1N_), ID($_DFFE_NP1P_), ID($_DFFE_PN0N_), ID($_DFFE_PN0P_), ID($_DFFE_PN1N_), ID($_DFFE_PN1P_), ID($_DFFE_PP0N_), ID($_DFFE_PP0P_), ID($_DFFE_PP1N_), ID($_DFFE_PP1P_), ID($_ALDFF_NN_), ID($_ALDFF_NP_), ID($_ALDFF_PN_), ID($_ALDFF_PP_), ID($_ALDFFE_NNN_), ID($_ALDFFE_NNP_), ID($_ALDFFE_NPN_), ID($_ALDFFE_NPP_), ID($_ALDFFE_PNN_), ID($_ALDFFE_PNP_), ID($_ALDFFE_PPN_), ID($_ALDFFE_PPP_), ID($_SDFF_NN0_), ID($_SDFF_NN1_), ID($_SDFF_NP0_), ID($_SDFF_NP1_), ID($_SDFF_PN0_), ID($_SDFF_PN1_), ID($_SDFF_PP0_), ID($_SDFF_PP1_), ID($_SDFFE_NN0N_), ID($_SDFFE_NN0P_), ID($_SDFFE_NN1N_), ID($_SDFFE_NN1P_), ID($_SDFFE_NP0N_), ID($_SDFFE_NP0P_), ID($_SDFFE_NP1N_), ID($_SDFFE_NP1P_), ID($_SDFFE_PN0N_), ID($_SDFFE_PN0P_), ID($_SDFFE_PN1N_), ID($_SDFFE_PN1P_), ID($_SDFFE_PP0N_), ID($_SDFFE_PP0P_), ID($_SDFFE_PP1N_), ID($_SDFFE_PP1P_), ID($_SDFFCE_NN0N_), ID($_SDFFCE_NN0P_), ID($_SDFFCE_NN1N_), ID($_SDFFCE_NN1P_), ID($_SDFFCE_NP0N_), ID($_SDFFCE_NP0P_), ID($_SDFFCE_NP1N_), ID($_SDFFCE_NP1P_), ID($_SDFFCE_PN0N_), ID($_SDFFCE_PN0P_), ID($_SDFFCE_PN1N_), ID($_SDFFCE_PN1P_), ID($_SDFFCE_PP0N_), ID($_SDFFCE_PP0P_), ID($_SDFFCE_PP1N_), ID($_SDFFCE_PP1P_), ID($_SR_NN_), ID($_SR_NP_), ID($_SR_PN_), ID($_SR_PP_), ID($_DLATCH_N_), ID($_DLATCH_P_), ID($_DLATCH_NN0_), ID($_DLATCH_NN1_), ID($_DLATCH_NP0_), ID($_DLATCH_NP1_), ID($_DLATCH_PN0_), ID($_DLATCH_PN1_), ID($_DLATCH_PP0_), ID($_DLATCH_PP1_), ID($_DLATCHSR_NNN_), ID($_DLATCHSR_NNP_), ID($_DLATCHSR_NPN_), ID($_DLATCHSR_NPP_), ID($_DLATCHSR_PNN_), ID($_DLATCHSR_PNP_), ID($_DLATCHSR_PPN_), ID($_DLATCHSR_PPP_), ID($_FF_), }; return res; } #define check(condition) log_assert(condition && "malformed Const union") Const::bitvectype& Const::get_bits() const { check(is_bits()); return *get_if_bits(); } std::string& Const::get_str() const { check(is_str()); return *get_if_str(); } RTLIL::Const::Const(const std::string &str) { flags = RTLIL::CONST_FLAG_STRING; new ((void*)&str_) std::string(str); tag = backing_tag::string; } RTLIL::Const::Const(long long val, int width) { flags = RTLIL::CONST_FLAG_NONE; new ((void*)&bits_) bitvectype(); tag = backing_tag::bits; bitvectype& bv = get_bits(); bv.reserve(width); for (int i = 0; i < width; i++) { bv.push_back((val & 1) != 0 ? State::S1 : State::S0); val = val >> 1; } } RTLIL::Const::Const(RTLIL::State bit, int width) { flags = RTLIL::CONST_FLAG_NONE; new ((void*)&bits_) bitvectype(); tag = backing_tag::bits; bitvectype& bv = get_bits(); bv.reserve(width); for (int i = 0; i < width; i++) bv.push_back(bit); } RTLIL::Const::Const(const std::vector &bits) { flags = RTLIL::CONST_FLAG_NONE; new ((void*)&bits_) bitvectype(); tag = backing_tag::bits; bitvectype& bv = get_bits(); bv.reserve(bits.size()); for (const auto &b : bits) bv.emplace_back(b ? State::S1 : State::S0); } RTLIL::Const::Const(const RTLIL::Const &other) { tag = other.tag; flags = other.flags; if (is_str()) new ((void*)&str_) std::string(other.get_str()); else if (is_bits()) new ((void*)&bits_) bitvectype(other.get_bits()); else check(false); } RTLIL::Const::Const(RTLIL::Const &&other) { tag = other.tag; flags = other.flags; if (is_str()) new ((void*)&str_) std::string(std::move(other.get_str())); else if (is_bits()) new ((void*)&bits_) bitvectype(std::move(other.get_bits())); else check(false); } RTLIL::Const &RTLIL::Const::operator =(const RTLIL::Const &other) { flags = other.flags; if (other.is_str()) { if (!is_str()) { // sketchy zone check(is_bits()); bits_.~bitvectype(); (void)new ((void*)&str_) std::string(); } tag = other.tag; get_str() = other.get_str(); } else if (other.is_bits()) { if (!is_bits()) { // sketchy zone check(is_str()); str_.~string(); (void)new ((void*)&bits_) bitvectype(); } tag = other.tag; get_bits() = other.get_bits(); } else { check(false); } return *this; } RTLIL::Const::~Const() { if (is_bits()) bits_.~bitvectype(); else if (is_str()) str_.~string(); else check(false); } bool RTLIL::Const::operator<(const RTLIL::Const &other) const { if (size() != other.size()) return size() < other.size(); for (int i = 0; i < size(); i++) if ((*this)[i] != other[i]) return (*this)[i] < other[i]; return false; } bool RTLIL::Const::operator ==(const RTLIL::Const &other) const { if (size() != other.size()) return false; for (int i = 0; i < size(); i++) if ((*this)[i] != other[i]) return false; return true; } bool RTLIL::Const::operator !=(const RTLIL::Const &other) const { return !(*this == other); } std::vector& RTLIL::Const::bits() { bitvectorize(); return get_bits(); } std::vector RTLIL::Const::to_bits() const { std::vector v; for (auto bit : *this) v.push_back(bit); return v; } bool RTLIL::Const::as_bool() const { bitvectorize(); bitvectype& bv = get_bits(); for (size_t i = 0; i < bv.size(); i++) if (bv[i] == State::S1) return true; return false; } int RTLIL::Const::as_int(bool is_signed) const { bitvectorize(); bitvectype& bv = get_bits(); int32_t ret = 0; for (size_t i = 0; i < bv.size() && i < 32; i++) if (bv[i] == State::S1) ret |= 1 << i; if (is_signed && bv.back() == State::S1) for (size_t i = bv.size(); i < 32; i++) ret |= 1 << i; return ret; } int RTLIL::Const::get_min_size(bool is_signed) const { if (empty()) return 0; // back to front (MSB to LSB) RTLIL::State leading_bit; if (is_signed) leading_bit = (back() == RTLIL::State::Sx) ? RTLIL::State::S0 : back(); else leading_bit = RTLIL::State::S0; auto idx = size(); while (idx > 0 && (*this)[idx -1] == leading_bit) { idx--; } // signed needs one leading bit if (is_signed && idx < size()) { idx++; } // must be at least one bit return (idx == 0) ? 1 : idx; } void RTLIL::Const::compress(bool is_signed) { auto idx = get_min_size(is_signed); bits().erase(bits().begin() + idx, bits().end()); } std::optional RTLIL::Const::as_int_compress(bool is_signed) const { auto size = get_min_size(is_signed); if(size == 0 || size > 32) return std::nullopt; int32_t ret = 0; for (auto i = 0; i < size && i < 32; i++) if ((*this)[i] == State::S1) ret |= 1 << i; if (is_signed && (*this)[size-1] == State::S1) for (auto i = size; i < 32; i++) ret |= 1 << i; return ret; } std::string RTLIL::Const::as_string(const char* any) const { bitvectorize(); bitvectype& bv = get_bits(); std::string ret; ret.reserve(bv.size()); for (size_t i = bv.size(); i > 0; i--) switch (bv[i-1]) { case S0: ret += "0"; break; case S1: ret += "1"; break; case Sx: ret += "x"; break; case Sz: ret += "z"; break; case Sa: ret += any; break; case Sm: ret += "m"; break; } return ret; } RTLIL::Const RTLIL::Const::from_string(const std::string &str) { Const c; bitvectype& bv = c.get_bits(); bv.reserve(str.size()); for (auto it = str.rbegin(); it != str.rend(); it++) switch (*it) { case '0': bv.push_back(State::S0); break; case '1': bv.push_back(State::S1); break; case 'x': bv.push_back(State::Sx); break; case 'z': bv.push_back(State::Sz); break; case 'm': bv.push_back(State::Sm); break; default: bv.push_back(State::Sa); } return c; } std::string RTLIL::Const::decode_string() const { if (auto str = get_if_str()) return *str; bitvectorize(); bitvectype& bv = get_bits(); const int n = GetSize(bv); const int n_over_8 = n / 8; std::string s; s.reserve(n_over_8); int i = n_over_8 * 8; if (i < n) { char ch = 0; for (int j = 0; j < (n - i); j++) { if (bv[i + j] == RTLIL::State::S1) { ch |= 1 << j; } } if (ch != 0) s.append({ch}); } i -= 8; for (; i >= 0; i -= 8) { char ch = 0; for (int j = 0; j < 8; j++) { if (bv[i + j] == RTLIL::State::S1) { ch |= 1 << j; } } if (ch != 0) s.append({ch}); } return s; } int RTLIL::Const::size() const { if (is_str()) return 8 * str_.size(); else { check(is_bits()); return bits_.size(); } } bool RTLIL::Const::empty() const { if (is_str()) return str_.empty(); else { check(is_bits()); return bits_.empty(); } } void RTLIL::Const::bitvectorize() const { if (tag == backing_tag::bits) return; check(is_str()); bitvectype new_bits; new_bits.reserve(str_.size() * 8); for (int i = str_.size() - 1; i >= 0; i--) { unsigned char ch = str_[i]; for (int j = 0; j < 8; j++) { new_bits.push_back((ch & 1) != 0 ? State::S1 : State::S0); ch = ch >> 1; } } { // sketchy zone str_.~string(); (void)new ((void*)&bits_) bitvectype(std::move(new_bits)); tag = backing_tag::bits; } } RTLIL::State RTLIL::Const::const_iterator::operator*() const { if (auto bv = parent.get_if_bits()) return (*bv)[idx]; int char_idx = parent.get_str().size() - idx / 8 - 1; bool bit = (parent.get_str()[char_idx] & (1 << (idx % 8))); return bit ? State::S1 : State::S0; } bool RTLIL::Const::is_fully_zero() const { bitvectorize(); bitvectype& bv = get_bits(); cover("kernel.rtlil.const.is_fully_zero"); for (const auto &bit : bv) if (bit != RTLIL::State::S0) return false; return true; } bool RTLIL::Const::is_fully_ones() const { bitvectorize(); bitvectype& bv = get_bits(); cover("kernel.rtlil.const.is_fully_ones"); for (const auto &bit : bv) if (bit != RTLIL::State::S1) return false; return true; } bool RTLIL::Const::is_fully_def() const { cover("kernel.rtlil.const.is_fully_def"); bitvectorize(); bitvectype& bv = get_bits(); for (const auto &bit : bv) if (bit != RTLIL::State::S0 && bit != RTLIL::State::S1) return false; return true; } bool RTLIL::Const::is_fully_undef() const { cover("kernel.rtlil.const.is_fully_undef"); bitvectorize(); bitvectype& bv = get_bits(); for (const auto &bit : bv) if (bit != RTLIL::State::Sx && bit != RTLIL::State::Sz) return false; return true; } bool RTLIL::Const::is_fully_undef_x_only() const { cover("kernel.rtlil.const.is_fully_undef_x_only"); bitvectorize(); bitvectype& bv = get_bits(); for (const auto &bit : bv) if (bit != RTLIL::State::Sx) return false; return true; } bool RTLIL::Const::is_onehot(int *pos) const { cover("kernel.rtlil.const.is_onehot"); bitvectorize(); bitvectype& bv = get_bits(); bool found = false; for (int i = 0; i < GetSize(*this); i++) { auto &bit = bv[i]; if (bit != RTLIL::State::S0 && bit != RTLIL::State::S1) return false; if (bit == RTLIL::State::S1) { if (found) return false; if (pos) *pos = i; found = true; } } return found; } RTLIL::Const RTLIL::Const::extract(int offset, int len, RTLIL::State padding) const { bitvectype ret_bv; ret_bv.reserve(len); for (int i = offset; i < offset + len; i++) ret_bv.push_back(i < GetSize(*this) ? (*this)[i] : padding); return RTLIL::Const(ret_bv); } #undef check /* check(condition) for Const */ bool RTLIL::AttrObject::has_attribute(const RTLIL::IdString &id) const { return attributes.count(id); } void RTLIL::AttrObject::set_bool_attribute(const RTLIL::IdString &id, bool value) { if (value) attributes[id] = RTLIL::Const(1); else attributes.erase(id); } bool RTLIL::AttrObject::get_bool_attribute(const RTLIL::IdString &id) const { const auto it = attributes.find(id); if (it == attributes.end()) return false; return it->second.as_bool(); } void RTLIL::AttrObject::set_string_attribute(const RTLIL::IdString& id, string value) { if (value.empty()) attributes.erase(id); else attributes[id] = value; } string RTLIL::AttrObject::get_string_attribute(const RTLIL::IdString &id) const { std::string value; const auto it = attributes.find(id); if (it != attributes.end()) value = it->second.decode_string(); return value; } void RTLIL::AttrObject::set_strpool_attribute(const RTLIL::IdString& id, const pool &data) { string attrval; for (const auto &s : data) { if (!attrval.empty()) attrval += "|"; attrval += s; } set_string_attribute(id, attrval); } void RTLIL::AttrObject::add_strpool_attribute(const RTLIL::IdString& id, const pool &data) { pool union_data = get_strpool_attribute(id); union_data.insert(data.begin(), data.end()); if (!union_data.empty()) set_strpool_attribute(id, union_data); } pool RTLIL::AttrObject::get_strpool_attribute(const RTLIL::IdString &id) const { pool data; if (attributes.count(id) != 0) for (auto s : split_tokens(get_string_attribute(id), "|")) data.insert(s); return data; } void RTLIL::AttrObject::set_hdlname_attribute(const vector &hierarchy) { string attrval; for (const auto &ident : hierarchy) { if (!attrval.empty()) attrval += " "; attrval += ident; } set_string_attribute(ID::hdlname, attrval); } vector RTLIL::AttrObject::get_hdlname_attribute() const { return split_tokens(get_string_attribute(ID::hdlname), " "); } void RTLIL::AttrObject::set_intvec_attribute(const RTLIL::IdString& id, const vector &data) { std::stringstream attrval; for (auto &i : data) { if (attrval.tellp() > 0) attrval << " "; attrval << i; } attributes[id] = RTLIL::Const(attrval.str()); } vector RTLIL::AttrObject::get_intvec_attribute(const RTLIL::IdString &id) const { vector data; auto it = attributes.find(id); if (it != attributes.end()) for (const auto &s : split_tokens(attributes.at(id).decode_string())) { char *end = nullptr; errno = 0; long value = strtol(s.c_str(), &end, 10); if (end != s.c_str() + s.size()) log_cmd_error("Literal for intvec attribute has invalid format"); if (errno == ERANGE || value < INT_MIN || value > INT_MAX) log_cmd_error("Literal for intvec attribute is out of range"); data.push_back(value); } return data; } bool RTLIL::Selection::selected_module(const RTLIL::IdString &mod_name) const { if (full_selection) return true; if (selected_modules.count(mod_name) > 0) return true; if (selected_members.count(mod_name) > 0) return true; return false; } bool RTLIL::Selection::selected_whole_module(const RTLIL::IdString &mod_name) const { if (full_selection) return true; if (selected_modules.count(mod_name) > 0) return true; return false; } bool RTLIL::Selection::selected_member(const RTLIL::IdString &mod_name, const RTLIL::IdString &memb_name) const { if (full_selection) return true; if (selected_modules.count(mod_name) > 0) return true; if (selected_members.count(mod_name) > 0) if (selected_members.at(mod_name).count(memb_name) > 0) return true; return false; } void RTLIL::Selection::optimize(RTLIL::Design *design) { if (full_selection) { selected_modules.clear(); selected_members.clear(); return; } std::vector del_list, add_list; del_list.clear(); for (auto mod_name : selected_modules) { if (design->modules_.count(mod_name) == 0) del_list.push_back(mod_name); selected_members.erase(mod_name); } for (auto mod_name : del_list) selected_modules.erase(mod_name); del_list.clear(); for (auto &it : selected_members) if (design->modules_.count(it.first) == 0) del_list.push_back(it.first); for (auto mod_name : del_list) selected_members.erase(mod_name); for (auto &it : selected_members) { del_list.clear(); for (auto memb_name : it.second) if (design->modules_[it.first]->count_id(memb_name) == 0) del_list.push_back(memb_name); for (auto memb_name : del_list) it.second.erase(memb_name); } del_list.clear(); add_list.clear(); for (auto &it : selected_members) if (it.second.size() == 0) del_list.push_back(it.first); else if (it.second.size() == design->modules_[it.first]->wires_.size() + design->modules_[it.first]->memories.size() + design->modules_[it.first]->cells_.size() + design->modules_[it.first]->processes.size()) add_list.push_back(it.first); for (auto mod_name : del_list) selected_members.erase(mod_name); for (auto mod_name : add_list) { selected_members.erase(mod_name); selected_modules.insert(mod_name); } if (selected_modules.size() == design->modules_.size()) { full_selection = true; selected_modules.clear(); selected_members.clear(); } } RTLIL::Design::Design() : verilog_defines (new define_map_t) { static unsigned int hashidx_count = 123456789; hashidx_count = mkhash_xorshift(hashidx_count); hashidx_ = hashidx_count; refcount_modules_ = 0; selection_stack.push_back(RTLIL::Selection()); #ifdef WITH_PYTHON RTLIL::Design::get_all_designs()->insert(std::pair(hashidx_, this)); #endif } RTLIL::Design::~Design() { for (auto &pr : modules_) delete pr.second; for (auto n : bindings_) delete n; for (auto n : verilog_packages) delete n; for (auto n : verilog_globals) delete n; #ifdef WITH_PYTHON RTLIL::Design::get_all_designs()->erase(hashidx_); #endif } #ifdef WITH_PYTHON static std::map all_designs; std::map *RTLIL::Design::get_all_designs(void) { return &all_designs; } #endif RTLIL::ObjRange RTLIL::Design::modules() { return RTLIL::ObjRange(&modules_, &refcount_modules_); } RTLIL::Module *RTLIL::Design::module(const RTLIL::IdString& name) { return modules_.count(name) ? modules_.at(name) : NULL; } const RTLIL::Module *RTLIL::Design::module(const RTLIL::IdString& name) const { return modules_.count(name) ? modules_.at(name) : NULL; } RTLIL::Module *RTLIL::Design::top_module() { RTLIL::Module *module = nullptr; int module_count = 0; for (auto mod : selected_modules()) { if (mod->get_bool_attribute(ID::top)) return mod; module_count++; module = mod; } return module_count == 1 ? module : nullptr; } void RTLIL::Design::add(RTLIL::Module *module) { log_assert(modules_.count(module->name) == 0); log_assert(refcount_modules_ == 0); modules_[module->name] = module; module->design = this; for (auto mon : monitors) mon->notify_module_add(module); if (yosys_xtrace) { log("#X# New Module: %s\n", log_id(module)); log_backtrace("-X- ", yosys_xtrace-1); } } void RTLIL::Design::add(RTLIL::Binding *binding) { log_assert(binding != nullptr); bindings_.push_back(binding); } RTLIL::Module *RTLIL::Design::addModule(RTLIL::IdString name) { if (modules_.count(name) != 0) log_error("Attempted to add new module named '%s', but a module by that name already exists\n", name.c_str()); log_assert(refcount_modules_ == 0); RTLIL::Module *module = new RTLIL::Module; modules_[name] = module; module->design = this; module->name = name; for (auto mon : monitors) mon->notify_module_add(module); if (yosys_xtrace) { log("#X# New Module: %s\n", log_id(module)); log_backtrace("-X- ", yosys_xtrace-1); } return module; } void RTLIL::Design::scratchpad_unset(const std::string &varname) { scratchpad.erase(varname); } void RTLIL::Design::scratchpad_set_int(const std::string &varname, int value) { scratchpad[varname] = stringf("%d", value); } void RTLIL::Design::scratchpad_set_bool(const std::string &varname, bool value) { scratchpad[varname] = value ? "true" : "false"; } void RTLIL::Design::scratchpad_set_string(const std::string &varname, std::string value) { scratchpad[varname] = std::move(value); } int RTLIL::Design::scratchpad_get_int(const std::string &varname, int default_value) const { auto it = scratchpad.find(varname); if (it == scratchpad.end()) return default_value; const std::string &str = it->second; if (str == "0" || str == "false") return 0; if (str == "1" || str == "true") return 1; char *endptr = nullptr; long int parsed_value = strtol(str.c_str(), &endptr, 10); return *endptr ? default_value : parsed_value; } bool RTLIL::Design::scratchpad_get_bool(const std::string &varname, bool default_value) const { auto it = scratchpad.find(varname); if (it == scratchpad.end()) return default_value; const std::string &str = it->second; if (str == "0" || str == "false") return false; if (str == "1" || str == "true") return true; return default_value; } std::string RTLIL::Design::scratchpad_get_string(const std::string &varname, const std::string &default_value) const { auto it = scratchpad.find(varname); if (it == scratchpad.end()) return default_value; return it->second; } void RTLIL::Design::remove(RTLIL::Module *module) { for (auto mon : monitors) mon->notify_module_del(module); if (yosys_xtrace) { log("#X# Remove Module: %s\n", log_id(module)); log_backtrace("-X- ", yosys_xtrace-1); } log_assert(modules_.at(module->name) == module); log_assert(refcount_modules_ == 0); modules_.erase(module->name); delete module; } void RTLIL::Design::rename(RTLIL::Module *module, RTLIL::IdString new_name) { modules_.erase(module->name); module->name = new_name; add(module); } void RTLIL::Design::sort() { scratchpad.sort(); modules_.sort(sort_by_id_str()); for (auto &it : modules_) it.second->sort(); } void RTLIL::Design::check() { #ifndef NDEBUG for (auto &it : modules_) { log_assert(this == it.second->design); log_assert(it.first == it.second->name); log_assert(!it.first.empty()); it.second->check(); } #endif } void RTLIL::Design::optimize() { for (auto &it : modules_) it.second->optimize(); for (auto &it : selection_stack) it.optimize(this); for (auto &it : selection_vars) it.second.optimize(this); } bool RTLIL::Design::selected_module(const RTLIL::IdString& mod_name) const { if (!selected_active_module.empty() && mod_name != selected_active_module) return false; if (selection_stack.size() == 0) return true; return selection_stack.back().selected_module(mod_name); } bool RTLIL::Design::selected_whole_module(const RTLIL::IdString& mod_name) const { if (!selected_active_module.empty() && mod_name != selected_active_module) return false; if (selection_stack.size() == 0) return true; return selection_stack.back().selected_whole_module(mod_name); } bool RTLIL::Design::selected_member(const RTLIL::IdString& mod_name, const RTLIL::IdString& memb_name) const { if (!selected_active_module.empty() && mod_name != selected_active_module) return false; if (selection_stack.size() == 0) return true; return selection_stack.back().selected_member(mod_name, memb_name); } bool RTLIL::Design::selected_module(RTLIL::Module *mod) const { return selected_module(mod->name); } bool RTLIL::Design::selected_whole_module(RTLIL::Module *mod) const { return selected_whole_module(mod->name); } std::vector RTLIL::Design::selected_modules() const { std::vector result; result.reserve(modules_.size()); for (auto &it : modules_) if (selected_module(it.first) && !it.second->get_blackbox_attribute()) result.push_back(it.second); return result; } std::vector RTLIL::Design::selected_whole_modules() const { std::vector result; result.reserve(modules_.size()); for (auto &it : modules_) if (selected_whole_module(it.first) && !it.second->get_blackbox_attribute()) result.push_back(it.second); return result; } std::vector RTLIL::Design::selected_whole_modules_warn(bool include_wb) const { std::vector result; result.reserve(modules_.size()); for (auto &it : modules_) if (it.second->get_blackbox_attribute(include_wb)) continue; else if (selected_whole_module(it.first)) result.push_back(it.second); else if (selected_module(it.first)) log_warning("Ignoring partially selected module %s.\n", log_id(it.first)); return result; } RTLIL::Module::Module() { static unsigned int hashidx_count = 123456789; hashidx_count = mkhash_xorshift(hashidx_count); hashidx_ = hashidx_count; design = nullptr; refcount_wires_ = 0; refcount_cells_ = 0; #ifdef WITH_PYTHON RTLIL::Module::get_all_modules()->insert(std::pair(hashidx_, this)); #endif } RTLIL::Module::~Module() { for (auto &pr : wires_) delete pr.second; for (auto &pr : memories) delete pr.second; for (auto &pr : cells_) delete pr.second; for (auto &pr : processes) delete pr.second; for (auto binding : bindings_) delete binding; #ifdef WITH_PYTHON RTLIL::Module::get_all_modules()->erase(hashidx_); #endif } #ifdef WITH_PYTHON static std::map all_modules; std::map *RTLIL::Module::get_all_modules(void) { return &all_modules; } #endif void RTLIL::Module::makeblackbox() { pool delwires; for (auto it = wires_.begin(); it != wires_.end(); ++it) if (!it->second->port_input && !it->second->port_output) delwires.insert(it->second); for (auto it = memories.begin(); it != memories.end(); ++it) delete it->second; memories.clear(); for (auto it = cells_.begin(); it != cells_.end(); ++it) delete it->second; cells_.clear(); for (auto it = processes.begin(); it != processes.end(); ++it) delete it->second; processes.clear(); connections_.clear(); remove(delwires); set_bool_attribute(ID::blackbox); } void RTLIL::Module::expand_interfaces(RTLIL::Design *, const dict &) { log_error("Class doesn't support expand_interfaces (module: `%s')!\n", id2cstr(name)); } bool RTLIL::Module::reprocess_if_necessary(RTLIL::Design *) { return false; } RTLIL::IdString RTLIL::Module::derive(RTLIL::Design*, const dict &, bool mayfail) { if (mayfail) return RTLIL::IdString(); log_error("Module `%s' is used with parameters but is not parametric!\n", id2cstr(name)); } RTLIL::IdString RTLIL::Module::derive(RTLIL::Design*, const dict &, const dict &, const dict &, bool mayfail) { if (mayfail) return RTLIL::IdString(); log_error("Module `%s' is used with parameters but is not parametric!\n", id2cstr(name)); } size_t RTLIL::Module::count_id(const RTLIL::IdString& id) { return wires_.count(id) + memories.count(id) + cells_.count(id) + processes.count(id); } #ifndef NDEBUG namespace { struct InternalCellChecker { RTLIL::Module *module; RTLIL::Cell *cell; pool expected_params, expected_ports; InternalCellChecker(RTLIL::Module *module, RTLIL::Cell *cell) : module(module), cell(cell) { } void error(int linenr) { std::stringstream buf; RTLIL_BACKEND::dump_cell(buf, " ", cell); log_error("Found error in internal cell %s%s%s (%s) at %s:%d:\n%s", module ? module->name.c_str() : "", module ? "." : "", cell->name.c_str(), cell->type.c_str(), __FILE__, linenr, buf.str().c_str()); } int param(const RTLIL::IdString& name) { auto it = cell->parameters.find(name); if (it == cell->parameters.end()) error(__LINE__); expected_params.insert(name); return it->second.as_int(); } int param_bool(const RTLIL::IdString& name) { int v = param(name); if (GetSize(cell->parameters.at(name)) > 32) error(__LINE__); if (v != 0 && v != 1) error(__LINE__); return v; } int param_bool(const RTLIL::IdString& name, bool expected) { int v = param_bool(name); if (v != expected) error(__LINE__); return v; } void param_bits(const RTLIL::IdString& name, int width) { param(name); if (GetSize(cell->parameters.at(name)) != width) error(__LINE__); } std::string param_string(const RTLIL::IdString &name) { param(name); return cell->parameters.at(name).decode_string(); } void port(const RTLIL::IdString& name, int width) { auto it = cell->connections_.find(name); if (it == cell->connections_.end()) error(__LINE__); if (GetSize(it->second) != width) error(__LINE__); expected_ports.insert(name); } void check_expected(bool check_matched_sign = false) { for (auto ¶ : cell->parameters) if (expected_params.count(para.first) == 0) error(__LINE__); for (auto &conn : cell->connections()) if (expected_ports.count(conn.first) == 0) error(__LINE__); if (check_matched_sign) { log_assert(expected_params.count(ID::A_SIGNED) != 0 && expected_params.count(ID::B_SIGNED) != 0); bool a_is_signed = cell->parameters.at(ID::A_SIGNED).as_bool(); bool b_is_signed = cell->parameters.at(ID::B_SIGNED).as_bool(); if (a_is_signed != b_is_signed) error(__LINE__); } } void check() { if (!cell->type.begins_with("$") || cell->type.begins_with("$__") || cell->type.begins_with("$paramod") || cell->type.begins_with("$fmcombine") || cell->type.begins_with("$verific$") || cell->type.begins_with("$array:") || cell->type.begins_with("$extern:")) return; if (cell->type == ID($buf)) { port(ID::A, param(ID::WIDTH)); port(ID::Y, param(ID::WIDTH)); check_expected(); return; } if (cell->type.in(ID($not), ID($pos), ID($neg))) { param_bool(ID::A_SIGNED); port(ID::A, param(ID::A_WIDTH)); port(ID::Y, param(ID::Y_WIDTH)); check_expected(); return; } if (cell->type.in(ID($and), ID($or), ID($xor), ID($xnor))) { param_bool(ID::A_SIGNED); param_bool(ID::B_SIGNED); port(ID::A, param(ID::A_WIDTH)); port(ID::B, param(ID::B_WIDTH)); port(ID::Y, param(ID::Y_WIDTH)); check_expected(true); return; } if (cell->type.in(ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool))) { param_bool(ID::A_SIGNED); port(ID::A, param(ID::A_WIDTH)); port(ID::Y, param(ID::Y_WIDTH)); check_expected(); return; } if (cell->type.in(ID($shl), ID($shr), ID($sshl), ID($sshr))) { param_bool(ID::A_SIGNED); param_bool(ID::B_SIGNED, /*expected=*/false); port(ID::A, param(ID::A_WIDTH)); port(ID::B, param(ID::B_WIDTH)); port(ID::Y, param(ID::Y_WIDTH)); check_expected(/*check_matched_sign=*/false); return; } if (cell->type.in(ID($shift), ID($shiftx))) { if (cell->type == ID($shiftx)) { param_bool(ID::A_SIGNED, /*expected=*/false); } else { param_bool(ID::A_SIGNED); } param_bool(ID::B_SIGNED); port(ID::A, param(ID::A_WIDTH)); port(ID::B, param(ID::B_WIDTH)); port(ID::Y, param(ID::Y_WIDTH)); check_expected(/*check_matched_sign=*/false); return; } if (cell->type.in(ID($lt), ID($le), ID($eq), ID($ne), ID($eqx), ID($nex), ID($ge), ID($gt))) { param_bool(ID::A_SIGNED); param_bool(ID::B_SIGNED); port(ID::A, param(ID::A_WIDTH)); port(ID::B, param(ID::B_WIDTH)); port(ID::Y, param(ID::Y_WIDTH)); check_expected(true); return; } if (cell->type.in(ID($add), ID($sub), ID($mul), ID($div), ID($mod), ID($divfloor), ID($modfloor), ID($pow))) { param_bool(ID::A_SIGNED); param_bool(ID::B_SIGNED); port(ID::A, param(ID::A_WIDTH)); port(ID::B, param(ID::B_WIDTH)); port(ID::Y, param(ID::Y_WIDTH)); check_expected(cell->type != ID($pow)); return; } if (cell->type == ID($fa)) { port(ID::A, param(ID::WIDTH)); port(ID::B, param(ID::WIDTH)); port(ID::C, param(ID::WIDTH)); port(ID::X, param(ID::WIDTH)); port(ID::Y, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($lcu)) { port(ID::P, param(ID::WIDTH)); port(ID::G, param(ID::WIDTH)); port(ID::CI, 1); port(ID::CO, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($alu)) { param_bool(ID::A_SIGNED); param_bool(ID::B_SIGNED); port(ID::A, param(ID::A_WIDTH)); port(ID::B, param(ID::B_WIDTH)); port(ID::CI, 1); port(ID::BI, 1); port(ID::X, param(ID::Y_WIDTH)); port(ID::Y, param(ID::Y_WIDTH)); port(ID::CO, param(ID::Y_WIDTH)); check_expected(true); return; } if (cell->type == ID($macc)) { param(ID::CONFIG); param(ID::CONFIG_WIDTH); port(ID::A, param(ID::A_WIDTH)); port(ID::B, param(ID::B_WIDTH)); port(ID::Y, param(ID::Y_WIDTH)); check_expected(); Macc().from_cell(cell); return; } if (cell->type == ID($logic_not)) { param_bool(ID::A_SIGNED); port(ID::A, param(ID::A_WIDTH)); port(ID::Y, param(ID::Y_WIDTH)); check_expected(); return; } if (cell->type.in(ID($logic_and), ID($logic_or))) { param_bool(ID::A_SIGNED); param_bool(ID::B_SIGNED); port(ID::A, param(ID::A_WIDTH)); port(ID::B, param(ID::B_WIDTH)); port(ID::Y, param(ID::Y_WIDTH)); check_expected(/*check_matched_sign=*/false); return; } if (cell->type == ID($slice)) { param(ID::OFFSET); port(ID::A, param(ID::A_WIDTH)); port(ID::Y, param(ID::Y_WIDTH)); if (param(ID::OFFSET) + param(ID::Y_WIDTH) > param(ID::A_WIDTH)) error(__LINE__); check_expected(); return; } if (cell->type == ID($concat)) { port(ID::A, param(ID::A_WIDTH)); port(ID::B, param(ID::B_WIDTH)); port(ID::Y, param(ID::A_WIDTH) + param(ID::B_WIDTH)); check_expected(); return; } if (cell->type == ID($mux)) { port(ID::A, param(ID::WIDTH)); port(ID::B, param(ID::WIDTH)); port(ID::S, 1); port(ID::Y, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($pmux)) { port(ID::A, param(ID::WIDTH)); port(ID::B, param(ID::WIDTH) * param(ID::S_WIDTH)); port(ID::S, param(ID::S_WIDTH)); port(ID::Y, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($bmux)) { port(ID::A, param(ID::WIDTH) << param(ID::S_WIDTH)); port(ID::S, param(ID::S_WIDTH)); port(ID::Y, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($demux)) { port(ID::A, param(ID::WIDTH)); port(ID::S, param(ID::S_WIDTH)); port(ID::Y, param(ID::WIDTH) << param(ID::S_WIDTH)); check_expected(); return; } if (cell->type == ID($lut)) { param(ID::LUT); port(ID::A, param(ID::WIDTH)); port(ID::Y, 1); check_expected(); return; } if (cell->type == ID($sop)) { param(ID::DEPTH); param(ID::TABLE); port(ID::A, param(ID::WIDTH)); port(ID::Y, 1); check_expected(); return; } if (cell->type == ID($sr)) { param_bool(ID::SET_POLARITY); param_bool(ID::CLR_POLARITY); port(ID::SET, param(ID::WIDTH)); port(ID::CLR, param(ID::WIDTH)); port(ID::Q, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($ff)) { port(ID::D, param(ID::WIDTH)); port(ID::Q, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($dff)) { param_bool(ID::CLK_POLARITY); port(ID::CLK, 1); port(ID::D, param(ID::WIDTH)); port(ID::Q, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($dffe)) { param_bool(ID::CLK_POLARITY); param_bool(ID::EN_POLARITY); port(ID::CLK, 1); port(ID::EN, 1); port(ID::D, param(ID::WIDTH)); port(ID::Q, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($dffsr)) { param_bool(ID::CLK_POLARITY); param_bool(ID::SET_POLARITY); param_bool(ID::CLR_POLARITY); port(ID::CLK, 1); port(ID::SET, param(ID::WIDTH)); port(ID::CLR, param(ID::WIDTH)); port(ID::D, param(ID::WIDTH)); port(ID::Q, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($dffsre)) { param_bool(ID::CLK_POLARITY); param_bool(ID::SET_POLARITY); param_bool(ID::CLR_POLARITY); param_bool(ID::EN_POLARITY); port(ID::CLK, 1); port(ID::EN, 1); port(ID::SET, param(ID::WIDTH)); port(ID::CLR, param(ID::WIDTH)); port(ID::D, param(ID::WIDTH)); port(ID::Q, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($adff)) { param_bool(ID::CLK_POLARITY); param_bool(ID::ARST_POLARITY); param_bits(ID::ARST_VALUE, param(ID::WIDTH)); port(ID::CLK, 1); port(ID::ARST, 1); port(ID::D, param(ID::WIDTH)); port(ID::Q, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($sdff)) { param_bool(ID::CLK_POLARITY); param_bool(ID::SRST_POLARITY); param_bits(ID::SRST_VALUE, param(ID::WIDTH)); port(ID::CLK, 1); port(ID::SRST, 1); port(ID::D, param(ID::WIDTH)); port(ID::Q, param(ID::WIDTH)); check_expected(); return; } if (cell->type.in(ID($sdffe), ID($sdffce))) { param_bool(ID::CLK_POLARITY); param_bool(ID::EN_POLARITY); param_bool(ID::SRST_POLARITY); param_bits(ID::SRST_VALUE, param(ID::WIDTH)); port(ID::CLK, 1); port(ID::EN, 1); port(ID::SRST, 1); port(ID::D, param(ID::WIDTH)); port(ID::Q, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($adffe)) { param_bool(ID::CLK_POLARITY); param_bool(ID::EN_POLARITY); param_bool(ID::ARST_POLARITY); param_bits(ID::ARST_VALUE, param(ID::WIDTH)); port(ID::CLK, 1); port(ID::EN, 1); port(ID::ARST, 1); port(ID::D, param(ID::WIDTH)); port(ID::Q, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($aldff)) { param_bool(ID::CLK_POLARITY); param_bool(ID::ALOAD_POLARITY); port(ID::CLK, 1); port(ID::ALOAD, 1); port(ID::D, param(ID::WIDTH)); port(ID::AD, param(ID::WIDTH)); port(ID::Q, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($aldffe)) { param_bool(ID::CLK_POLARITY); param_bool(ID::EN_POLARITY); param_bool(ID::ALOAD_POLARITY); port(ID::CLK, 1); port(ID::EN, 1); port(ID::ALOAD, 1); port(ID::D, param(ID::WIDTH)); port(ID::AD, param(ID::WIDTH)); port(ID::Q, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($dlatch)) { param_bool(ID::EN_POLARITY); port(ID::EN, 1); port(ID::D, param(ID::WIDTH)); port(ID::Q, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($adlatch)) { param_bool(ID::EN_POLARITY); param_bool(ID::ARST_POLARITY); param_bits(ID::ARST_VALUE, param(ID::WIDTH)); port(ID::EN, 1); port(ID::ARST, 1); port(ID::D, param(ID::WIDTH)); port(ID::Q, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($dlatchsr)) { param_bool(ID::EN_POLARITY); param_bool(ID::SET_POLARITY); param_bool(ID::CLR_POLARITY); port(ID::EN, 1); port(ID::SET, param(ID::WIDTH)); port(ID::CLR, param(ID::WIDTH)); port(ID::D, param(ID::WIDTH)); port(ID::Q, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($fsm)) { param(ID::NAME); param_bool(ID::CLK_POLARITY); param_bool(ID::ARST_POLARITY); param(ID::STATE_BITS); param(ID::STATE_NUM); param(ID::STATE_NUM_LOG2); param(ID::STATE_RST); param_bits(ID::STATE_TABLE, param(ID::STATE_BITS) * param(ID::STATE_NUM)); param(ID::TRANS_NUM); param_bits(ID::TRANS_TABLE, param(ID::TRANS_NUM) * (2*param(ID::STATE_NUM_LOG2) + param(ID::CTRL_IN_WIDTH) + param(ID::CTRL_OUT_WIDTH))); port(ID::CLK, 1); port(ID::ARST, 1); port(ID::CTRL_IN, param(ID::CTRL_IN_WIDTH)); port(ID::CTRL_OUT, param(ID::CTRL_OUT_WIDTH)); check_expected(); return; } if (cell->type == ID($memrd)) { param(ID::MEMID); param_bool(ID::CLK_ENABLE); param_bool(ID::CLK_POLARITY); param_bool(ID::TRANSPARENT); port(ID::CLK, 1); port(ID::EN, 1); port(ID::ADDR, param(ID::ABITS)); port(ID::DATA, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($memrd_v2)) { param(ID::MEMID); param_bool(ID::CLK_ENABLE); param_bool(ID::CLK_POLARITY); param(ID::TRANSPARENCY_MASK); param(ID::COLLISION_X_MASK); param_bool(ID::CE_OVER_SRST); param_bits(ID::ARST_VALUE, param(ID::WIDTH)); param_bits(ID::SRST_VALUE, param(ID::WIDTH)); param_bits(ID::INIT_VALUE, param(ID::WIDTH)); port(ID::CLK, 1); port(ID::EN, 1); port(ID::ARST, 1); port(ID::SRST, 1); port(ID::ADDR, param(ID::ABITS)); port(ID::DATA, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($memwr)) { param(ID::MEMID); param_bool(ID::CLK_ENABLE); param_bool(ID::CLK_POLARITY); param(ID::PRIORITY); port(ID::CLK, 1); port(ID::EN, param(ID::WIDTH)); port(ID::ADDR, param(ID::ABITS)); port(ID::DATA, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($memwr_v2)) { param(ID::MEMID); param_bool(ID::CLK_ENABLE); param_bool(ID::CLK_POLARITY); param(ID::PORTID); param(ID::PRIORITY_MASK); port(ID::CLK, 1); port(ID::EN, param(ID::WIDTH)); port(ID::ADDR, param(ID::ABITS)); port(ID::DATA, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($meminit)) { param(ID::MEMID); param(ID::PRIORITY); port(ID::ADDR, param(ID::ABITS)); port(ID::DATA, param(ID::WIDTH) * param(ID::WORDS)); check_expected(); return; } if (cell->type == ID($meminit_v2)) { param(ID::MEMID); param(ID::PRIORITY); port(ID::ADDR, param(ID::ABITS)); port(ID::DATA, param(ID::WIDTH) * param(ID::WORDS)); port(ID::EN, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($mem)) { param(ID::MEMID); param(ID::SIZE); param(ID::OFFSET); param(ID::INIT); param_bits(ID::RD_CLK_ENABLE, max(1, param(ID::RD_PORTS))); param_bits(ID::RD_CLK_POLARITY, max(1, param(ID::RD_PORTS))); param_bits(ID::RD_TRANSPARENT, max(1, param(ID::RD_PORTS))); param_bits(ID::WR_CLK_ENABLE, max(1, param(ID::WR_PORTS))); param_bits(ID::WR_CLK_POLARITY, max(1, param(ID::WR_PORTS))); port(ID::RD_CLK, param(ID::RD_PORTS)); port(ID::RD_EN, param(ID::RD_PORTS)); port(ID::RD_ADDR, param(ID::RD_PORTS) * param(ID::ABITS)); port(ID::RD_DATA, param(ID::RD_PORTS) * param(ID::WIDTH)); port(ID::WR_CLK, param(ID::WR_PORTS)); port(ID::WR_EN, param(ID::WR_PORTS) * param(ID::WIDTH)); port(ID::WR_ADDR, param(ID::WR_PORTS) * param(ID::ABITS)); port(ID::WR_DATA, param(ID::WR_PORTS) * param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($mem_v2)) { param(ID::MEMID); param(ID::SIZE); param(ID::OFFSET); param(ID::INIT); param_bits(ID::RD_CLK_ENABLE, max(1, param(ID::RD_PORTS))); param_bits(ID::RD_CLK_POLARITY, max(1, param(ID::RD_PORTS))); param_bits(ID::RD_TRANSPARENCY_MASK, max(1, param(ID::RD_PORTS) * param(ID::WR_PORTS))); param_bits(ID::RD_COLLISION_X_MASK, max(1, param(ID::RD_PORTS) * param(ID::WR_PORTS))); param_bits(ID::RD_WIDE_CONTINUATION, max(1, param(ID::RD_PORTS))); param_bits(ID::RD_CE_OVER_SRST, max(1, param(ID::RD_PORTS))); param_bits(ID::RD_ARST_VALUE, max(1, param(ID::RD_PORTS) * param(ID::WIDTH))); param_bits(ID::RD_SRST_VALUE, max(1, param(ID::RD_PORTS) * param(ID::WIDTH))); param_bits(ID::RD_INIT_VALUE, max(1, param(ID::RD_PORTS) * param(ID::WIDTH))); param_bits(ID::WR_CLK_ENABLE, max(1, param(ID::WR_PORTS))); param_bits(ID::WR_CLK_POLARITY, max(1, param(ID::WR_PORTS))); param_bits(ID::WR_WIDE_CONTINUATION, max(1, param(ID::WR_PORTS))); param_bits(ID::WR_PRIORITY_MASK, max(1, param(ID::WR_PORTS) * param(ID::WR_PORTS))); port(ID::RD_CLK, param(ID::RD_PORTS)); port(ID::RD_EN, param(ID::RD_PORTS)); port(ID::RD_ARST, param(ID::RD_PORTS)); port(ID::RD_SRST, param(ID::RD_PORTS)); port(ID::RD_ADDR, param(ID::RD_PORTS) * param(ID::ABITS)); port(ID::RD_DATA, param(ID::RD_PORTS) * param(ID::WIDTH)); port(ID::WR_CLK, param(ID::WR_PORTS)); port(ID::WR_EN, param(ID::WR_PORTS) * param(ID::WIDTH)); port(ID::WR_ADDR, param(ID::WR_PORTS) * param(ID::ABITS)); port(ID::WR_DATA, param(ID::WR_PORTS) * param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($tribuf)) { port(ID::A, param(ID::WIDTH)); port(ID::Y, param(ID::WIDTH)); port(ID::EN, 1); check_expected(); return; } if (cell->type == ID($bweqx)) { port(ID::A, param(ID::WIDTH)); port(ID::B, param(ID::WIDTH)); port(ID::Y, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($bwmux)) { port(ID::A, param(ID::WIDTH)); port(ID::B, param(ID::WIDTH)); port(ID::S, param(ID::WIDTH)); port(ID::Y, param(ID::WIDTH)); check_expected(); return; } if (cell->type.in(ID($assert), ID($assume), ID($live), ID($fair), ID($cover))) { port(ID::A, 1); port(ID::EN, 1); check_expected(); return; } if (cell->type == ID($initstate)) { port(ID::Y, 1); check_expected(); return; } if (cell->type.in(ID($anyconst), ID($anyseq), ID($allconst), ID($allseq))) { port(ID::Y, param(ID::WIDTH)); check_expected(); return; } if (cell->type.in(ID($anyinit))) { port(ID::D, param(ID::WIDTH)); port(ID::Q, param(ID::WIDTH)); check_expected(); return; } if (cell->type == ID($equiv)) { port(ID::A, 1); port(ID::B, 1); port(ID::Y, 1); check_expected(); return; } if (cell->type.in(ID($specify2), ID($specify3))) { param_bool(ID::FULL); param_bool(ID::SRC_DST_PEN); param_bool(ID::SRC_DST_POL); param(ID::T_RISE_MIN); param(ID::T_RISE_TYP); param(ID::T_RISE_MAX); param(ID::T_FALL_MIN); param(ID::T_FALL_TYP); param(ID::T_FALL_MAX); port(ID::EN, 1); port(ID::SRC, param(ID::SRC_WIDTH)); port(ID::DST, param(ID::DST_WIDTH)); if (cell->type == ID($specify3)) { param_bool(ID::EDGE_EN); param_bool(ID::EDGE_POL); param_bool(ID::DAT_DST_PEN); param_bool(ID::DAT_DST_POL); port(ID::DAT, param(ID::DST_WIDTH)); } check_expected(); return; } if (cell->type == ID($specrule)) { param(ID::TYPE); param_bool(ID::SRC_PEN); param_bool(ID::SRC_POL); param_bool(ID::DST_PEN); param_bool(ID::DST_POL); param(ID::T_LIMIT_MIN); param(ID::T_LIMIT_TYP); param(ID::T_LIMIT_MAX); param(ID::T_LIMIT2_MIN); param(ID::T_LIMIT2_TYP); param(ID::T_LIMIT2_MAX); port(ID::SRC_EN, 1); port(ID::DST_EN, 1); port(ID::SRC, param(ID::SRC_WIDTH)); port(ID::DST, param(ID::DST_WIDTH)); check_expected(); return; } if (cell->type == ID($print)) { param(ID(FORMAT)); param_bool(ID::TRG_ENABLE); param(ID::TRG_POLARITY); param(ID::PRIORITY); port(ID::EN, 1); port(ID::TRG, param(ID::TRG_WIDTH)); port(ID::ARGS, param(ID::ARGS_WIDTH)); check_expected(); return; } if (cell->type == ID($check)) { std::string flavor = param_string(ID(FLAVOR)); if (!(flavor == "assert" || flavor == "assume" || flavor == "live" || flavor == "fair" || flavor == "cover")) error(__LINE__); param(ID(FORMAT)); param_bool(ID::TRG_ENABLE); param(ID::TRG_POLARITY); param(ID::PRIORITY); port(ID::A, 1); port(ID::EN, 1); port(ID::TRG, param(ID::TRG_WIDTH)); port(ID::ARGS, param(ID::ARGS_WIDTH)); check_expected(); return; } if (cell->type == ID($scopeinfo)) { param(ID::TYPE); check_expected(); std::string scope_type = cell->getParam(ID::TYPE).decode_string(); if (scope_type != "module" && scope_type != "struct") error(__LINE__); return; } if (cell->type == ID($_BUF_)) { port(ID::A,1); port(ID::Y,1); check_expected(); return; } if (cell->type == ID($_NOT_)) { port(ID::A,1); port(ID::Y,1); check_expected(); return; } if (cell->type == ID($_AND_)) { port(ID::A,1); port(ID::B,1); port(ID::Y,1); check_expected(); return; } if (cell->type == ID($_NAND_)) { port(ID::A,1); port(ID::B,1); port(ID::Y,1); check_expected(); return; } if (cell->type == ID($_OR_)) { port(ID::A,1); port(ID::B,1); port(ID::Y,1); check_expected(); return; } if (cell->type == ID($_NOR_)) { port(ID::A,1); port(ID::B,1); port(ID::Y,1); check_expected(); return; } if (cell->type == ID($_XOR_)) { port(ID::A,1); port(ID::B,1); port(ID::Y,1); check_expected(); return; } if (cell->type == ID($_XNOR_)) { port(ID::A,1); port(ID::B,1); port(ID::Y,1); check_expected(); return; } if (cell->type == ID($_ANDNOT_)) { port(ID::A,1); port(ID::B,1); port(ID::Y,1); check_expected(); return; } if (cell->type == ID($_ORNOT_)) { port(ID::A,1); port(ID::B,1); port(ID::Y,1); check_expected(); return; } if (cell->type == ID($_MUX_)) { port(ID::A,1); port(ID::B,1); port(ID::S,1); port(ID::Y,1); check_expected(); return; } if (cell->type == ID($_NMUX_)) { port(ID::A,1); port(ID::B,1); port(ID::S,1); port(ID::Y,1); check_expected(); return; } if (cell->type == ID($_AOI3_)) { port(ID::A,1); port(ID::B,1); port(ID::C,1); port(ID::Y,1); check_expected(); return; } if (cell->type == ID($_OAI3_)) { port(ID::A,1); port(ID::B,1); port(ID::C,1); port(ID::Y,1); check_expected(); return; } if (cell->type == ID($_AOI4_)) { port(ID::A,1); port(ID::B,1); port(ID::C,1); port(ID::D,1); port(ID::Y,1); check_expected(); return; } if (cell->type == ID($_OAI4_)) { port(ID::A,1); port(ID::B,1); port(ID::C,1); port(ID::D,1); port(ID::Y,1); check_expected(); return; } if (cell->type == ID($_TBUF_)) { port(ID::A,1); port(ID::Y,1); port(ID::E,1); check_expected(); return; } if (cell->type == ID($_MUX4_)) { port(ID::A,1); port(ID::B,1); port(ID::C,1); port(ID::D,1); port(ID::S,1); port(ID::T,1); port(ID::Y,1); check_expected(); return; } if (cell->type == ID($_MUX8_)) { port(ID::A,1); port(ID::B,1); port(ID::C,1); port(ID::D,1); port(ID::E,1); port(ID::F,1); port(ID::G,1); port(ID::H,1); port(ID::S,1); port(ID::T,1); port(ID::U,1); port(ID::Y,1); check_expected(); return; } if (cell->type == ID($_MUX16_)) { port(ID::A,1); port(ID::B,1); port(ID::C,1); port(ID::D,1); port(ID::E,1); port(ID::F,1); port(ID::G,1); port(ID::H,1); port(ID::I,1); port(ID::J,1); port(ID::K,1); port(ID::L,1); port(ID::M,1); port(ID::N,1); port(ID::O,1); port(ID::P,1); port(ID::S,1); port(ID::T,1); port(ID::U,1); port(ID::V,1); port(ID::Y,1); check_expected(); return; } if (cell->type.in(ID($_SR_NN_), ID($_SR_NP_), ID($_SR_PN_), ID($_SR_PP_))) { port(ID::S,1); port(ID::R,1); port(ID::Q,1); check_expected(); return; } if (cell->type == ID($_FF_)) { port(ID::D,1); port(ID::Q,1); check_expected(); return; } if (cell->type.in(ID($_DFF_N_), ID($_DFF_P_))) { port(ID::D,1); port(ID::Q,1); port(ID::C,1); check_expected(); return; } if (cell->type.in(ID($_DFFE_NN_), ID($_DFFE_NP_), ID($_DFFE_PN_), ID($_DFFE_PP_))) { port(ID::D,1); port(ID::Q,1); port(ID::C,1); port(ID::E,1); check_expected(); return; } if (cell->type.in( ID($_DFF_NN0_), ID($_DFF_NN1_), ID($_DFF_NP0_), ID($_DFF_NP1_), ID($_DFF_PN0_), ID($_DFF_PN1_), ID($_DFF_PP0_), ID($_DFF_PP1_))) { port(ID::D,1); port(ID::Q,1); port(ID::C,1); port(ID::R,1); check_expected(); return; } if (cell->type.in( ID($_DFFE_NN0N_), ID($_DFFE_NN0P_), ID($_DFFE_NN1N_), ID($_DFFE_NN1P_), ID($_DFFE_NP0N_), ID($_DFFE_NP0P_), ID($_DFFE_NP1N_), ID($_DFFE_NP1P_), ID($_DFFE_PN0N_), ID($_DFFE_PN0P_), ID($_DFFE_PN1N_), ID($_DFFE_PN1P_), ID($_DFFE_PP0N_), ID($_DFFE_PP0P_), ID($_DFFE_PP1N_), ID($_DFFE_PP1P_))) { port(ID::D,1); port(ID::Q,1); port(ID::C,1); port(ID::R,1); port(ID::E,1); check_expected(); return; } if (cell->type.in( ID($_ALDFF_NN_), ID($_ALDFF_NP_), ID($_ALDFF_PN_), ID($_ALDFF_PP_))) { port(ID::D,1); port(ID::Q,1); port(ID::C,1); port(ID::L,1); port(ID::AD,1); check_expected(); return; } if (cell->type.in( ID($_ALDFFE_NNN_), ID($_ALDFFE_NNP_), ID($_ALDFFE_NPN_), ID($_ALDFFE_NPP_), ID($_ALDFFE_PNN_), ID($_ALDFFE_PNP_), ID($_ALDFFE_PPN_), ID($_ALDFFE_PPP_))) { port(ID::D,1); port(ID::Q,1); port(ID::C,1); port(ID::L,1); port(ID::AD,1); port(ID::E,1); check_expected(); return; } if (cell->type.in( ID($_DFFSR_NNN_), ID($_DFFSR_NNP_), ID($_DFFSR_NPN_), ID($_DFFSR_NPP_), ID($_DFFSR_PNN_), ID($_DFFSR_PNP_), ID($_DFFSR_PPN_), ID($_DFFSR_PPP_))) { port(ID::C,1); port(ID::S,1); port(ID::R,1); port(ID::D,1); port(ID::Q,1); check_expected(); return; } if (cell->type.in( ID($_DFFSRE_NNNN_), ID($_DFFSRE_NNNP_), ID($_DFFSRE_NNPN_), ID($_DFFSRE_NNPP_), ID($_DFFSRE_NPNN_), ID($_DFFSRE_NPNP_), ID($_DFFSRE_NPPN_), ID($_DFFSRE_NPPP_), ID($_DFFSRE_PNNN_), ID($_DFFSRE_PNNP_), ID($_DFFSRE_PNPN_), ID($_DFFSRE_PNPP_), ID($_DFFSRE_PPNN_), ID($_DFFSRE_PPNP_), ID($_DFFSRE_PPPN_), ID($_DFFSRE_PPPP_))) { port(ID::C,1); port(ID::S,1); port(ID::R,1); port(ID::D,1); port(ID::E,1); port(ID::Q,1); check_expected(); return; } if (cell->type.in( ID($_SDFF_NN0_), ID($_SDFF_NN1_), ID($_SDFF_NP0_), ID($_SDFF_NP1_), ID($_SDFF_PN0_), ID($_SDFF_PN1_), ID($_SDFF_PP0_), ID($_SDFF_PP1_))) { port(ID::D,1); port(ID::Q,1); port(ID::C,1); port(ID::R,1); check_expected(); return; } if (cell->type.in( ID($_SDFFE_NN0N_), ID($_SDFFE_NN0P_), ID($_SDFFE_NN1N_), ID($_SDFFE_NN1P_), ID($_SDFFE_NP0N_), ID($_SDFFE_NP0P_), ID($_SDFFE_NP1N_), ID($_SDFFE_NP1P_), ID($_SDFFE_PN0N_), ID($_SDFFE_PN0P_), ID($_SDFFE_PN1N_), ID($_SDFFE_PN1P_), ID($_SDFFE_PP0N_), ID($_SDFFE_PP0P_), ID($_SDFFE_PP1N_), ID($_SDFFE_PP1P_), ID($_SDFFCE_NN0N_), ID($_SDFFCE_NN0P_), ID($_SDFFCE_NN1N_), ID($_SDFFCE_NN1P_), ID($_SDFFCE_NP0N_), ID($_SDFFCE_NP0P_), ID($_SDFFCE_NP1N_), ID($_SDFFCE_NP1P_), ID($_SDFFCE_PN0N_), ID($_SDFFCE_PN0P_), ID($_SDFFCE_PN1N_), ID($_SDFFCE_PN1P_), ID($_SDFFCE_PP0N_), ID($_SDFFCE_PP0P_), ID($_SDFFCE_PP1N_), ID($_SDFFCE_PP1P_))) { port(ID::D,1); port(ID::Q,1); port(ID::C,1); port(ID::R,1); port(ID::E,1); check_expected(); return; } if (cell->type.in(ID($_DLATCH_N_), ID($_DLATCH_P_))) { port(ID::E,1); port(ID::D,1); port(ID::Q,1); check_expected(); return; } if (cell->type.in( ID($_DLATCH_NN0_), ID($_DLATCH_NN1_), ID($_DLATCH_NP0_), ID($_DLATCH_NP1_), ID($_DLATCH_PN0_), ID($_DLATCH_PN1_), ID($_DLATCH_PP0_), ID($_DLATCH_PP1_))) { port(ID::E,1); port(ID::R,1); port(ID::D,1); port(ID::Q,1); check_expected(); return; } if (cell->type.in( ID($_DLATCHSR_NNN_), ID($_DLATCHSR_NNP_), ID($_DLATCHSR_NPN_), ID($_DLATCHSR_NPP_), ID($_DLATCHSR_PNN_), ID($_DLATCHSR_PNP_), ID($_DLATCHSR_PPN_), ID($_DLATCHSR_PPP_))) { port(ID::E,1); port(ID::S,1); port(ID::R,1); port(ID::D,1); port(ID::Q,1); check_expected(); return; } if (cell->type.in(ID($set_tag))) { param(ID::WIDTH); param(ID::TAG); port(ID::A, param(ID::WIDTH)); port(ID::SET, param(ID::WIDTH)); port(ID::CLR, param(ID::WIDTH)); port(ID::Y, param(ID::WIDTH)); check_expected(); return; } if (cell->type.in(ID($get_tag),ID($original_tag))) { param(ID::WIDTH); param(ID::TAG); port(ID::A, param(ID::WIDTH)); port(ID::Y, param(ID::WIDTH)); check_expected(); return; } if (cell->type.in(ID($overwrite_tag))) { param(ID::WIDTH); param(ID::TAG); port(ID::A, param(ID::WIDTH)); port(ID::SET, param(ID::WIDTH)); port(ID::CLR, param(ID::WIDTH)); check_expected(); return; } if (cell->type.in(ID($future_ff))) { param(ID::WIDTH); port(ID::A, param(ID::WIDTH)); port(ID::Y, param(ID::WIDTH)); check_expected(); return; } /* * Checklist for adding internal cell types * ======================================== * Things to do right away: * - Add to kernel/celltypes.h (incl. eval() handling for non-mem cells) * - Add to InternalCellChecker::check() in kernel/rtlil.cc * - Add to techlibs/common/simlib.v * - Add to techlibs/common/techmap.v * * Things to do after finalizing the cell interface: * - Add support to kernel/satgen.h for the new cell type * - Add to docs/source/CHAPTER_CellLib.rst (or just add a fixme to the bottom) * - Maybe add support to the Verilog backend for dumping such cells as expression * */ error(__LINE__); } }; } #endif void RTLIL::Module::sort() { wires_.sort(sort_by_id_str()); cells_.sort(sort_by_id_str()); parameter_default_values.sort(sort_by_id_str()); memories.sort(sort_by_id_str()); processes.sort(sort_by_id_str()); for (auto &it : cells_) it.second->sort(); for (auto &it : wires_) it.second->attributes.sort(sort_by_id_str()); for (auto &it : memories) it.second->attributes.sort(sort_by_id_str()); } void RTLIL::Module::check() { #ifndef NDEBUG std::vector ports_declared; for (auto &it : wires_) { log_assert(this == it.second->module); log_assert(it.first == it.second->name); log_assert(!it.first.empty()); log_assert(it.second->width >= 0); log_assert(it.second->port_id >= 0); for (auto &it2 : it.second->attributes) log_assert(!it2.first.empty()); if (it.second->port_id) { log_assert(GetSize(ports) >= it.second->port_id); log_assert(ports.at(it.second->port_id-1) == it.first); log_assert(it.second->port_input || it.second->port_output); if (GetSize(ports_declared) < it.second->port_id) ports_declared.resize(it.second->port_id); log_assert(ports_declared[it.second->port_id-1] == false); ports_declared[it.second->port_id-1] = true; } else log_assert(!it.second->port_input && !it.second->port_output); } for (auto port_declared : ports_declared) log_assert(port_declared == true); log_assert(GetSize(ports) == GetSize(ports_declared)); for (auto &it : memories) { log_assert(it.first == it.second->name); log_assert(!it.first.empty()); log_assert(it.second->width >= 0); log_assert(it.second->size >= 0); for (auto &it2 : it.second->attributes) log_assert(!it2.first.empty()); } pool packed_memids; for (auto &it : cells_) { log_assert(this == it.second->module); log_assert(it.first == it.second->name); log_assert(!it.first.empty()); log_assert(!it.second->type.empty()); for (auto &it2 : it.second->connections()) { log_assert(!it2.first.empty()); it2.second.check(this); } for (auto &it2 : it.second->attributes) log_assert(!it2.first.empty()); for (auto &it2 : it.second->parameters) log_assert(!it2.first.empty()); InternalCellChecker checker(this, it.second); checker.check(); if (it.second->has_memid()) { log_assert(memories.count(it.second->parameters.at(ID::MEMID).decode_string())); } else if (it.second->is_mem_cell()) { IdString memid = it.second->parameters.at(ID::MEMID).decode_string(); log_assert(!memories.count(memid)); log_assert(!packed_memids.count(memid)); packed_memids.insert(memid); } } for (auto &it : processes) { log_assert(it.first == it.second->name); log_assert(!it.first.empty()); log_assert(it.second->root_case.compare.empty()); std::vector all_cases = {&it.second->root_case}; for (size_t i = 0; i < all_cases.size(); i++) { for (auto &switch_it : all_cases[i]->switches) { for (auto &case_it : switch_it->cases) { for (auto &compare_it : case_it->compare) { log_assert(switch_it->signal.size() == compare_it.size()); } all_cases.push_back(case_it); } } } for (auto &sync_it : it.second->syncs) { switch (sync_it->type) { case SyncType::ST0: case SyncType::ST1: case SyncType::STp: case SyncType::STn: case SyncType::STe: log_assert(!sync_it->signal.empty()); break; case SyncType::STa: case SyncType::STg: case SyncType::STi: log_assert(sync_it->signal.empty()); break; } } } for (auto &it : connections_) { log_assert(it.first.size() == it.second.size()); log_assert(!it.first.has_const()); it.first.check(this); it.second.check(this); } for (auto &it : attributes) log_assert(!it.first.empty()); #endif } void RTLIL::Module::optimize() { } void RTLIL::Module::cloneInto(RTLIL::Module *new_mod) const { log_assert(new_mod->refcount_wires_ == 0); log_assert(new_mod->refcount_cells_ == 0); new_mod->avail_parameters = avail_parameters; new_mod->parameter_default_values = parameter_default_values; for (auto &conn : connections_) new_mod->connect(conn); for (auto &attr : attributes) new_mod->attributes[attr.first] = attr.second; for (auto &it : wires_) new_mod->addWire(it.first, it.second); for (auto &it : memories) new_mod->addMemory(it.first, it.second); for (auto &it : cells_) new_mod->addCell(it.first, it.second); for (auto &it : processes) new_mod->addProcess(it.first, it.second); struct RewriteSigSpecWorker { RTLIL::Module *mod; void operator()(RTLIL::SigSpec &sig) { sig.pack(); for (auto &c : sig.chunks_) if (c.wire != NULL) c.wire = mod->wires_.at(c.wire->name); } }; RewriteSigSpecWorker rewriteSigSpecWorker; rewriteSigSpecWorker.mod = new_mod; new_mod->rewrite_sigspecs(rewriteSigSpecWorker); new_mod->fixup_ports(); } RTLIL::Module *RTLIL::Module::clone() const { RTLIL::Module *new_mod = new RTLIL::Module; new_mod->name = name; cloneInto(new_mod); return new_mod; } bool RTLIL::Module::has_memories() const { return !memories.empty(); } bool RTLIL::Module::has_processes() const { return !processes.empty(); } bool RTLIL::Module::has_memories_warn() const { if (!memories.empty()) log_warning("Ignoring module %s because it contains memories (run 'memory' command first).\n", log_id(this)); return !memories.empty(); } bool RTLIL::Module::has_processes_warn() const { if (!processes.empty()) log_warning("Ignoring module %s because it contains processes (run 'proc' command first).\n", log_id(this)); return !processes.empty(); } std::vector RTLIL::Module::selected_wires() const { std::vector result; result.reserve(wires_.size()); for (auto &it : wires_) if (design->selected(this, it.second)) result.push_back(it.second); return result; } std::vector RTLIL::Module::selected_cells() const { std::vector result; result.reserve(cells_.size()); for (auto &it : cells_) if (design->selected(this, it.second)) result.push_back(it.second); return result; } void RTLIL::Module::add(RTLIL::Wire *wire) { log_assert(!wire->name.empty()); log_assert(count_id(wire->name) == 0); log_assert(refcount_wires_ == 0); wires_[wire->name] = wire; wire->module = this; } void RTLIL::Module::add(RTLIL::Cell *cell) { log_assert(!cell->name.empty()); log_assert(count_id(cell->name) == 0); log_assert(refcount_cells_ == 0); cells_[cell->name] = cell; cell->module = this; } void RTLIL::Module::add(RTLIL::Process *process) { log_assert(!process->name.empty()); log_assert(count_id(process->name) == 0); processes[process->name] = process; process->module = this; } void RTLIL::Module::add(RTLIL::Binding *binding) { log_assert(binding != nullptr); bindings_.push_back(binding); } void RTLIL::Module::remove(const pool &wires) { log_assert(refcount_wires_ == 0); struct DeleteWireWorker { RTLIL::Module *module; const pool *wires_p; void operator()(RTLIL::SigSpec &sig) { sig.pack(); for (auto &c : sig.chunks_) if (c.wire != NULL && wires_p->count(c.wire)) { c.wire = module->addWire(stringf("$delete_wire$%d", autoidx++), c.width); c.offset = 0; } } void operator()(RTLIL::SigSpec &lhs, RTLIL::SigSpec &rhs) { // If a deleted wire occurs on the lhs or rhs we just remove that part // of the assignment lhs.remove2(*wires_p, &rhs); rhs.remove2(*wires_p, &lhs); } }; DeleteWireWorker delete_wire_worker; delete_wire_worker.module = this; delete_wire_worker.wires_p = &wires; rewrite_sigspecs2(delete_wire_worker); for (auto &it : wires) { log_assert(wires_.count(it->name) != 0); wires_.erase(it->name); delete it; } } void RTLIL::Module::remove(RTLIL::Cell *cell) { while (!cell->connections_.empty()) cell->unsetPort(cell->connections_.begin()->first); log_assert(cells_.count(cell->name) != 0); log_assert(refcount_cells_ == 0); cells_.erase(cell->name); delete cell; } void RTLIL::Module::remove(RTLIL::Process *process) { log_assert(processes.count(process->name) != 0); processes.erase(process->name); delete process; } void RTLIL::Module::rename(RTLIL::Wire *wire, RTLIL::IdString new_name) { log_assert(wires_[wire->name] == wire); log_assert(refcount_wires_ == 0); wires_.erase(wire->name); wire->name = new_name; add(wire); } void RTLIL::Module::rename(RTLIL::Cell *cell, RTLIL::IdString new_name) { log_assert(cells_[cell->name] == cell); log_assert(refcount_wires_ == 0); cells_.erase(cell->name); cell->name = new_name; add(cell); } void RTLIL::Module::rename(RTLIL::IdString old_name, RTLIL::IdString new_name) { log_assert(count_id(old_name) != 0); if (wires_.count(old_name)) rename(wires_.at(old_name), new_name); else if (cells_.count(old_name)) rename(cells_.at(old_name), new_name); else log_abort(); } void RTLIL::Module::swap_names(RTLIL::Wire *w1, RTLIL::Wire *w2) { log_assert(wires_[w1->name] == w1); log_assert(wires_[w2->name] == w2); log_assert(refcount_wires_ == 0); wires_.erase(w1->name); wires_.erase(w2->name); std::swap(w1->name, w2->name); wires_[w1->name] = w1; wires_[w2->name] = w2; } void RTLIL::Module::swap_names(RTLIL::Cell *c1, RTLIL::Cell *c2) { log_assert(cells_[c1->name] == c1); log_assert(cells_[c2->name] == c2); log_assert(refcount_cells_ == 0); cells_.erase(c1->name); cells_.erase(c2->name); std::swap(c1->name, c2->name); cells_[c1->name] = c1; cells_[c2->name] = c2; } RTLIL::IdString RTLIL::Module::uniquify(RTLIL::IdString name) { int index = 0; return uniquify(name, index); } RTLIL::IdString RTLIL::Module::uniquify(RTLIL::IdString name, int &index) { if (index == 0) { if (count_id(name) == 0) return name; index++; } while (1) { RTLIL::IdString new_name = stringf("%s_%d", name.c_str(), index); if (count_id(new_name) == 0) return new_name; index++; } } static bool fixup_ports_compare(const RTLIL::Wire *a, const RTLIL::Wire *b) { if (a->port_id && !b->port_id) return true; if (!a->port_id && b->port_id) return false; if (a->port_id == b->port_id) return a->name < b->name; return a->port_id < b->port_id; } void RTLIL::Module::connect(const RTLIL::SigSig &conn) { for (auto mon : monitors) mon->notify_connect(this, conn); if (design) for (auto mon : design->monitors) mon->notify_connect(this, conn); // ignore all attempts to assign constants to other constants if (conn.first.has_const()) { RTLIL::SigSig new_conn; for (int i = 0; i < GetSize(conn.first); i++) if (conn.first[i].wire) { new_conn.first.append(conn.first[i]); new_conn.second.append(conn.second[i]); } if (GetSize(new_conn.first)) connect(new_conn); return; } if (yosys_xtrace) { log("#X# Connect (SigSig) in %s: %s = %s (%d bits)\n", log_id(this), log_signal(conn.first), log_signal(conn.second), GetSize(conn.first)); log_backtrace("-X- ", yosys_xtrace-1); } log_assert(GetSize(conn.first) == GetSize(conn.second)); connections_.push_back(conn); } void RTLIL::Module::connect(const RTLIL::SigSpec &lhs, const RTLIL::SigSpec &rhs) { connect(RTLIL::SigSig(lhs, rhs)); } void RTLIL::Module::new_connections(const std::vector &new_conn) { for (auto mon : monitors) mon->notify_connect(this, new_conn); if (design) for (auto mon : design->monitors) mon->notify_connect(this, new_conn); if (yosys_xtrace) { log("#X# New connections vector in %s:\n", log_id(this)); for (auto &conn: new_conn) log("#X# %s = %s (%d bits)\n", log_signal(conn.first), log_signal(conn.second), GetSize(conn.first)); log_backtrace("-X- ", yosys_xtrace-1); } connections_ = new_conn; } const std::vector &RTLIL::Module::connections() const { return connections_; } void RTLIL::Module::fixup_ports() { std::vector all_ports; for (auto &w : wires_) if (w.second->port_input || w.second->port_output) all_ports.push_back(w.second); else w.second->port_id = 0; std::sort(all_ports.begin(), all_ports.end(), fixup_ports_compare); ports.clear(); for (size_t i = 0; i < all_ports.size(); i++) { ports.push_back(all_ports[i]->name); all_ports[i]->port_id = i+1; } } RTLIL::Wire *RTLIL::Module::addWire(RTLIL::IdString name, int width) { RTLIL::Wire *wire = new RTLIL::Wire; wire->name = name; wire->width = width; add(wire); return wire; } RTLIL::Wire *RTLIL::Module::addWire(RTLIL::IdString name, const RTLIL::Wire *other) { RTLIL::Wire *wire = addWire(name); wire->width = other->width; wire->start_offset = other->start_offset; wire->port_id = other->port_id; wire->port_input = other->port_input; wire->port_output = other->port_output; wire->upto = other->upto; wire->is_signed = other->is_signed; wire->attributes = other->attributes; return wire; } RTLIL::Cell *RTLIL::Module::addCell(RTLIL::IdString name, RTLIL::IdString type) { RTLIL::Cell *cell = new RTLIL::Cell; cell->name = name; cell->type = type; add(cell); return cell; } RTLIL::Cell *RTLIL::Module::addCell(RTLIL::IdString name, const RTLIL::Cell *other) { RTLIL::Cell *cell = addCell(name, other->type); cell->connections_ = other->connections_; cell->parameters = other->parameters; cell->attributes = other->attributes; return cell; } RTLIL::Memory *RTLIL::Module::addMemory(RTLIL::IdString name, const RTLIL::Memory *other) { RTLIL::Memory *mem = new RTLIL::Memory; mem->name = name; mem->width = other->width; mem->start_offset = other->start_offset; mem->size = other->size; mem->attributes = other->attributes; memories[mem->name] = mem; return mem; } RTLIL::Process *RTLIL::Module::addProcess(RTLIL::IdString name) { RTLIL::Process *proc = new RTLIL::Process; proc->name = name; add(proc); return proc; } RTLIL::Process *RTLIL::Module::addProcess(RTLIL::IdString name, const RTLIL::Process *other) { RTLIL::Process *proc = other->clone(); proc->name = name; add(proc); return proc; } #define DEF_METHOD(_func, _y_size, _type) \ RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_y, bool is_signed, const std::string &src) { \ RTLIL::Cell *cell = addCell(name, _type); \ cell->parameters[ID::A_SIGNED] = is_signed; \ cell->parameters[ID::A_WIDTH] = sig_a.size(); \ cell->parameters[ID::Y_WIDTH] = sig_y.size(); \ cell->setPort(ID::A, sig_a); \ cell->setPort(ID::Y, sig_y); \ cell->set_src_attribute(src); \ return cell; \ } \ RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, bool is_signed, const std::string &src) { \ RTLIL::SigSpec sig_y = addWire(NEW_ID, _y_size); \ add ## _func(name, sig_a, sig_y, is_signed, src); \ return sig_y; \ } DEF_METHOD(Not, sig_a.size(), ID($not)) DEF_METHOD(Pos, sig_a.size(), ID($pos)) DEF_METHOD(Neg, sig_a.size(), ID($neg)) DEF_METHOD(ReduceAnd, 1, ID($reduce_and)) DEF_METHOD(ReduceOr, 1, ID($reduce_or)) DEF_METHOD(ReduceXor, 1, ID($reduce_xor)) DEF_METHOD(ReduceXnor, 1, ID($reduce_xnor)) DEF_METHOD(ReduceBool, 1, ID($reduce_bool)) DEF_METHOD(LogicNot, 1, ID($logic_not)) #undef DEF_METHOD #define DEF_METHOD(_func, _y_size, _type) \ RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_y, bool /* is_signed */, const std::string &src) { \ RTLIL::Cell *cell = addCell(name, _type); \ cell->parameters[ID::WIDTH] = sig_a.size(); \ cell->setPort(ID::A, sig_a); \ cell->setPort(ID::Y, sig_y); \ cell->set_src_attribute(src); \ return cell; \ } \ RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, bool is_signed, const std::string &src) { \ RTLIL::SigSpec sig_y = addWire(NEW_ID, _y_size); \ add ## _func(name, sig_a, sig_y, is_signed, src); \ return sig_y; \ } DEF_METHOD(Buf, sig_a.size(), ID($buf)) #undef DEF_METHOD #define DEF_METHOD(_func, _y_size, _type) \ RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, const RTLIL::SigSpec &sig_y, bool is_signed, const std::string &src) { \ RTLIL::Cell *cell = addCell(name, _type); \ cell->parameters[ID::A_SIGNED] = is_signed; \ cell->parameters[ID::B_SIGNED] = is_signed; \ cell->parameters[ID::A_WIDTH] = sig_a.size(); \ cell->parameters[ID::B_WIDTH] = sig_b.size(); \ cell->parameters[ID::Y_WIDTH] = sig_y.size(); \ cell->setPort(ID::A, sig_a); \ cell->setPort(ID::B, sig_b); \ cell->setPort(ID::Y, sig_y); \ cell->set_src_attribute(src); \ return cell; \ } \ RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, bool is_signed, const std::string &src) { \ RTLIL::SigSpec sig_y = addWire(NEW_ID, _y_size); \ add ## _func(name, sig_a, sig_b, sig_y, is_signed, src); \ return sig_y; \ } DEF_METHOD(And, max(sig_a.size(), sig_b.size()), ID($and)) DEF_METHOD(Or, max(sig_a.size(), sig_b.size()), ID($or)) DEF_METHOD(Xor, max(sig_a.size(), sig_b.size()), ID($xor)) DEF_METHOD(Xnor, max(sig_a.size(), sig_b.size()), ID($xnor)) DEF_METHOD(Shift, sig_a.size(), ID($shift)) DEF_METHOD(Lt, 1, ID($lt)) DEF_METHOD(Le, 1, ID($le)) DEF_METHOD(Eq, 1, ID($eq)) DEF_METHOD(Ne, 1, ID($ne)) DEF_METHOD(Eqx, 1, ID($eqx)) DEF_METHOD(Nex, 1, ID($nex)) DEF_METHOD(Ge, 1, ID($ge)) DEF_METHOD(Gt, 1, ID($gt)) DEF_METHOD(Add, max(sig_a.size(), sig_b.size()), ID($add)) DEF_METHOD(Sub, max(sig_a.size(), sig_b.size()), ID($sub)) DEF_METHOD(Mul, max(sig_a.size(), sig_b.size()), ID($mul)) DEF_METHOD(Div, max(sig_a.size(), sig_b.size()), ID($div)) DEF_METHOD(Mod, max(sig_a.size(), sig_b.size()), ID($mod)) DEF_METHOD(DivFloor, max(sig_a.size(), sig_b.size()), ID($divfloor)) DEF_METHOD(ModFloor, max(sig_a.size(), sig_b.size()), ID($modfloor)) DEF_METHOD(LogicAnd, 1, ID($logic_and)) DEF_METHOD(LogicOr, 1, ID($logic_or)) #undef DEF_METHOD #define DEF_METHOD(_func, _y_size, _type) \ RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, const RTLIL::SigSpec &sig_y, bool is_signed, const std::string &src) { \ RTLIL::Cell *cell = addCell(name, _type); \ cell->parameters[ID::A_SIGNED] = is_signed; \ cell->parameters[ID::B_SIGNED] = false; \ cell->parameters[ID::A_WIDTH] = sig_a.size(); \ cell->parameters[ID::B_WIDTH] = sig_b.size(); \ cell->parameters[ID::Y_WIDTH] = sig_y.size(); \ cell->setPort(ID::A, sig_a); \ cell->setPort(ID::B, sig_b); \ cell->setPort(ID::Y, sig_y); \ cell->set_src_attribute(src); \ return cell; \ } \ RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, bool is_signed, const std::string &src) { \ RTLIL::SigSpec sig_y = addWire(NEW_ID, _y_size); \ add ## _func(name, sig_a, sig_b, sig_y, is_signed, src); \ return sig_y; \ } DEF_METHOD(Shl, sig_a.size(), ID($shl)) DEF_METHOD(Shr, sig_a.size(), ID($shr)) DEF_METHOD(Sshl, sig_a.size(), ID($sshl)) DEF_METHOD(Sshr, sig_a.size(), ID($sshr)) #undef DEF_METHOD #define DEF_METHOD(_func, _y_size, _type) \ RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, const RTLIL::SigSpec &sig_y, bool is_signed, const std::string &src) { \ RTLIL::Cell *cell = addCell(name, _type); \ cell->parameters[ID::A_SIGNED] = false; \ cell->parameters[ID::B_SIGNED] = is_signed; \ cell->parameters[ID::A_WIDTH] = sig_a.size(); \ cell->parameters[ID::B_WIDTH] = sig_b.size(); \ cell->parameters[ID::Y_WIDTH] = sig_y.size(); \ cell->setPort(ID::A, sig_a); \ cell->setPort(ID::B, sig_b); \ cell->setPort(ID::Y, sig_y); \ cell->set_src_attribute(src); \ return cell; \ } \ RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, bool is_signed, const std::string &src) { \ RTLIL::SigSpec sig_y = addWire(NEW_ID, _y_size); \ add ## _func(name, sig_a, sig_b, sig_y, is_signed, src); \ return sig_y; \ } DEF_METHOD(Shiftx, sig_a.size(), ID($shiftx)) #undef DEF_METHOD #define DEF_METHOD(_func, _type, _pmux) \ RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, const RTLIL::SigSpec &sig_s, const RTLIL::SigSpec &sig_y, const std::string &src) { \ RTLIL::Cell *cell = addCell(name, _type); \ cell->parameters[ID::WIDTH] = sig_a.size(); \ if (_pmux) cell->parameters[ID::S_WIDTH] = sig_s.size(); \ cell->setPort(ID::A, sig_a); \ cell->setPort(ID::B, sig_b); \ cell->setPort(ID::S, sig_s); \ cell->setPort(ID::Y, sig_y); \ cell->set_src_attribute(src); \ return cell; \ } \ RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, const RTLIL::SigSpec &sig_s, const std::string &src) { \ RTLIL::SigSpec sig_y = addWire(NEW_ID, sig_a.size()); \ add ## _func(name, sig_a, sig_b, sig_s, sig_y, src); \ return sig_y; \ } DEF_METHOD(Mux, ID($mux), 0) DEF_METHOD(Bwmux, ID($bwmux), 0) DEF_METHOD(Pmux, ID($pmux), 1) #undef DEF_METHOD #define DEF_METHOD(_func, _type, _demux) \ RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_s, const RTLIL::SigSpec &sig_y, const std::string &src) { \ RTLIL::Cell *cell = addCell(name, _type); \ cell->parameters[ID::WIDTH] = _demux ? sig_a.size() : sig_y.size(); \ cell->parameters[ID::S_WIDTH] = sig_s.size(); \ cell->setPort(ID::A, sig_a); \ cell->setPort(ID::S, sig_s); \ cell->setPort(ID::Y, sig_y); \ cell->set_src_attribute(src); \ return cell; \ } \ RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_s, const std::string &src) { \ RTLIL::SigSpec sig_y = addWire(NEW_ID, _demux ? sig_a.size() << sig_s.size() : sig_a.size() >> sig_s.size()); \ add ## _func(name, sig_a, sig_s, sig_y, src); \ return sig_y; \ } DEF_METHOD(Bmux, ID($bmux), 0) DEF_METHOD(Demux, ID($demux), 1) #undef DEF_METHOD #define DEF_METHOD(_func, _type) \ RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, const RTLIL::SigSpec &sig_y, const std::string &src) { \ RTLIL::Cell *cell = addCell(name, _type); \ cell->parameters[ID::WIDTH] = sig_a.size(); \ cell->setPort(ID::A, sig_a); \ cell->setPort(ID::B, sig_b); \ cell->setPort(ID::Y, sig_y); \ cell->set_src_attribute(src); \ return cell; \ } \ RTLIL::SigSpec RTLIL::Module::_func(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_s, const std::string &src) { \ RTLIL::SigSpec sig_y = addWire(NEW_ID, sig_a.size()); \ add ## _func(name, sig_a, sig_s, sig_y, src); \ return sig_y; \ } DEF_METHOD(Bweqx, ID($bweqx)) #undef DEF_METHOD #define DEF_METHOD_2(_func, _type, _P1, _P2) \ RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, const RTLIL::SigBit &sig1, const RTLIL::SigBit &sig2, const std::string &src) { \ RTLIL::Cell *cell = addCell(name, _type); \ cell->setPort("\\" #_P1, sig1); \ cell->setPort("\\" #_P2, sig2); \ cell->set_src_attribute(src); \ return cell; \ } \ RTLIL::SigBit RTLIL::Module::_func(RTLIL::IdString name, const RTLIL::SigBit &sig1, const std::string &src) { \ RTLIL::SigBit sig2 = addWire(NEW_ID); \ add ## _func(name, sig1, sig2, src); \ return sig2; \ } #define DEF_METHOD_3(_func, _type, _P1, _P2, _P3) \ RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, const RTLIL::SigBit &sig1, const RTLIL::SigBit &sig2, const RTLIL::SigBit &sig3, const std::string &src) { \ RTLIL::Cell *cell = addCell(name, _type); \ cell->setPort("\\" #_P1, sig1); \ cell->setPort("\\" #_P2, sig2); \ cell->setPort("\\" #_P3, sig3); \ cell->set_src_attribute(src); \ return cell; \ } \ RTLIL::SigBit RTLIL::Module::_func(RTLIL::IdString name, const RTLIL::SigBit &sig1, const RTLIL::SigBit &sig2, const std::string &src) { \ RTLIL::SigBit sig3 = addWire(NEW_ID); \ add ## _func(name, sig1, sig2, sig3, src); \ return sig3; \ } #define DEF_METHOD_4(_func, _type, _P1, _P2, _P3, _P4) \ RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, const RTLIL::SigBit &sig1, const RTLIL::SigBit &sig2, const RTLIL::SigBit &sig3, const RTLIL::SigBit &sig4, const std::string &src) { \ RTLIL::Cell *cell = addCell(name, _type); \ cell->setPort("\\" #_P1, sig1); \ cell->setPort("\\" #_P2, sig2); \ cell->setPort("\\" #_P3, sig3); \ cell->setPort("\\" #_P4, sig4); \ cell->set_src_attribute(src); \ return cell; \ } \ RTLIL::SigBit RTLIL::Module::_func(RTLIL::IdString name, const RTLIL::SigBit &sig1, const RTLIL::SigBit &sig2, const RTLIL::SigBit &sig3, const std::string &src) { \ RTLIL::SigBit sig4 = addWire(NEW_ID); \ add ## _func(name, sig1, sig2, sig3, sig4, src); \ return sig4; \ } #define DEF_METHOD_5(_func, _type, _P1, _P2, _P3, _P4, _P5) \ RTLIL::Cell* RTLIL::Module::add ## _func(RTLIL::IdString name, const RTLIL::SigBit &sig1, const RTLIL::SigBit &sig2, const RTLIL::SigBit &sig3, const RTLIL::SigBit &sig4, const RTLIL::SigBit &sig5, const std::string &src) { \ RTLIL::Cell *cell = addCell(name, _type); \ cell->setPort("\\" #_P1, sig1); \ cell->setPort("\\" #_P2, sig2); \ cell->setPort("\\" #_P3, sig3); \ cell->setPort("\\" #_P4, sig4); \ cell->setPort("\\" #_P5, sig5); \ cell->set_src_attribute(src); \ return cell; \ } \ RTLIL::SigBit RTLIL::Module::_func(RTLIL::IdString name, const RTLIL::SigBit &sig1, const RTLIL::SigBit &sig2, const RTLIL::SigBit &sig3, const RTLIL::SigBit &sig4, const std::string &src) { \ RTLIL::SigBit sig5 = addWire(NEW_ID); \ add ## _func(name, sig1, sig2, sig3, sig4, sig5, src); \ return sig5; \ } DEF_METHOD_2(BufGate, ID($_BUF_), A, Y) DEF_METHOD_2(NotGate, ID($_NOT_), A, Y) DEF_METHOD_3(AndGate, ID($_AND_), A, B, Y) DEF_METHOD_3(NandGate, ID($_NAND_), A, B, Y) DEF_METHOD_3(OrGate, ID($_OR_), A, B, Y) DEF_METHOD_3(NorGate, ID($_NOR_), A, B, Y) DEF_METHOD_3(XorGate, ID($_XOR_), A, B, Y) DEF_METHOD_3(XnorGate, ID($_XNOR_), A, B, Y) DEF_METHOD_3(AndnotGate, ID($_ANDNOT_), A, B, Y) DEF_METHOD_3(OrnotGate, ID($_ORNOT_), A, B, Y) DEF_METHOD_4(MuxGate, ID($_MUX_), A, B, S, Y) DEF_METHOD_4(NmuxGate, ID($_NMUX_), A, B, S, Y) DEF_METHOD_4(Aoi3Gate, ID($_AOI3_), A, B, C, Y) DEF_METHOD_4(Oai3Gate, ID($_OAI3_), A, B, C, Y) DEF_METHOD_5(Aoi4Gate, ID($_AOI4_), A, B, C, D, Y) DEF_METHOD_5(Oai4Gate, ID($_OAI4_), A, B, C, D, Y) #undef DEF_METHOD_2 #undef DEF_METHOD_3 #undef DEF_METHOD_4 #undef DEF_METHOD_5 RTLIL::Cell* RTLIL::Module::addPow(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, const RTLIL::SigSpec &sig_y, bool a_signed, bool b_signed, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($pow)); cell->parameters[ID::A_SIGNED] = a_signed; cell->parameters[ID::B_SIGNED] = b_signed; cell->parameters[ID::A_WIDTH] = sig_a.size(); cell->parameters[ID::B_WIDTH] = sig_b.size(); cell->parameters[ID::Y_WIDTH] = sig_y.size(); cell->setPort(ID::A, sig_a); cell->setPort(ID::B, sig_b); cell->setPort(ID::Y, sig_y); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addFa(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, const RTLIL::SigSpec &sig_c, const RTLIL::SigSpec &sig_x, const RTLIL::SigSpec &sig_y, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($fa)); cell->parameters[ID::WIDTH] = sig_a.size(); cell->setPort(ID::A, sig_a); cell->setPort(ID::B, sig_b); cell->setPort(ID::C, sig_c); cell->setPort(ID::X, sig_x); cell->setPort(ID::Y, sig_y); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addSlice(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_y, RTLIL::Const offset, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($slice)); cell->parameters[ID::A_WIDTH] = sig_a.size(); cell->parameters[ID::Y_WIDTH] = sig_y.size(); cell->parameters[ID::OFFSET] = offset; cell->setPort(ID::A, sig_a); cell->setPort(ID::Y, sig_y); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addConcat(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, const RTLIL::SigSpec &sig_y, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($concat)); cell->parameters[ID::A_WIDTH] = sig_a.size(); cell->parameters[ID::B_WIDTH] = sig_b.size(); cell->setPort(ID::A, sig_a); cell->setPort(ID::B, sig_b); cell->setPort(ID::Y, sig_y); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addLut(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_y, RTLIL::Const lut, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($lut)); cell->parameters[ID::LUT] = lut; cell->parameters[ID::WIDTH] = sig_a.size(); cell->setPort(ID::A, sig_a); cell->setPort(ID::Y, sig_y); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addTribuf(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_y, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($tribuf)); cell->parameters[ID::WIDTH] = sig_a.size(); cell->setPort(ID::A, sig_a); cell->setPort(ID::EN, sig_en); cell->setPort(ID::Y, sig_y); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addAssert(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_en, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($assert)); cell->setPort(ID::A, sig_a); cell->setPort(ID::EN, sig_en); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addAssume(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_en, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($assume)); cell->setPort(ID::A, sig_a); cell->setPort(ID::EN, sig_en); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addLive(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_en, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($live)); cell->setPort(ID::A, sig_a); cell->setPort(ID::EN, sig_en); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addFair(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_en, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($fair)); cell->setPort(ID::A, sig_a); cell->setPort(ID::EN, sig_en); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addCover(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_en, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($cover)); cell->setPort(ID::A, sig_a); cell->setPort(ID::EN, sig_en); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addEquiv(RTLIL::IdString name, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_b, const RTLIL::SigSpec &sig_y, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($equiv)); cell->setPort(ID::A, sig_a); cell->setPort(ID::B, sig_b); cell->setPort(ID::Y, sig_y); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addSr(RTLIL::IdString name, const RTLIL::SigSpec &sig_set, const RTLIL::SigSpec &sig_clr, const RTLIL::SigSpec &sig_q, bool set_polarity, bool clr_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($sr)); cell->parameters[ID::SET_POLARITY] = set_polarity; cell->parameters[ID::CLR_POLARITY] = clr_polarity; cell->parameters[ID::WIDTH] = sig_q.size(); cell->setPort(ID::SET, sig_set); cell->setPort(ID::CLR, sig_clr); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addFf(RTLIL::IdString name, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($ff)); cell->parameters[ID::WIDTH] = sig_q.size(); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addDff(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, bool clk_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($dff)); cell->parameters[ID::CLK_POLARITY] = clk_polarity; cell->parameters[ID::WIDTH] = sig_q.size(); cell->setPort(ID::CLK, sig_clk); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addDffe(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, bool clk_polarity, bool en_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($dffe)); cell->parameters[ID::CLK_POLARITY] = clk_polarity; cell->parameters[ID::EN_POLARITY] = en_polarity; cell->parameters[ID::WIDTH] = sig_q.size(); cell->setPort(ID::CLK, sig_clk); cell->setPort(ID::EN, sig_en); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addDffsr(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_set, const RTLIL::SigSpec &sig_clr, RTLIL::SigSpec sig_d, const RTLIL::SigSpec &sig_q, bool clk_polarity, bool set_polarity, bool clr_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($dffsr)); cell->parameters[ID::CLK_POLARITY] = clk_polarity; cell->parameters[ID::SET_POLARITY] = set_polarity; cell->parameters[ID::CLR_POLARITY] = clr_polarity; cell->parameters[ID::WIDTH] = sig_q.size(); cell->setPort(ID::CLK, sig_clk); cell->setPort(ID::SET, sig_set); cell->setPort(ID::CLR, sig_clr); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addDffsre(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_set, const RTLIL::SigSpec &sig_clr, RTLIL::SigSpec sig_d, const RTLIL::SigSpec &sig_q, bool clk_polarity, bool en_polarity, bool set_polarity, bool clr_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($dffsre)); cell->parameters[ID::CLK_POLARITY] = clk_polarity; cell->parameters[ID::EN_POLARITY] = en_polarity; cell->parameters[ID::SET_POLARITY] = set_polarity; cell->parameters[ID::CLR_POLARITY] = clr_polarity; cell->parameters[ID::WIDTH] = sig_q.size(); cell->setPort(ID::CLK, sig_clk); cell->setPort(ID::EN, sig_en); cell->setPort(ID::SET, sig_set); cell->setPort(ID::CLR, sig_clr); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addAdff(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_arst, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, RTLIL::Const arst_value, bool clk_polarity, bool arst_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($adff)); cell->parameters[ID::CLK_POLARITY] = clk_polarity; cell->parameters[ID::ARST_POLARITY] = arst_polarity; cell->parameters[ID::ARST_VALUE] = arst_value; cell->parameters[ID::WIDTH] = sig_q.size(); cell->setPort(ID::CLK, sig_clk); cell->setPort(ID::ARST, sig_arst); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addAdffe(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_arst, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, RTLIL::Const arst_value, bool clk_polarity, bool en_polarity, bool arst_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($adffe)); cell->parameters[ID::CLK_POLARITY] = clk_polarity; cell->parameters[ID::EN_POLARITY] = en_polarity; cell->parameters[ID::ARST_POLARITY] = arst_polarity; cell->parameters[ID::ARST_VALUE] = arst_value; cell->parameters[ID::WIDTH] = sig_q.size(); cell->setPort(ID::CLK, sig_clk); cell->setPort(ID::EN, sig_en); cell->setPort(ID::ARST, sig_arst); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addAldff(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_aload, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, const RTLIL::SigSpec &sig_ad, bool clk_polarity, bool aload_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($aldff)); cell->parameters[ID::CLK_POLARITY] = clk_polarity; cell->parameters[ID::ALOAD_POLARITY] = aload_polarity; cell->parameters[ID::WIDTH] = sig_q.size(); cell->setPort(ID::CLK, sig_clk); cell->setPort(ID::ALOAD, sig_aload); cell->setPort(ID::D, sig_d); cell->setPort(ID::AD, sig_ad); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addAldffe(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_aload, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, const RTLIL::SigSpec &sig_ad, bool clk_polarity, bool en_polarity, bool aload_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($aldffe)); cell->parameters[ID::CLK_POLARITY] = clk_polarity; cell->parameters[ID::EN_POLARITY] = en_polarity; cell->parameters[ID::ALOAD_POLARITY] = aload_polarity; cell->parameters[ID::WIDTH] = sig_q.size(); cell->setPort(ID::CLK, sig_clk); cell->setPort(ID::EN, sig_en); cell->setPort(ID::ALOAD, sig_aload); cell->setPort(ID::D, sig_d); cell->setPort(ID::AD, sig_ad); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addSdff(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_srst, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, RTLIL::Const srst_value, bool clk_polarity, bool srst_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($sdff)); cell->parameters[ID::CLK_POLARITY] = clk_polarity; cell->parameters[ID::SRST_POLARITY] = srst_polarity; cell->parameters[ID::SRST_VALUE] = srst_value; cell->parameters[ID::WIDTH] = sig_q.size(); cell->setPort(ID::CLK, sig_clk); cell->setPort(ID::SRST, sig_srst); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addSdffe(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_srst, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, RTLIL::Const srst_value, bool clk_polarity, bool en_polarity, bool srst_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($sdffe)); cell->parameters[ID::CLK_POLARITY] = clk_polarity; cell->parameters[ID::EN_POLARITY] = en_polarity; cell->parameters[ID::SRST_POLARITY] = srst_polarity; cell->parameters[ID::SRST_VALUE] = srst_value; cell->parameters[ID::WIDTH] = sig_q.size(); cell->setPort(ID::CLK, sig_clk); cell->setPort(ID::EN, sig_en); cell->setPort(ID::SRST, sig_srst); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addSdffce(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_srst, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, RTLIL::Const srst_value, bool clk_polarity, bool en_polarity, bool srst_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($sdffce)); cell->parameters[ID::CLK_POLARITY] = clk_polarity; cell->parameters[ID::EN_POLARITY] = en_polarity; cell->parameters[ID::SRST_POLARITY] = srst_polarity; cell->parameters[ID::SRST_VALUE] = srst_value; cell->parameters[ID::WIDTH] = sig_q.size(); cell->setPort(ID::CLK, sig_clk); cell->setPort(ID::EN, sig_en); cell->setPort(ID::SRST, sig_srst); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addDlatch(RTLIL::IdString name, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, bool en_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($dlatch)); cell->parameters[ID::EN_POLARITY] = en_polarity; cell->parameters[ID::WIDTH] = sig_q.size(); cell->setPort(ID::EN, sig_en); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addAdlatch(RTLIL::IdString name, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_arst, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, RTLIL::Const arst_value, bool en_polarity, bool arst_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($adlatch)); cell->parameters[ID::EN_POLARITY] = en_polarity; cell->parameters[ID::ARST_POLARITY] = arst_polarity; cell->parameters[ID::ARST_VALUE] = arst_value; cell->parameters[ID::WIDTH] = sig_q.size(); cell->setPort(ID::EN, sig_en); cell->setPort(ID::ARST, sig_arst); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addDlatchsr(RTLIL::IdString name, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_set, const RTLIL::SigSpec &sig_clr, RTLIL::SigSpec sig_d, const RTLIL::SigSpec &sig_q, bool en_polarity, bool set_polarity, bool clr_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($dlatchsr)); cell->parameters[ID::EN_POLARITY] = en_polarity; cell->parameters[ID::SET_POLARITY] = set_polarity; cell->parameters[ID::CLR_POLARITY] = clr_polarity; cell->parameters[ID::WIDTH] = sig_q.size(); cell->setPort(ID::EN, sig_en); cell->setPort(ID::SET, sig_set); cell->setPort(ID::CLR, sig_clr); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addSrGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_set, const RTLIL::SigSpec &sig_clr, const RTLIL::SigSpec &sig_q, bool set_polarity, bool clr_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, stringf("$_SR_%c%c_", set_polarity ? 'P' : 'N', clr_polarity ? 'P' : 'N')); cell->setPort(ID::S, sig_set); cell->setPort(ID::R, sig_clr); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addFfGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($_FF_)); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addDffGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, bool clk_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, stringf("$_DFF_%c_", clk_polarity ? 'P' : 'N')); cell->setPort(ID::C, sig_clk); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addDffeGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, bool clk_polarity, bool en_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, stringf("$_DFFE_%c%c_", clk_polarity ? 'P' : 'N', en_polarity ? 'P' : 'N')); cell->setPort(ID::C, sig_clk); cell->setPort(ID::E, sig_en); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addDffsrGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_set, const RTLIL::SigSpec &sig_clr, RTLIL::SigSpec sig_d, const RTLIL::SigSpec &sig_q, bool clk_polarity, bool set_polarity, bool clr_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, stringf("$_DFFSR_%c%c%c_", clk_polarity ? 'P' : 'N', set_polarity ? 'P' : 'N', clr_polarity ? 'P' : 'N')); cell->setPort(ID::C, sig_clk); cell->setPort(ID::S, sig_set); cell->setPort(ID::R, sig_clr); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addDffsreGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_set, const RTLIL::SigSpec &sig_clr, RTLIL::SigSpec sig_d, const RTLIL::SigSpec &sig_q, bool clk_polarity, bool en_polarity, bool set_polarity, bool clr_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, stringf("$_DFFSRE_%c%c%c%c_", clk_polarity ? 'P' : 'N', set_polarity ? 'P' : 'N', clr_polarity ? 'P' : 'N', en_polarity ? 'P' : 'N')); cell->setPort(ID::C, sig_clk); cell->setPort(ID::S, sig_set); cell->setPort(ID::R, sig_clr); cell->setPort(ID::E, sig_en); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addAdffGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_arst, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, bool arst_value, bool clk_polarity, bool arst_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, stringf("$_DFF_%c%c%c_", clk_polarity ? 'P' : 'N', arst_polarity ? 'P' : 'N', arst_value ? '1' : '0')); cell->setPort(ID::C, sig_clk); cell->setPort(ID::R, sig_arst); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addAdffeGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_arst, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, bool arst_value, bool clk_polarity, bool en_polarity, bool arst_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, stringf("$_DFFE_%c%c%c%c_", clk_polarity ? 'P' : 'N', arst_polarity ? 'P' : 'N', arst_value ? '1' : '0', en_polarity ? 'P' : 'N')); cell->setPort(ID::C, sig_clk); cell->setPort(ID::R, sig_arst); cell->setPort(ID::E, sig_en); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addAldffGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_aload, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, const RTLIL::SigSpec &sig_ad, bool clk_polarity, bool aload_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, stringf("$_ALDFF_%c%c_", clk_polarity ? 'P' : 'N', aload_polarity ? 'P' : 'N')); cell->setPort(ID::C, sig_clk); cell->setPort(ID::L, sig_aload); cell->setPort(ID::D, sig_d); cell->setPort(ID::AD, sig_ad); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addAldffeGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_aload, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, const RTLIL::SigSpec &sig_ad, bool clk_polarity, bool en_polarity, bool aload_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, stringf("$_ALDFFE_%c%c%c_", clk_polarity ? 'P' : 'N', aload_polarity ? 'P' : 'N', en_polarity ? 'P' : 'N')); cell->setPort(ID::C, sig_clk); cell->setPort(ID::L, sig_aload); cell->setPort(ID::E, sig_en); cell->setPort(ID::D, sig_d); cell->setPort(ID::AD, sig_ad); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addSdffGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_srst, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, bool srst_value, bool clk_polarity, bool srst_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, stringf("$_SDFF_%c%c%c_", clk_polarity ? 'P' : 'N', srst_polarity ? 'P' : 'N', srst_value ? '1' : '0')); cell->setPort(ID::C, sig_clk); cell->setPort(ID::R, sig_srst); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addSdffeGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_srst, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, bool srst_value, bool clk_polarity, bool en_polarity, bool srst_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, stringf("$_SDFFE_%c%c%c%c_", clk_polarity ? 'P' : 'N', srst_polarity ? 'P' : 'N', srst_value ? '1' : '0', en_polarity ? 'P' : 'N')); cell->setPort(ID::C, sig_clk); cell->setPort(ID::R, sig_srst); cell->setPort(ID::E, sig_en); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addSdffceGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_clk, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_srst, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, bool srst_value, bool clk_polarity, bool en_polarity, bool srst_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, stringf("$_SDFFCE_%c%c%c%c_", clk_polarity ? 'P' : 'N', srst_polarity ? 'P' : 'N', srst_value ? '1' : '0', en_polarity ? 'P' : 'N')); cell->setPort(ID::C, sig_clk); cell->setPort(ID::R, sig_srst); cell->setPort(ID::E, sig_en); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addDlatchGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, bool en_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, stringf("$_DLATCH_%c_", en_polarity ? 'P' : 'N')); cell->setPort(ID::E, sig_en); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addAdlatchGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_arst, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, bool arst_value, bool en_polarity, bool arst_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, stringf("$_DLATCH_%c%c%c_", en_polarity ? 'P' : 'N', arst_polarity ? 'P' : 'N', arst_value ? '1' : '0')); cell->setPort(ID::E, sig_en); cell->setPort(ID::R, sig_arst); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addDlatchsrGate(RTLIL::IdString name, const RTLIL::SigSpec &sig_en, const RTLIL::SigSpec &sig_set, const RTLIL::SigSpec &sig_clr, RTLIL::SigSpec sig_d, const RTLIL::SigSpec &sig_q, bool en_polarity, bool set_polarity, bool clr_polarity, const std::string &src) { RTLIL::Cell *cell = addCell(name, stringf("$_DLATCHSR_%c%c%c_", en_polarity ? 'P' : 'N', set_polarity ? 'P' : 'N', clr_polarity ? 'P' : 'N')); cell->setPort(ID::E, sig_en); cell->setPort(ID::S, sig_set); cell->setPort(ID::R, sig_clr); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::Cell* RTLIL::Module::addAnyinit(RTLIL::IdString name, const RTLIL::SigSpec &sig_d, const RTLIL::SigSpec &sig_q, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($anyinit)); cell->parameters[ID::WIDTH] = sig_q.size(); cell->setPort(ID::D, sig_d); cell->setPort(ID::Q, sig_q); cell->set_src_attribute(src); return cell; } RTLIL::SigSpec RTLIL::Module::Anyconst(RTLIL::IdString name, int width, const std::string &src) { RTLIL::SigSpec sig = addWire(NEW_ID, width); Cell *cell = addCell(name, ID($anyconst)); cell->setParam(ID::WIDTH, width); cell->setPort(ID::Y, sig); cell->set_src_attribute(src); return sig; } RTLIL::SigSpec RTLIL::Module::Anyseq(RTLIL::IdString name, int width, const std::string &src) { RTLIL::SigSpec sig = addWire(NEW_ID, width); Cell *cell = addCell(name, ID($anyseq)); cell->setParam(ID::WIDTH, width); cell->setPort(ID::Y, sig); cell->set_src_attribute(src); return sig; } RTLIL::SigSpec RTLIL::Module::Allconst(RTLIL::IdString name, int width, const std::string &src) { RTLIL::SigSpec sig = addWire(NEW_ID, width); Cell *cell = addCell(name, ID($allconst)); cell->setParam(ID::WIDTH, width); cell->setPort(ID::Y, sig); cell->set_src_attribute(src); return sig; } RTLIL::SigSpec RTLIL::Module::Allseq(RTLIL::IdString name, int width, const std::string &src) { RTLIL::SigSpec sig = addWire(NEW_ID, width); Cell *cell = addCell(name, ID($allseq)); cell->setParam(ID::WIDTH, width); cell->setPort(ID::Y, sig); cell->set_src_attribute(src); return sig; } RTLIL::SigSpec RTLIL::Module::Initstate(RTLIL::IdString name, const std::string &src) { RTLIL::SigSpec sig = addWire(NEW_ID); Cell *cell = addCell(name, ID($initstate)); cell->setPort(ID::Y, sig); cell->set_src_attribute(src); return sig; } RTLIL::SigSpec RTLIL::Module::SetTag(RTLIL::IdString name, const std::string &tag, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_s, const RTLIL::SigSpec &sig_c, const std::string &src) { RTLIL::SigSpec sig = addWire(NEW_ID, sig_a.size()); Cell *cell = addCell(name, ID($set_tag)); cell->parameters[ID::WIDTH] = sig_a.size(); cell->parameters[ID::TAG] = tag; cell->setPort(ID::A, sig_a); cell->setPort(ID::SET, sig_s); cell->setPort(ID::CLR, sig_c); cell->setPort(ID::Y, sig); cell->set_src_attribute(src); return sig; } RTLIL::Cell* RTLIL::Module::addSetTag(RTLIL::IdString name, const std::string &tag, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_s, const RTLIL::SigSpec &sig_c, const RTLIL::SigSpec &sig_y, const std::string &src) { Cell *cell = addCell(name, ID($set_tag)); cell->parameters[ID::WIDTH] = sig_a.size(); cell->parameters[ID::TAG] = tag; cell->setPort(ID::A, sig_a); cell->setPort(ID::SET, sig_s); cell->setPort(ID::CLR, sig_c); cell->setPort(ID::Y, sig_y); cell->set_src_attribute(src); return cell; } RTLIL::SigSpec RTLIL::Module::GetTag(RTLIL::IdString name, const std::string &tag, const RTLIL::SigSpec &sig_a, const std::string &src) { RTLIL::SigSpec sig = addWire(NEW_ID, sig_a.size()); Cell *cell = addCell(name, ID($get_tag)); cell->parameters[ID::WIDTH] = sig_a.size(); cell->parameters[ID::TAG] = tag; cell->setPort(ID::A, sig_a); cell->setPort(ID::Y, sig); cell->set_src_attribute(src); return sig; } RTLIL::Cell* RTLIL::Module::addOverwriteTag(RTLIL::IdString name, const std::string &tag, const RTLIL::SigSpec &sig_a, const RTLIL::SigSpec &sig_s, const RTLIL::SigSpec &sig_c, const std::string &src) { RTLIL::Cell *cell = addCell(name, ID($overwrite_tag)); cell->parameters[ID::WIDTH] = sig_a.size(); cell->parameters[ID::TAG] = tag; cell->setPort(ID::A, sig_a); cell->setPort(ID::SET, sig_s); cell->setPort(ID::CLR, sig_c); cell->set_src_attribute(src); return cell; } RTLIL::SigSpec RTLIL::Module::OriginalTag(RTLIL::IdString name, const std::string &tag, const RTLIL::SigSpec &sig_a, const std::string &src) { RTLIL::SigSpec sig = addWire(NEW_ID, sig_a.size()); Cell *cell = addCell(name, ID($original_tag)); cell->parameters[ID::WIDTH] = sig_a.size(); cell->parameters[ID::TAG] = tag; cell->setPort(ID::A, sig_a); cell->setPort(ID::Y, sig); cell->set_src_attribute(src); return sig; } RTLIL::SigSpec RTLIL::Module::FutureFF(RTLIL::IdString name, const RTLIL::SigSpec &sig_e, const std::string &src) { RTLIL::SigSpec sig = addWire(NEW_ID, sig_e.size()); Cell *cell = addCell(name, ID($future_ff)); cell->parameters[ID::WIDTH] = sig_e.size(); cell->setPort(ID::A, sig_e); cell->setPort(ID::Y, sig); cell->set_src_attribute(src); return sig; } RTLIL::Wire::Wire() { static unsigned int hashidx_count = 123456789; hashidx_count = mkhash_xorshift(hashidx_count); hashidx_ = hashidx_count; module = nullptr; width = 1; start_offset = 0; port_id = 0; port_input = false; port_output = false; upto = false; is_signed = false; #ifdef WITH_PYTHON RTLIL::Wire::get_all_wires()->insert(std::pair(hashidx_, this)); #endif } RTLIL::Wire::~Wire() { #ifdef WITH_PYTHON RTLIL::Wire::get_all_wires()->erase(hashidx_); #endif } #ifdef WITH_PYTHON static std::map all_wires; std::map *RTLIL::Wire::get_all_wires(void) { return &all_wires; } #endif RTLIL::Memory::Memory() { static unsigned int hashidx_count = 123456789; hashidx_count = mkhash_xorshift(hashidx_count); hashidx_ = hashidx_count; width = 1; start_offset = 0; size = 0; #ifdef WITH_PYTHON RTLIL::Memory::get_all_memorys()->insert(std::pair(hashidx_, this)); #endif } RTLIL::Process::Process() : module(nullptr) { static unsigned int hashidx_count = 123456789; hashidx_count = mkhash_xorshift(hashidx_count); hashidx_ = hashidx_count; } RTLIL::Cell::Cell() : module(nullptr) { static unsigned int hashidx_count = 123456789; hashidx_count = mkhash_xorshift(hashidx_count); hashidx_ = hashidx_count; // log("#memtrace# %p\n", this); memhasher(); #ifdef WITH_PYTHON RTLIL::Cell::get_all_cells()->insert(std::pair(hashidx_, this)); #endif } RTLIL::Cell::~Cell() { #ifdef WITH_PYTHON RTLIL::Cell::get_all_cells()->erase(hashidx_); #endif } #ifdef WITH_PYTHON static std::map all_cells; std::map *RTLIL::Cell::get_all_cells(void) { return &all_cells; } #endif bool RTLIL::Cell::hasPort(const RTLIL::IdString& portname) const { return connections_.count(portname) != 0; } void RTLIL::Cell::unsetPort(const RTLIL::IdString& portname) { RTLIL::SigSpec signal; auto conn_it = connections_.find(portname); if (conn_it != connections_.end()) { for (auto mon : module->monitors) mon->notify_connect(this, conn_it->first, conn_it->second, signal); if (module->design) for (auto mon : module->design->monitors) mon->notify_connect(this, conn_it->first, conn_it->second, signal); if (yosys_xtrace) { log("#X# Unconnect %s.%s.%s\n", log_id(this->module), log_id(this), log_id(portname)); log_backtrace("-X- ", yosys_xtrace-1); } connections_.erase(conn_it); } } void RTLIL::Design::bufNormalize(bool enable) { if (!enable) { if (!flagBufferedNormalized) return; for (auto module : modules()) { module->bufNormQueue.clear(); for (auto wire : module->wires()) { wire->driverCell_ = nullptr; wire->driverPort_ = IdString(); } } flagBufferedNormalized = false; return; } if (!flagBufferedNormalized) { for (auto module : modules()) { for (auto cell : module->cells()) for (auto &conn : cell->connections()) { if (!cell->output(conn.first) || GetSize(conn.second) == 0) continue; if (conn.second.is_wire()) { Wire *wire = conn.second.as_wire(); log_assert(wire->driverCell_ == nullptr); wire->driverCell_ = cell; wire->driverPort_ = conn.first; } else { pair key(cell, conn.first); module->bufNormQueue.insert(key); } } } flagBufferedNormalized = true; } for (auto module : modules()) module->bufNormalize(); } void RTLIL::Module::bufNormalize() { if (!design->flagBufferedNormalized) return; while (GetSize(bufNormQueue) || !connections_.empty()) { pool> queue; bufNormQueue.swap(queue); pool outWires; for (auto &conn : connections()) for (auto &chunk : conn.first.chunks()) if (chunk.wire) outWires.insert(chunk.wire); SigMap sigmap(this); new_connections({}); for (auto &key : queue) { Cell *cell = key.first; const IdString &portname = key.second; const SigSpec &sig = cell->getPort(portname); if (GetSize(sig) == 0) continue; if (sig.is_wire()) { Wire *wire = sig.as_wire(); if (wire->driverCell_) { log_error("Conflict between %s %s in module %s\n", log_id(cell), log_id(wire->driverCell_), log_id(this)); } log_assert(wire->driverCell_ == nullptr); wire->driverCell_ = cell; wire->driverPort_ = portname; continue; } for (auto &chunk : sig.chunks()) if (chunk.wire) outWires.insert(chunk.wire); Wire *wire = addWire(NEW_ID, GetSize(sig)); sigmap.add(sig, wire); cell->setPort(portname, wire); // FIXME: Move init attributes from old 'sig' to new 'wire' } for (auto wire : outWires) { SigSpec outsig = wire, insig = sigmap(wire); for (int i = 0; i < GetSize(wire); i++) if (insig[i] == outsig[i]) insig[i] = State::Sx; addBuf(NEW_ID, insig, outsig); } } } void RTLIL::Cell::setPort(const RTLIL::IdString& portname, RTLIL::SigSpec signal) { auto r = connections_.insert(portname); auto conn_it = r.first; if (!r.second && conn_it->second == signal) return; for (auto mon : module->monitors) mon->notify_connect(this, conn_it->first, conn_it->second, signal); if (module->design) for (auto mon : module->design->monitors) mon->notify_connect(this, conn_it->first, conn_it->second, signal); if (yosys_xtrace) { log("#X# Connect %s.%s.%s = %s (%d)\n", log_id(this->module), log_id(this), log_id(portname), log_signal(signal), GetSize(signal)); log_backtrace("-X- ", yosys_xtrace-1); } while (module->design && module->design->flagBufferedNormalized && output(portname)) { pair key(this, portname); if (conn_it->second.is_wire()) { Wire *w = conn_it->second.as_wire(); if (w->driverCell_ == this && w->driverPort_ == portname) { w->driverCell_ = nullptr; w->driverPort_ = IdString(); } } if (GetSize(signal) == 0) { module->bufNormQueue.erase(key); break; } if (!signal.is_wire()) { module->bufNormQueue.insert(key); break; } Wire *w = signal.as_wire(); if (w->driverCell_ != nullptr) { pair other_key(w->driverCell_, w->driverPort_); module->bufNormQueue.insert(other_key); } w->driverCell_ = this; w->driverPort_ = portname; module->bufNormQueue.erase(key); break; } conn_it->second = std::move(signal); } const RTLIL::SigSpec &RTLIL::Cell::getPort(const RTLIL::IdString& portname) const { return connections_.at(portname); } const dict &RTLIL::Cell::connections() const { return connections_; } bool RTLIL::Cell::known() const { if (yosys_celltypes.cell_known(type)) return true; if (module && module->design && module->design->module(type)) return true; return false; } bool RTLIL::Cell::input(const RTLIL::IdString& portname) const { if (yosys_celltypes.cell_known(type)) return yosys_celltypes.cell_input(type, portname); if (module && module->design) { RTLIL::Module *m = module->design->module(type); RTLIL::Wire *w = m ? m->wire(portname) : nullptr; return w && w->port_input; } return false; } bool RTLIL::Cell::output(const RTLIL::IdString& portname) const { if (yosys_celltypes.cell_known(type)) return yosys_celltypes.cell_output(type, portname); if (module && module->design) { RTLIL::Module *m = module->design->module(type); RTLIL::Wire *w = m ? m->wire(portname) : nullptr; return w && w->port_output; } return false; } bool RTLIL::Cell::hasParam(const RTLIL::IdString& paramname) const { return parameters.count(paramname) != 0; } void RTLIL::Cell::unsetParam(const RTLIL::IdString& paramname) { parameters.erase(paramname); } void RTLIL::Cell::setParam(const RTLIL::IdString& paramname, RTLIL::Const value) { parameters[paramname] = std::move(value); } const RTLIL::Const &RTLIL::Cell::getParam(const RTLIL::IdString& paramname) const { const auto &it = parameters.find(paramname); if (it != parameters.end()) return it->second; if (module && module->design) { RTLIL::Module *m = module->design->module(type); if (m) return m->parameter_default_values.at(paramname); } throw std::out_of_range("Cell::getParam()"); } void RTLIL::Cell::sort() { connections_.sort(sort_by_id_str()); parameters.sort(sort_by_id_str()); attributes.sort(sort_by_id_str()); } void RTLIL::Cell::check() { #ifndef NDEBUG InternalCellChecker checker(NULL, this); checker.check(); #endif } void RTLIL::Cell::fixup_parameters(bool set_a_signed, bool set_b_signed) { if (!type.begins_with("$") || type.begins_with("$_") || type.begins_with("$paramod") || type.begins_with("$fmcombine") || type.begins_with("$verific$") || type.begins_with("$array:") || type.begins_with("$extern:")) return; if (type == ID($buf) || type == ID($mux) || type == ID($pmux) || type == ID($bmux)) { parameters[ID::WIDTH] = GetSize(connections_[ID::Y]); if (type != ID($buf) && type != ID($mux)) parameters[ID::S_WIDTH] = GetSize(connections_[ID::S]); check(); return; } if (type == ID($demux)) { parameters[ID::WIDTH] = GetSize(connections_[ID::A]); parameters[ID::S_WIDTH] = GetSize(connections_[ID::S]); check(); return; } if (type == ID($lut) || type == ID($sop)) { parameters[ID::WIDTH] = GetSize(connections_[ID::A]); return; } if (type == ID($fa)) { parameters[ID::WIDTH] = GetSize(connections_[ID::Y]); return; } if (type == ID($lcu)) { parameters[ID::WIDTH] = GetSize(connections_[ID::CO]); return; } bool signedness_ab = !type.in(ID($slice), ID($concat), ID($macc)); if (connections_.count(ID::A)) { if (signedness_ab) { if (set_a_signed) parameters[ID::A_SIGNED] = true; else if (parameters.count(ID::A_SIGNED) == 0) parameters[ID::A_SIGNED] = false; } parameters[ID::A_WIDTH] = GetSize(connections_[ID::A]); } if (connections_.count(ID::B)) { if (signedness_ab) { if (set_b_signed) parameters[ID::B_SIGNED] = true; else if (parameters.count(ID::B_SIGNED) == 0) parameters[ID::B_SIGNED] = false; } parameters[ID::B_WIDTH] = GetSize(connections_[ID::B]); } if (connections_.count(ID::Y)) parameters[ID::Y_WIDTH] = GetSize(connections_[ID::Y]); if (connections_.count(ID::Q)) parameters[ID::WIDTH] = GetSize(connections_[ID::Q]); check(); } bool RTLIL::Cell::has_memid() const { return type.in(ID($memwr), ID($memwr_v2), ID($memrd), ID($memrd_v2), ID($meminit), ID($meminit_v2)); } bool RTLIL::Cell::is_mem_cell() const { return type.in(ID($mem), ID($mem_v2)) || has_memid(); } RTLIL::SigChunk::SigChunk(const RTLIL::SigBit &bit) { wire = bit.wire; offset = 0; if (wire == NULL) data = {bit.data}; else offset = bit.offset; width = 1; } RTLIL::SigChunk RTLIL::SigChunk::extract(int offset, int length) const { log_assert(offset >= 0); log_assert(length >= 0); log_assert(offset + length <= width); RTLIL::SigChunk ret; if (wire) { ret.wire = wire; ret.offset = this->offset + offset; ret.width = length; } else { for (int i = 0; i < length; i++) ret.data.push_back(data[offset+i]); ret.width = length; } return ret; } RTLIL::SigBit RTLIL::SigChunk::operator[](int offset) const { log_assert(offset >= 0); log_assert(offset <= width); RTLIL::SigBit ret; if (wire) { ret.wire = wire; ret.offset = this->offset + offset; } else { ret.data = data[offset]; } return ret; } bool RTLIL::SigChunk::operator <(const RTLIL::SigChunk &other) const { if (wire && other.wire) if (wire->name != other.wire->name) return wire->name < other.wire->name; if (wire != other.wire) return wire < other.wire; if (offset != other.offset) return offset < other.offset; if (width != other.width) return width < other.width; return data < other.data; } bool RTLIL::SigChunk::operator ==(const RTLIL::SigChunk &other) const { return wire == other.wire && width == other.width && offset == other.offset && data == other.data; } bool RTLIL::SigChunk::operator !=(const RTLIL::SigChunk &other) const { if (*this == other) return false; return true; } RTLIL::SigSpec::SigSpec(std::initializer_list parts) { cover("kernel.rtlil.sigspec.init.list"); width_ = 0; hash_ = 0; log_assert(parts.size() > 0); auto ie = parts.begin(); auto it = ie + parts.size() - 1; while (it >= ie) append(*it--); } RTLIL::SigSpec::SigSpec(const RTLIL::Const &value) { cover("kernel.rtlil.sigspec.init.const"); if (GetSize(value) != 0) { chunks_.emplace_back(value); width_ = chunks_.back().width; } else { width_ = 0; } hash_ = 0; check(); } RTLIL::SigSpec::SigSpec(RTLIL::Const &&value) { cover("kernel.rtlil.sigspec.init.const.move"); if (GetSize(value) != 0) { chunks_.emplace_back(std::move(value)); width_ = chunks_.back().width; } else { width_ = 0; } hash_ = 0; check(); } RTLIL::SigSpec::SigSpec(const RTLIL::SigChunk &chunk) { cover("kernel.rtlil.sigspec.init.chunk"); if (chunk.width != 0) { chunks_.emplace_back(chunk); width_ = chunks_.back().width; } else { width_ = 0; } hash_ = 0; check(); } RTLIL::SigSpec::SigSpec(RTLIL::SigChunk &&chunk) { cover("kernel.rtlil.sigspec.init.chunk.move"); if (chunk.width != 0) { chunks_.emplace_back(std::move(chunk)); width_ = chunks_.back().width; } else { width_ = 0; } hash_ = 0; check(); } RTLIL::SigSpec::SigSpec(RTLIL::Wire *wire) { cover("kernel.rtlil.sigspec.init.wire"); if (wire->width != 0) { chunks_.emplace_back(wire); width_ = chunks_.back().width; } else { width_ = 0; } hash_ = 0; check(); } RTLIL::SigSpec::SigSpec(RTLIL::Wire *wire, int offset, int width) { cover("kernel.rtlil.sigspec.init.wire_part"); if (width != 0) { chunks_.emplace_back(wire, offset, width); width_ = chunks_.back().width; } else { width_ = 0; } hash_ = 0; check(); } RTLIL::SigSpec::SigSpec(const std::string &str) { cover("kernel.rtlil.sigspec.init.str"); if (str.size() != 0) { chunks_.emplace_back(str); width_ = chunks_.back().width; } else { width_ = 0; } hash_ = 0; check(); } RTLIL::SigSpec::SigSpec(int val, int width) { cover("kernel.rtlil.sigspec.init.int"); if (width != 0) chunks_.emplace_back(val, width); width_ = width; hash_ = 0; check(); } RTLIL::SigSpec::SigSpec(RTLIL::State bit, int width) { cover("kernel.rtlil.sigspec.init.state"); if (width != 0) chunks_.emplace_back(bit, width); width_ = width; hash_ = 0; check(); } RTLIL::SigSpec::SigSpec(const RTLIL::SigBit &bit, int width) { cover("kernel.rtlil.sigspec.init.bit"); if (width != 0) { if (bit.wire == NULL) chunks_.emplace_back(bit.data, width); else for (int i = 0; i < width; i++) chunks_.push_back(bit); } width_ = width; hash_ = 0; check(); } RTLIL::SigSpec::SigSpec(const std::vector &chunks) { cover("kernel.rtlil.sigspec.init.stdvec_chunks"); width_ = 0; hash_ = 0; for (const auto &c : chunks) append(c); check(); } RTLIL::SigSpec::SigSpec(const std::vector &bits) { cover("kernel.rtlil.sigspec.init.stdvec_bits"); width_ = 0; hash_ = 0; for (const auto &bit : bits) append(bit); check(); } RTLIL::SigSpec::SigSpec(const pool &bits) { cover("kernel.rtlil.sigspec.init.pool_bits"); width_ = 0; hash_ = 0; for (const auto &bit : bits) append(bit); check(); } RTLIL::SigSpec::SigSpec(const std::set &bits) { cover("kernel.rtlil.sigspec.init.stdset_bits"); width_ = 0; hash_ = 0; for (const auto &bit : bits) append(bit); check(); } RTLIL::SigSpec::SigSpec(bool bit) { cover("kernel.rtlil.sigspec.init.bool"); width_ = 0; hash_ = 0; append(SigBit(bit)); check(); } void RTLIL::SigSpec::pack() const { RTLIL::SigSpec *that = (RTLIL::SigSpec*)this; if (that->bits_.empty()) return; cover("kernel.rtlil.sigspec.convert.pack"); log_assert(that->chunks_.empty()); std::vector old_bits; old_bits.swap(that->bits_); RTLIL::SigChunk *last = NULL; int last_end_offset = 0; for (auto &bit : old_bits) { if (last && bit.wire == last->wire) { if (bit.wire == NULL) { last->data.push_back(bit.data); last->width++; continue; } else if (last_end_offset == bit.offset) { last_end_offset++; last->width++; continue; } } that->chunks_.push_back(bit); last = &that->chunks_.back(); last_end_offset = bit.offset + 1; } check(); } void RTLIL::SigSpec::unpack() const { RTLIL::SigSpec *that = (RTLIL::SigSpec*)this; if (that->chunks_.empty()) return; cover("kernel.rtlil.sigspec.convert.unpack"); log_assert(that->bits_.empty()); that->bits_.reserve(that->width_); for (auto &c : that->chunks_) for (int i = 0; i < c.width; i++) that->bits_.emplace_back(c, i); that->chunks_.clear(); that->hash_ = 0; } void RTLIL::SigSpec::updhash() const { RTLIL::SigSpec *that = (RTLIL::SigSpec*)this; if (that->hash_ != 0) return; cover("kernel.rtlil.sigspec.hash"); that->pack(); Hasher h; for (auto &c : that->chunks_) if (c.wire == NULL) { for (auto &v : c.data) h.acc(v); } else { h.acc(c.wire->name.index_); h.acc(c.offset); h.acc(c.width); } that->hash_ = h.yield(); if (that->hash_ == 0) that->hash_ = 1; } void RTLIL::SigSpec::sort() { unpack(); cover("kernel.rtlil.sigspec.sort"); std::sort(bits_.begin(), bits_.end()); } void RTLIL::SigSpec::sort_and_unify() { unpack(); cover("kernel.rtlil.sigspec.sort_and_unify"); // A copy of the bits vector is used to prevent duplicating the logic from // SigSpec::SigSpec(std::vector). This incurrs an extra copy but // that isn't showing up as significant in profiles. std::vector unique_bits = bits_; std::sort(unique_bits.begin(), unique_bits.end()); auto last = std::unique(unique_bits.begin(), unique_bits.end()); unique_bits.erase(last, unique_bits.end()); *this = unique_bits; } void RTLIL::SigSpec::replace(const RTLIL::SigSpec &pattern, const RTLIL::SigSpec &with) { replace(pattern, with, this); } void RTLIL::SigSpec::replace(const RTLIL::SigSpec &pattern, const RTLIL::SigSpec &with, RTLIL::SigSpec *other) const { log_assert(other != NULL); log_assert(width_ == other->width_); log_assert(pattern.width_ == with.width_); pattern.unpack(); with.unpack(); unpack(); other->unpack(); dict pattern_to_with; for (int i = 0; i < GetSize(pattern.bits_); i++) { if (pattern.bits_[i].wire != NULL) { pattern_to_with.emplace(pattern.bits_[i], i); } } for (int j = 0; j < GetSize(bits_); j++) { auto it = pattern_to_with.find(bits_[j]); if (it != pattern_to_with.end()) { other->bits_[j] = with.bits_[it->second]; } } other->check(); } void RTLIL::SigSpec::replace(const dict &rules) { replace(rules, this); } void RTLIL::SigSpec::replace(const dict &rules, RTLIL::SigSpec *other) const { cover("kernel.rtlil.sigspec.replace_dict"); log_assert(other != NULL); log_assert(width_ == other->width_); if (rules.empty()) return; unpack(); other->unpack(); for (int i = 0; i < GetSize(bits_); i++) { auto it = rules.find(bits_[i]); if (it != rules.end()) other->bits_[i] = it->second; } other->check(); } void RTLIL::SigSpec::replace(const std::map &rules) { replace(rules, this); } void RTLIL::SigSpec::replace(const std::map &rules, RTLIL::SigSpec *other) const { cover("kernel.rtlil.sigspec.replace_map"); log_assert(other != NULL); log_assert(width_ == other->width_); if (rules.empty()) return; unpack(); other->unpack(); for (int i = 0; i < GetSize(bits_); i++) { auto it = rules.find(bits_[i]); if (it != rules.end()) other->bits_[i] = it->second; } other->check(); } void RTLIL::SigSpec::remove(const RTLIL::SigSpec &pattern) { remove2(pattern, NULL); } void RTLIL::SigSpec::remove(const RTLIL::SigSpec &pattern, RTLIL::SigSpec *other) const { RTLIL::SigSpec tmp = *this; tmp.remove2(pattern, other); } void RTLIL::SigSpec::remove2(const RTLIL::SigSpec &pattern, RTLIL::SigSpec *other) { if (other) cover("kernel.rtlil.sigspec.remove_other"); else cover("kernel.rtlil.sigspec.remove"); unpack(); if (other != NULL) { log_assert(width_ == other->width_); other->unpack(); } for (int i = GetSize(bits_) - 1; i >= 0; i--) { if (bits_[i].wire == NULL) continue; for (auto &pattern_chunk : pattern.chunks()) if (bits_[i].wire == pattern_chunk.wire && bits_[i].offset >= pattern_chunk.offset && bits_[i].offset < pattern_chunk.offset + pattern_chunk.width) { bits_.erase(bits_.begin() + i); width_--; if (other != NULL) { other->bits_.erase(other->bits_.begin() + i); other->width_--; } break; } } check(); } void RTLIL::SigSpec::remove(const pool &pattern) { remove2(pattern, NULL); } void RTLIL::SigSpec::remove(const pool &pattern, RTLIL::SigSpec *other) const { RTLIL::SigSpec tmp = *this; tmp.remove2(pattern, other); } void RTLIL::SigSpec::remove2(const pool &pattern, RTLIL::SigSpec *other) { if (other) cover("kernel.rtlil.sigspec.remove_other"); else cover("kernel.rtlil.sigspec.remove"); unpack(); if (other != NULL) { log_assert(width_ == other->width_); other->unpack(); } for (int i = GetSize(bits_) - 1; i >= 0; i--) { if (bits_[i].wire != NULL && pattern.count(bits_[i])) { bits_.erase(bits_.begin() + i); width_--; if (other != NULL) { other->bits_.erase(other->bits_.begin() + i); other->width_--; } } } check(); } void RTLIL::SigSpec::remove2(const std::set &pattern, RTLIL::SigSpec *other) { if (other) cover("kernel.rtlil.sigspec.remove_other"); else cover("kernel.rtlil.sigspec.remove"); unpack(); if (other != NULL) { log_assert(width_ == other->width_); other->unpack(); } for (int i = GetSize(bits_) - 1; i >= 0; i--) { if (bits_[i].wire != NULL && pattern.count(bits_[i])) { bits_.erase(bits_.begin() + i); width_--; if (other != NULL) { other->bits_.erase(other->bits_.begin() + i); other->width_--; } } } check(); } void RTLIL::SigSpec::remove2(const pool &pattern, RTLIL::SigSpec *other) { if (other) cover("kernel.rtlil.sigspec.remove_other"); else cover("kernel.rtlil.sigspec.remove"); unpack(); if (other != NULL) { log_assert(width_ == other->width_); other->unpack(); } for (int i = GetSize(bits_) - 1; i >= 0; i--) { if (bits_[i].wire != NULL && pattern.count(bits_[i].wire)) { bits_.erase(bits_.begin() + i); width_--; if (other != NULL) { other->bits_.erase(other->bits_.begin() + i); other->width_--; } } } check(); } RTLIL::SigSpec RTLIL::SigSpec::extract(const RTLIL::SigSpec &pattern, const RTLIL::SigSpec *other) const { if (other) cover("kernel.rtlil.sigspec.extract_other"); else cover("kernel.rtlil.sigspec.extract"); log_assert(other == NULL || width_ == other->width_); RTLIL::SigSpec ret; std::vector bits_match = to_sigbit_vector(); for (auto& pattern_chunk : pattern.chunks()) { if (other) { std::vector bits_other = other->to_sigbit_vector(); for (int i = 0; i < width_; i++) if (bits_match[i].wire && bits_match[i].wire == pattern_chunk.wire && bits_match[i].offset >= pattern_chunk.offset && bits_match[i].offset < pattern_chunk.offset + pattern_chunk.width) ret.append(bits_other[i]); } else { for (int i = 0; i < width_; i++) if (bits_match[i].wire && bits_match[i].wire == pattern_chunk.wire && bits_match[i].offset >= pattern_chunk.offset && bits_match[i].offset < pattern_chunk.offset + pattern_chunk.width) ret.append(bits_match[i]); } } ret.check(); return ret; } RTLIL::SigSpec RTLIL::SigSpec::extract(const pool &pattern, const RTLIL::SigSpec *other) const { if (other) cover("kernel.rtlil.sigspec.extract_other"); else cover("kernel.rtlil.sigspec.extract"); log_assert(other == NULL || width_ == other->width_); std::vector bits_match = to_sigbit_vector(); RTLIL::SigSpec ret; if (other) { std::vector bits_other = other->to_sigbit_vector(); for (int i = 0; i < width_; i++) if (bits_match[i].wire && pattern.count(bits_match[i])) ret.append(bits_other[i]); } else { for (int i = 0; i < width_; i++) if (bits_match[i].wire && pattern.count(bits_match[i])) ret.append(bits_match[i]); } ret.check(); return ret; } void RTLIL::SigSpec::replace(int offset, const RTLIL::SigSpec &with) { cover("kernel.rtlil.sigspec.replace_pos"); unpack(); with.unpack(); log_assert(offset >= 0); log_assert(with.width_ >= 0); log_assert(offset+with.width_ <= width_); for (int i = 0; i < with.width_; i++) bits_.at(offset + i) = with.bits_.at(i); check(); } void RTLIL::SigSpec::remove_const() { if (packed()) { cover("kernel.rtlil.sigspec.remove_const.packed"); std::vector new_chunks; new_chunks.reserve(GetSize(chunks_)); width_ = 0; for (auto &chunk : chunks_) if (chunk.wire != NULL) { if (!new_chunks.empty() && new_chunks.back().wire == chunk.wire && new_chunks.back().offset + new_chunks.back().width == chunk.offset) { new_chunks.back().width += chunk.width; } else { new_chunks.push_back(chunk); } width_ += chunk.width; } chunks_.swap(new_chunks); } else { cover("kernel.rtlil.sigspec.remove_const.unpacked"); std::vector new_bits; new_bits.reserve(width_); for (auto &bit : bits_) if (bit.wire != NULL) new_bits.push_back(bit); bits_.swap(new_bits); width_ = bits_.size(); } check(); } void RTLIL::SigSpec::remove(int offset, int length) { cover("kernel.rtlil.sigspec.remove_pos"); unpack(); log_assert(offset >= 0); log_assert(length >= 0); log_assert(offset + length <= width_); bits_.erase(bits_.begin() + offset, bits_.begin() + offset + length); width_ = bits_.size(); check(); } RTLIL::SigSpec RTLIL::SigSpec::extract(int offset, int length) const { log_assert(offset >= 0); log_assert(length >= 0); log_assert(offset + length <= width_); cover("kernel.rtlil.sigspec.extract_pos"); if (packed()) { SigSpec extracted; extracted.width_ = length; auto it = chunks_.begin(); for (; offset; offset -= it->width, it++) { if (offset < it->width) { int chunk_length = min(it->width - offset, length); extracted.chunks_.emplace_back(it->extract(offset, chunk_length)); length -= chunk_length; it++; break; } } for (; length; length -= it->width, it++) { if (length >= it->width) { extracted.chunks_.emplace_back(*it); } else { extracted.chunks_.emplace_back(it->extract(0, length)); break; } } return extracted; } else { return std::vector(bits_.begin() + offset, bits_.begin() + offset + length); } } void RTLIL::SigSpec::append(const RTLIL::SigSpec &signal) { if (signal.width_ == 0) return; if (width_ == 0) { *this = signal; return; } cover("kernel.rtlil.sigspec.append"); if (packed() != signal.packed()) { pack(); signal.pack(); } if (packed()) for (auto &other_c : signal.chunks_) { auto &my_last_c = chunks_.back(); if (my_last_c.wire == NULL && other_c.wire == NULL) { auto &this_data = my_last_c.data; auto &other_data = other_c.data; this_data.insert(this_data.end(), other_data.begin(), other_data.end()); my_last_c.width += other_c.width; } else if (my_last_c.wire == other_c.wire && my_last_c.offset + my_last_c.width == other_c.offset) { my_last_c.width += other_c.width; } else chunks_.push_back(other_c); } else bits_.insert(bits_.end(), signal.bits_.begin(), signal.bits_.end()); width_ += signal.width_; check(); } void RTLIL::SigSpec::append(const RTLIL::SigBit &bit) { if (packed()) { cover("kernel.rtlil.sigspec.append_bit.packed"); if (chunks_.size() == 0) chunks_.push_back(bit); else if (bit.wire == NULL) if (chunks_.back().wire == NULL) { chunks_.back().data.push_back(bit.data); chunks_.back().width++; } else chunks_.push_back(bit); else if (chunks_.back().wire == bit.wire && chunks_.back().offset + chunks_.back().width == bit.offset) chunks_.back().width++; else chunks_.push_back(bit); } else { cover("kernel.rtlil.sigspec.append_bit.unpacked"); bits_.push_back(bit); } width_++; check(); } void RTLIL::SigSpec::extend_u0(int width, bool is_signed) { cover("kernel.rtlil.sigspec.extend_u0"); pack(); if (width_ > width) remove(width, width_ - width); if (width_ < width) { RTLIL::SigBit padding = width_ > 0 ? (*this)[width_ - 1] : RTLIL::State::Sx; if (!is_signed) padding = RTLIL::State::S0; while (width_ < width) append(padding); } } RTLIL::SigSpec RTLIL::SigSpec::repeat(int num) const { cover("kernel.rtlil.sigspec.repeat"); RTLIL::SigSpec sig; for (int i = 0; i < num; i++) sig.append(*this); return sig; } #ifndef NDEBUG void RTLIL::SigSpec::check(Module *mod) const { if (width_ > 64) { cover("kernel.rtlil.sigspec.check.skip"); } else if (packed()) { cover("kernel.rtlil.sigspec.check.packed"); int w = 0; for (size_t i = 0; i < chunks_.size(); i++) { const RTLIL::SigChunk &chunk = chunks_[i]; log_assert(chunk.width != 0); if (chunk.wire == NULL) { if (i > 0) log_assert(chunks_[i-1].wire != NULL); log_assert(chunk.offset == 0); log_assert(chunk.data.size() == (size_t)chunk.width); } else { if (i > 0 && chunks_[i-1].wire == chunk.wire) log_assert(chunk.offset != chunks_[i-1].offset + chunks_[i-1].width); log_assert(chunk.offset >= 0); log_assert(chunk.width >= 0); log_assert(chunk.offset + chunk.width <= chunk.wire->width); log_assert(chunk.data.size() == 0); if (mod != nullptr) log_assert(chunk.wire->module == mod); } w += chunk.width; } log_assert(w == width_); log_assert(bits_.empty()); } else { cover("kernel.rtlil.sigspec.check.unpacked"); if (mod != nullptr) { for (size_t i = 0; i < bits_.size(); i++) if (bits_[i].wire != nullptr) log_assert(bits_[i].wire->module == mod); } log_assert(width_ == GetSize(bits_)); log_assert(chunks_.empty()); } } #endif bool RTLIL::SigSpec::operator <(const RTLIL::SigSpec &other) const { cover("kernel.rtlil.sigspec.comp_lt"); if (this == &other) return false; if (width_ != other.width_) return width_ < other.width_; pack(); other.pack(); if (chunks_.size() != other.chunks_.size()) return chunks_.size() < other.chunks_.size(); updhash(); other.updhash(); if (hash_ != other.hash_) return hash_ < other.hash_; for (size_t i = 0; i < chunks_.size(); i++) if (chunks_[i] != other.chunks_[i]) { cover("kernel.rtlil.sigspec.comp_lt.hash_collision"); return chunks_[i] < other.chunks_[i]; } cover("kernel.rtlil.sigspec.comp_lt.equal"); return false; } bool RTLIL::SigSpec::operator ==(const RTLIL::SigSpec &other) const { cover("kernel.rtlil.sigspec.comp_eq"); if (this == &other) return true; if (width_ != other.width_) return false; // Without this, SigSpec() == SigSpec(State::S0, 0) will fail // since the RHS will contain one SigChunk of width 0 causing // the size check below to fail if (width_ == 0) return true; pack(); other.pack(); if (chunks_.size() != other.chunks_.size()) return false; updhash(); other.updhash(); if (hash_ != other.hash_) return false; for (size_t i = 0; i < chunks_.size(); i++) if (chunks_[i] != other.chunks_[i]) { cover("kernel.rtlil.sigspec.comp_eq.hash_collision"); return false; } cover("kernel.rtlil.sigspec.comp_eq.equal"); return true; } bool RTLIL::SigSpec::is_wire() const { cover("kernel.rtlil.sigspec.is_wire"); pack(); return GetSize(chunks_) == 1 && chunks_[0].wire && chunks_[0].wire->width == width_; } bool RTLIL::SigSpec::is_chunk() const { cover("kernel.rtlil.sigspec.is_chunk"); pack(); return GetSize(chunks_) == 1; } bool RTLIL::SigSpec::is_fully_const() const { cover("kernel.rtlil.sigspec.is_fully_const"); pack(); for (auto it = chunks_.begin(); it != chunks_.end(); it++) if (it->width > 0 && it->wire != NULL) return false; return true; } bool RTLIL::SigSpec::is_fully_zero() const { cover("kernel.rtlil.sigspec.is_fully_zero"); pack(); for (auto it = chunks_.begin(); it != chunks_.end(); it++) { if (it->width > 0 && it->wire != NULL) return false; for (size_t i = 0; i < it->data.size(); i++) if (it->data[i] != RTLIL::State::S0) return false; } return true; } bool RTLIL::SigSpec::is_fully_ones() const { cover("kernel.rtlil.sigspec.is_fully_ones"); pack(); for (auto it = chunks_.begin(); it != chunks_.end(); it++) { if (it->width > 0 && it->wire != NULL) return false; for (size_t i = 0; i < it->data.size(); i++) if (it->data[i] != RTLIL::State::S1) return false; } return true; } bool RTLIL::SigSpec::is_fully_def() const { cover("kernel.rtlil.sigspec.is_fully_def"); pack(); for (auto it = chunks_.begin(); it != chunks_.end(); it++) { if (it->width > 0 && it->wire != NULL) return false; for (size_t i = 0; i < it->data.size(); i++) if (it->data[i] != RTLIL::State::S0 && it->data[i] != RTLIL::State::S1) return false; } return true; } bool RTLIL::SigSpec::is_fully_undef() const { cover("kernel.rtlil.sigspec.is_fully_undef"); pack(); for (auto it = chunks_.begin(); it != chunks_.end(); it++) { if (it->width > 0 && it->wire != NULL) return false; for (size_t i = 0; i < it->data.size(); i++) if (it->data[i] != RTLIL::State::Sx && it->data[i] != RTLIL::State::Sz) return false; } return true; } bool RTLIL::SigSpec::has_const() const { cover("kernel.rtlil.sigspec.has_const"); pack(); for (auto it = chunks_.begin(); it != chunks_.end(); it++) if (it->width > 0 && it->wire == NULL) return true; return false; } bool RTLIL::SigSpec::has_marked_bits() const { cover("kernel.rtlil.sigspec.has_marked_bits"); pack(); for (auto it = chunks_.begin(); it != chunks_.end(); it++) if (it->width > 0 && it->wire == NULL) { for (size_t i = 0; i < it->data.size(); i++) if (it->data[i] == RTLIL::State::Sm) return true; } return false; } bool RTLIL::SigSpec::is_onehot(int *pos) const { cover("kernel.rtlil.sigspec.is_onehot"); pack(); if (!is_fully_const()) return false; log_assert(GetSize(chunks_) <= 1); if (width_) return RTLIL::Const(chunks_[0].data).is_onehot(pos); return false; } bool RTLIL::SigSpec::as_bool() const { cover("kernel.rtlil.sigspec.as_bool"); pack(); log_assert(is_fully_const() && GetSize(chunks_) <= 1); if (width_) return RTLIL::Const(chunks_[0].data).as_bool(); return false; } int RTLIL::SigSpec::as_int(bool is_signed) const { cover("kernel.rtlil.sigspec.as_int"); pack(); log_assert(is_fully_const() && GetSize(chunks_) <= 1); if (width_) return RTLIL::Const(chunks_[0].data).as_int(is_signed); return 0; } std::string RTLIL::SigSpec::as_string() const { cover("kernel.rtlil.sigspec.as_string"); pack(); std::string str; str.reserve(size()); for (size_t i = chunks_.size(); i > 0; i--) { const RTLIL::SigChunk &chunk = chunks_[i-1]; if (chunk.wire != NULL) str.append(chunk.width, '?'); else str += RTLIL::Const(chunk.data).as_string(); } return str; } RTLIL::Const RTLIL::SigSpec::as_const() const { cover("kernel.rtlil.sigspec.as_const"); pack(); log_assert(is_fully_const() && GetSize(chunks_) <= 1); if (width_) return chunks_[0].data; return RTLIL::Const(); } RTLIL::Wire *RTLIL::SigSpec::as_wire() const { cover("kernel.rtlil.sigspec.as_wire"); pack(); log_assert(is_wire()); return chunks_[0].wire; } RTLIL::SigChunk RTLIL::SigSpec::as_chunk() const { cover("kernel.rtlil.sigspec.as_chunk"); pack(); log_assert(is_chunk()); return chunks_[0]; } RTLIL::SigBit RTLIL::SigSpec::as_bit() const { cover("kernel.rtlil.sigspec.as_bit"); log_assert(width_ == 1); if (packed()) return RTLIL::SigBit(*chunks_.begin()); else return bits_[0]; } bool RTLIL::SigSpec::match(const char* pattern) const { cover("kernel.rtlil.sigspec.match"); unpack(); log_assert(int(strlen(pattern)) == GetSize(bits_)); for (auto it = bits_.rbegin(); it != bits_.rend(); it++, pattern++) { if (*pattern == ' ') continue; if (*pattern == '*') { if (*it != State::Sz && *it != State::Sx) return false; continue; } if (*pattern == '0') { if (*it != State::S0) return false; } else if (*pattern == '1') { if (*it != State::S1) return false; } else log_abort(); } return true; } std::set RTLIL::SigSpec::to_sigbit_set() const { cover("kernel.rtlil.sigspec.to_sigbit_set"); pack(); std::set sigbits; for (auto &c : chunks_) for (int i = 0; i < c.width; i++) sigbits.insert(RTLIL::SigBit(c, i)); return sigbits; } pool RTLIL::SigSpec::to_sigbit_pool() const { cover("kernel.rtlil.sigspec.to_sigbit_pool"); pack(); pool sigbits; sigbits.reserve(size()); for (auto &c : chunks_) for (int i = 0; i < c.width; i++) sigbits.insert(RTLIL::SigBit(c, i)); return sigbits; } std::vector RTLIL::SigSpec::to_sigbit_vector() const { cover("kernel.rtlil.sigspec.to_sigbit_vector"); unpack(); return bits_; } std::map RTLIL::SigSpec::to_sigbit_map(const RTLIL::SigSpec &other) const { cover("kernel.rtlil.sigspec.to_sigbit_map"); unpack(); other.unpack(); log_assert(width_ == other.width_); std::map new_map; for (int i = 0; i < width_; i++) new_map[bits_[i]] = other.bits_[i]; return new_map; } dict RTLIL::SigSpec::to_sigbit_dict(const RTLIL::SigSpec &other) const { cover("kernel.rtlil.sigspec.to_sigbit_dict"); unpack(); other.unpack(); log_assert(width_ == other.width_); dict new_map; new_map.reserve(size()); for (int i = 0; i < width_; i++) new_map[bits_[i]] = other.bits_[i]; return new_map; } static void sigspec_parse_split(std::vector &tokens, const std::string &text, char sep) { size_t start = 0, end = 0; while ((end = text.find(sep, start)) != std::string::npos) { tokens.push_back(text.substr(start, end - start)); start = end + 1; } tokens.push_back(text.substr(start)); } static int sigspec_parse_get_dummy_line_num() { return 0; } bool RTLIL::SigSpec::parse(RTLIL::SigSpec &sig, RTLIL::Module *module, std::string str) { cover("kernel.rtlil.sigspec.parse"); AST::current_filename = "input"; std::vector tokens; sigspec_parse_split(tokens, str, ','); sig = RTLIL::SigSpec(); for (int tokidx = int(tokens.size())-1; tokidx >= 0; tokidx--) { std::string netname = tokens[tokidx]; std::string indices; if (netname.size() == 0) continue; if (('0' <= netname[0] && netname[0] <= '9') || netname[0] == '\'') { cover("kernel.rtlil.sigspec.parse.const"); AST::get_line_num = sigspec_parse_get_dummy_line_num; AST::AstNode *ast = VERILOG_FRONTEND::const2ast(netname); if (ast == NULL) return false; sig.append(RTLIL::Const(ast->bits)); delete ast; continue; } if (module == NULL) return false; cover("kernel.rtlil.sigspec.parse.net"); if (netname[0] != '$' && netname[0] != '\\') netname = "\\" + netname; if (module->wires_.count(netname) == 0) { size_t indices_pos = netname.size()-1; if (indices_pos > 2 && netname[indices_pos] == ']') { indices_pos--; while (indices_pos > 0 && ('0' <= netname[indices_pos] && netname[indices_pos] <= '9')) indices_pos--; if (indices_pos > 0 && netname[indices_pos] == ':') { indices_pos--; while (indices_pos > 0 && ('0' <= netname[indices_pos] && netname[indices_pos] <= '9')) indices_pos--; } if (indices_pos > 0 && netname[indices_pos] == '[') { indices = netname.substr(indices_pos); netname = netname.substr(0, indices_pos); } } } if (module->wires_.count(netname) == 0) return false; RTLIL::Wire *wire = module->wires_.at(netname); if (!indices.empty()) { std::vector index_tokens; sigspec_parse_split(index_tokens, indices.substr(1, indices.size()-2), ':'); if (index_tokens.size() == 1) { cover("kernel.rtlil.sigspec.parse.bit_sel"); int a = atoi(index_tokens.at(0).c_str()); if (a < 0 || a >= wire->width) return false; sig.append(RTLIL::SigSpec(wire, a)); } else { cover("kernel.rtlil.sigspec.parse.part_sel"); int a = atoi(index_tokens.at(0).c_str()); int b = atoi(index_tokens.at(1).c_str()); if (a > b) { int tmp = a; a = b, b = tmp; } if (a < 0 || a >= wire->width) return false; if (b < 0 || b >= wire->width) return false; sig.append(RTLIL::SigSpec(wire, a, b-a+1)); } } else sig.append(wire); } return true; } bool RTLIL::SigSpec::parse_sel(RTLIL::SigSpec &sig, RTLIL::Design *design, RTLIL::Module *module, std::string str) { if (str.empty() || str[0] != '@') return parse(sig, module, str); cover("kernel.rtlil.sigspec.parse.sel"); str = RTLIL::escape_id(str.substr(1)); if (design->selection_vars.count(str) == 0) return false; sig = RTLIL::SigSpec(); RTLIL::Selection &sel = design->selection_vars.at(str); for (auto &it : module->wires_) if (sel.selected_member(module->name, it.first)) sig.append(it.second); return true; } bool RTLIL::SigSpec::parse_rhs(const RTLIL::SigSpec &lhs, RTLIL::SigSpec &sig, RTLIL::Module *module, std::string str) { if (str == "0") { cover("kernel.rtlil.sigspec.parse.rhs_zeros"); sig = RTLIL::SigSpec(RTLIL::State::S0, lhs.width_); return true; } if (str == "~0") { cover("kernel.rtlil.sigspec.parse.rhs_ones"); sig = RTLIL::SigSpec(RTLIL::State::S1, lhs.width_); return true; } if (lhs.chunks_.size() == 1) { char *p = (char*)str.c_str(), *endptr; long int val = strtol(p, &endptr, 10); if (endptr && endptr != p && *endptr == 0) { sig = RTLIL::SigSpec(val, lhs.width_); cover("kernel.rtlil.sigspec.parse.rhs_dec"); return true; } } return parse(sig, module, str); } RTLIL::CaseRule::~CaseRule() { for (auto it = switches.begin(); it != switches.end(); it++) delete *it; } bool RTLIL::CaseRule::empty() const { return actions.empty() && switches.empty(); } RTLIL::CaseRule *RTLIL::CaseRule::clone() const { RTLIL::CaseRule *new_caserule = new RTLIL::CaseRule; new_caserule->compare = compare; new_caserule->actions = actions; for (auto &it : switches) new_caserule->switches.push_back(it->clone()); return new_caserule; } RTLIL::SwitchRule::~SwitchRule() { for (auto it = cases.begin(); it != cases.end(); it++) delete *it; } bool RTLIL::SwitchRule::empty() const { return cases.empty(); } RTLIL::SwitchRule *RTLIL::SwitchRule::clone() const { RTLIL::SwitchRule *new_switchrule = new RTLIL::SwitchRule; new_switchrule->signal = signal; new_switchrule->attributes = attributes; for (auto &it : cases) new_switchrule->cases.push_back(it->clone()); return new_switchrule; } RTLIL::SyncRule *RTLIL::SyncRule::clone() const { RTLIL::SyncRule *new_syncrule = new RTLIL::SyncRule; new_syncrule->type = type; new_syncrule->signal = signal; new_syncrule->actions = actions; new_syncrule->mem_write_actions = mem_write_actions; return new_syncrule; } RTLIL::Process::~Process() { for (auto it = syncs.begin(); it != syncs.end(); it++) delete *it; } RTLIL::Process *RTLIL::Process::clone() const { RTLIL::Process *new_proc = new RTLIL::Process; new_proc->name = name; new_proc->attributes = attributes; RTLIL::CaseRule *rc_ptr = root_case.clone(); new_proc->root_case = *rc_ptr; rc_ptr->switches.clear(); delete rc_ptr; for (auto &it : syncs) new_proc->syncs.push_back(it->clone()); return new_proc; } #ifdef WITH_PYTHON RTLIL::Memory::~Memory() { RTLIL::Memory::get_all_memorys()->erase(hashidx_); } static std::map all_memorys; std::map *RTLIL::Memory::get_all_memorys(void) { return &all_memorys; } #endif YOSYS_NAMESPACE_END