Flows, command types, and order =============================== Command order ------------- .. todo:: check text is coherent Intro to coarse-grain synthesis ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In coarse-grain synthesis the target architecture has cells of the same complexity or larger complexity than the internal RTL representation. For example: .. code:: verilog wire [15:0] a, b; wire [31:0] c, y; assign y = a * b + c; This circuit contains two cells in the RTL representation: one multiplier and one adder. In some architectures this circuit can be implemented using a single circuit element, for example an FPGA DSP core. Coarse grain synthesis is this mapping of groups of circuit elements to larger components. Fine-grain synthesis would be matching the circuit elements to smaller components, such as LUTs, gates, or half- and full-adders. The extract pass ~~~~~~~~~~~~~~~~ - Like the :cmd:ref:`techmap` pass, the :cmd:ref:`extract` pass is called with a map file. It compares the circuits inside the modules of the map file with the design and looks for sub-circuits in the design that match any of the modules in the map file. - If a match is found, the :cmd:ref:`extract` pass will replace the matching subcircuit with an instance of the module from the map file. - In a way the :cmd:ref:`extract` pass is the inverse of the techmap pass. .. todo:: add/expand supporting text .. figure:: /_images/res/PRESENTATION_ExAdv/macc_simple_test_00a.* :class: width-helper before `extract` .. figure:: /_images/res/PRESENTATION_ExAdv/macc_simple_test_00b.* :class: width-helper after `extract` .. literalinclude:: /code_examples/macc/macc_simple_test.v :language: verilog :caption: ``docs/source/code_examples/macc/macc_simple_test.v`` .. literalinclude:: /code_examples/macc/macc_simple_xmap.v :language: verilog :caption: ``docs/source/code_examples/macc/macc_simple_xmap.v`` .. code:: yoscrypt read_verilog macc_simple_test.v hierarchy -check -top test extract -map macc_simple_xmap.v;; .. literalinclude:: /code_examples/macc/macc_simple_test_01.v :language: verilog :caption: ``docs/source/code_examples/macc/macc_simple_test_01.v`` .. figure:: /_images/res/PRESENTATION_ExAdv/macc_simple_test_01a.* :class: width-helper .. figure:: /_images/res/PRESENTATION_ExAdv/macc_simple_test_01b.* :class: width-helper .. literalinclude:: /code_examples/macc/macc_simple_test_02.v :language: verilog :caption: ``docs/source/code_examples/macc/macc_simple_test_02.v`` .. figure:: /_images/res/PRESENTATION_ExAdv/macc_simple_test_02a.* :class: width-helper .. figure:: /_images/res/PRESENTATION_ExAdv/macc_simple_test_02b.* :class: width-helper The wrap-extract-unwrap method ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Often a coarse-grain element has a constant bit-width, but can be used to implement operations with a smaller bit-width. For example, a 18x25-bit multiplier can also be used to implement 16x20-bit multiplication. A way of mapping such elements in coarse grain synthesis is the wrap-extract-unwrap method: wrap Identify candidate-cells in the circuit and wrap them in a cell with a constant wider bit-width using :cmd:ref:`techmap`. The wrappers use the same parameters as the original cell, so the information about the original width of the ports is preserved. Then use the ``connwrappers`` command to connect up the bit-extended in- and outputs of the wrapper cells. extract Now all operations are encoded using the same bit-width as the coarse grain element. The :cmd:ref:`extract` command can be used to replace circuits with cells of the target architecture. unwrap The remaining wrapper cell can be unwrapped using :cmd:ref:`techmap`. Example: DSP48_MACC ~~~~~~~~~~~~~~~~~~~ This section details an example that shows how to map MACC operations of arbitrary size to MACC cells with a 18x25-bit multiplier and a 48-bit adder (such as the Xilinx DSP48 cells). Preconditioning: ``macc_xilinx_swap_map.v`` Make sure ``A`` is the smaller port on all multipliers .. todo:: add/expand supporting text .. literalinclude:: /code_examples/macc/macc_xilinx_swap_map.v :language: verilog :caption: ``docs/source/code_examples/macc/macc_xilinx_swap_map.v`` Wrapping multipliers: ``macc_xilinx_wrap_map.v`` .. literalinclude:: /code_examples/macc/macc_xilinx_wrap_map.v :language: verilog :lines: 1-46 :caption: ``docs/source/code_examples/macc/macc_xilinx_wrap_map.v`` Wrapping adders: ``macc_xilinx_wrap_map.v`` .. literalinclude:: /code_examples/macc/macc_xilinx_wrap_map.v :language: verilog :lines: 48-89 :caption: ``docs/source/code_examples/macc/macc_xilinx_wrap_map.v`` Extract: ``macc_xilinx_xmap.v`` .. literalinclude:: /code_examples/macc/macc_xilinx_xmap.v :language: verilog :caption: ``docs/source/code_examples/macc/macc_xilinx_xmap.v`` ... simply use the same wrapping commands on this module as on the design to create a template for the :cmd:ref:`extract` command. Unwrapping multipliers: ``macc_xilinx_unwrap_map.v`` .. literalinclude:: /code_examples/macc/macc_xilinx_unwrap_map.v :language: verilog :lines: 1-30 :caption: ``docs/source/code_examples/macc/macc_xilinx_unwrap_map.v`` Unwrapping adders: ``macc_xilinx_unwrap_map.v`` .. literalinclude:: /code_examples/macc/macc_xilinx_unwrap_map.v :language: verilog :lines: 32-61 :caption: ``docs/source/code_examples/macc/macc_xilinx_unwrap_map.v`` .. literalinclude:: /code_examples/macc/macc_xilinx_test.v :language: verilog :lines: 1-6 :caption: ``test1`` of ``docs/source/code_examples/macc/macc_xilinx_test.v`` .. figure:: /_images/res/PRESENTATION_ExAdv/macc_xilinx_test1a.* :class: width-helper .. figure:: /_images/res/PRESENTATION_ExAdv/macc_xilinx_test1b.* :class: width-helper .. literalinclude:: /code_examples/macc/macc_xilinx_test.v :language: verilog :lines: 8-13 :caption: ``test2`` of ``docs/source/code_examples/macc/macc_xilinx_test.v`` .. figure:: /_images/res/PRESENTATION_ExAdv/macc_xilinx_test2a.* :class: width-helper .. figure:: /_images/res/PRESENTATION_ExAdv/macc_xilinx_test2b.* :class: width-helper Wrapping in ``test1``: .. figure:: /_images/res/PRESENTATION_ExAdv/macc_xilinx_test1b.* :class: width-helper .. code:: yoscrypt techmap -map macc_xilinx_wrap_map.v connwrappers -unsigned $__mul_wrapper \ Y Y_WIDTH \ -unsigned $__add_wrapper \ Y Y_WIDTH ;; .. figure:: /_images/res/PRESENTATION_ExAdv/macc_xilinx_test1c.* :class: width-helper Wrapping in ``test2``: .. figure:: /_images/res/PRESENTATION_ExAdv/macc_xilinx_test2b.* :class: width-helper .. code:: yoscrypt techmap -map macc_xilinx_wrap_map.v connwrappers -unsigned $__mul_wrapper \ Y Y_WIDTH \ -unsigned $__add_wrapper \ Y Y_WIDTH ;; .. figure:: /_images/res/PRESENTATION_ExAdv/macc_xilinx_test2c.* :class: width-helper Extract in ``test1``: .. code:: yoscrypt design -push read_verilog macc_xilinx_xmap.v techmap -map macc_xilinx_swap_map.v techmap -map macc_xilinx_wrap_map.v;; design -save __macc_xilinx_xmap design -pop extract -constports -ignore_parameters \ -map %__macc_xilinx_xmap \ -swap $__add_wrapper A,B ;; .. figure:: /_images/res/PRESENTATION_ExAdv/macc_xilinx_test1c.* :class: width-helper .. figure:: /_images/res/PRESENTATION_ExAdv/macc_xilinx_test1d.* :class: width-helper Extract in ``test2``: .. code:: yoscrypt design -push read_verilog macc_xilinx_xmap.v techmap -map macc_xilinx_swap_map.v techmap -map macc_xilinx_wrap_map.v;; design -save __macc_xilinx_xmap design -pop extract -constports -ignore_parameters \ -map %__macc_xilinx_xmap \ -swap $__add_wrapper A,B ;; .. figure:: /_images/res/PRESENTATION_ExAdv/macc_xilinx_test2c.* :class: width-helper .. figure:: /_images/res/PRESENTATION_ExAdv/macc_xilinx_test2d.* :class: width-helper Unwrap in ``test2``: .. figure:: /_images/res/PRESENTATION_ExAdv/macc_xilinx_test2d.* :class: width-helper .. figure:: /_images/res/PRESENTATION_ExAdv/macc_xilinx_test2e.* :class: width-helper .. code:: yoscrypt techmap -map macc_xilinx_unwrap_map.v ;; Symbolic model checking ----------------------- .. todo:: check text context .. note:: While it is possible to perform model checking directly in Yosys, it is highly recommended to use SBY or EQY for formal hardware verification. Symbolic Model Checking (SMC) is used to formally prove that a circuit has (or has not) a given property. One application is Formal Equivalence Checking: Proving that two circuits are identical. For example this is a very useful feature when debugging custom passes in Yosys. Other applications include checking if a module conforms to interface standards. The :cmd:ref:`sat` command in Yosys can be used to perform Symbolic Model Checking. Checking techmap ~~~~~~~~~~~~~~~~ .. todo:: add/expand supporting text Remember the following example from :doc:`/getting_started/typical_phases`? .. literalinclude:: /code_examples/synth_flow/techmap_01_map.v :language: verilog :caption: ``docs/source/code_examples/synth_flow/techmap_01_map.v`` .. literalinclude:: /code_examples/synth_flow/techmap_01.v :language: verilog :caption: ``docs/source/code_examples/synth_flow/techmap_01.v`` .. literalinclude:: /code_examples/synth_flow/techmap_01.ys :language: yoscrypt :caption: ``docs/source/code_examples/synth_flow/techmap_01.ys`` Lets see if it is correct.. .. code:: yoscrypt # read test design read_verilog techmap_01.v hierarchy -top test # create two version of the design: test_orig and test_mapped copy test test_orig rename test test_mapped # apply the techmap only to test_mapped techmap -map techmap_01_map.v test_mapped # create a miter circuit to test equivalence miter -equiv -make_assert -make_outputs test_orig test_mapped miter flatten miter # run equivalence check sat -verify -prove-asserts -show-inputs -show-outputs miter Result: .. code:: Solving problem with 945 variables and 2505 clauses.. SAT proof finished - no model found: SUCCESS! AXI4 Stream Master ~~~~~~~~~~~~~~~~~~ The following AXI4 Stream Master has a bug. But the bug is not exposed if the slave keeps ``tready`` asserted all the time. (Something a test bench might do.) Symbolic Model Checking can be used to expose the bug and find a sequence of values for ``tready`` that yield the incorrect behavior. .. todo:: add/expand supporting text .. literalinclude:: /code_examples/axis/axis_master.v :language: verilog :caption: ``docs/source/code_examples/axis/axis_master.v`` .. literalinclude:: /code_examples/axis/axis_test.v :language: verilog :caption: ``docs/source/code_examples/axis/axis_test.v`` .. literalinclude:: /code_examples/axis/axis_test.ys :language: yoscrypt :caption: ``docs/source/code_examples/axis/test.ys`` Result with unmodified ``axis_master.v``: .. code:: Solving problem with 159344 variables and 442126 clauses.. SAT proof finished - model found: FAIL! Result with fixed ``axis_master.v``: .. code:: Solving problem with 159144 variables and 441626 clauses.. SAT proof finished - no model found: SUCCESS!