/* ISC License Copyright (C) 2024 Microchip Technology Inc. and its subsidiaries Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "kernel/sigtools.h" #include "kernel/yosys.h" #include USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN #include "passes/pmgen/microchip_dsp_CREG_pm.h" #include "passes/pmgen/microchip_dsp_cascade_pm.h" #include "passes/pmgen/microchip_dsp_pm.h" void microchip_dsp_pack(microchip_dsp_pm &pm) { auto &st = pm.st_microchip_dsp_pack; log("Analysing %s.%s for Microchip MACC_PA packing.\n", log_id(pm.module), log_id(st.dsp)); Cell *cell = st.dsp; // pack pre-adder if (st.preAdderStatic) { SigSpec &pasub = cell->connections_.at(ID(PASUB)); log(" static PASUB preadder %s (%s)\n", log_id(st.preAdderStatic), log_id(st.preAdderStatic->type)); bool D_SIGNED = st.preAdderStatic->getParam(ID::B_SIGNED).as_bool(); bool B_SIGNED = st.preAdderStatic->getParam(ID::A_SIGNED).as_bool(); st.sigB.extend_u0(18, B_SIGNED); st.sigD.extend_u0(18, D_SIGNED); if (st.moveBtoA) { cell->setPort(ID::A, st.sigA); // if pre-adder feeds into A, original sigB will be moved to port A } cell->setPort(ID::B, st.sigB); cell->setPort(ID::D, st.sigD); // MACC_PA supports both addition and subtraction with the pre-adder. // Affects the sign of the 'D' port. if (st.preAdderStatic->type == ID($add)) pasub[0] = State::S0; else if (st.preAdderStatic->type == ID($sub)) pasub[0] = State::S1; else log_assert(!"strange pre-adder type"); pm.autoremove(st.preAdderStatic); } // pack post-adder if (st.postAdderStatic) { log(" postadder %s (%s)\n", log_id(st.postAdderStatic), log_id(st.postAdderStatic->type)); SigSpec &sub = cell->connections_.at(ID(SUB)); // Post-adder in MACC_PA also supports subtraction // Determines the sign of the output from the multiplier. if (st.postAdderStatic->type == ID($add)) sub[0] = State::S0; else if (st.postAdderStatic->type == ID($sub)) sub[0] = State::S1; else log_assert(!"strange post-adder type"); if (st.useFeedBack) { cell->setPort(ID(CDIN_FDBK_SEL), {State::S0, State::S1}); } else { st.sigC.extend_u0(48, st.postAdderStatic->getParam(ID::A_SIGNED).as_bool()); cell->setPort(ID::C, st.sigC); } pm.autoremove(st.postAdderStatic); } // pack registers if (st.clock != SigBit()) { cell->setPort(ID::CLK, st.clock); // function to absorb a register auto f = [&pm, cell](SigSpec &A, Cell *ff, IdString ceport, IdString rstport, IdString bypass) { // input/output ports SigSpec D = ff->getPort(ID::D); SigSpec Q = pm.sigmap(ff->getPort(ID::Q)); if (!A.empty()) A.replace(Q, D); if (rstport != IdString()) { if (ff->type.in(ID($sdff), ID($sdffe))) { SigSpec srst = ff->getPort(ID::SRST); bool rstpol_n = !ff->getParam(ID::SRST_POLARITY).as_bool(); // active low sync rst cell->setPort(rstport, rstpol_n ? srst : pm.module->Not(NEW_ID, srst)); } else if (ff->type.in(ID($adff), ID($adffe))) { SigSpec arst = ff->getPort(ID::ARST); bool rstpol_n = !ff->getParam(ID::ARST_POLARITY).as_bool(); // active low async rst cell->setPort(rstport, rstpol_n ? arst : pm.module->Not(NEW_ID, arst)); } else { // active low async/sync rst cell->setPort(rstport, State::S1); } } if (ff->type.in(ID($dffe), ID($sdffe), ID($adffe))) { SigSpec ce = ff->getPort(ID::EN); bool cepol = ff->getParam(ID::EN_POLARITY).as_bool(); // enables are all active high cell->setPort(ceport, cepol ? ce : pm.module->Not(NEW_ID, ce)); } else { // enables are all active high cell->setPort(ceport, State::S1); } // bypass set to 0 cell->setPort(bypass, State::S0); for (auto c : Q.chunks()) { auto it = c.wire->attributes.find(ID::init); if (it == c.wire->attributes.end()) continue; for (int i = c.offset; i < c.offset + c.width; i++) { log_assert(it->second[i] == State::S0 || it->second[i] == State::Sx); it->second[i] = State::Sx; } } }; // NOTE: flops are not autoremoved because it is possible that they // are only partially absorbed into DSP, or have fanouts. if (st.ffA) { SigSpec A = cell->getPort(ID::A); if (st.ffA) { f(A, st.ffA, ID(A_EN), ID(A_SRST_N), ID(A_BYPASS)); } pm.add_siguser(A, cell); cell->setPort(ID::A, A); } if (st.ffB) { SigSpec B = cell->getPort(ID::B); if (st.ffB) { f(B, st.ffB, ID(B_EN), ID(B_SRST_N), ID(B_BYPASS)); } pm.add_siguser(B, cell); cell->setPort(ID::B, B); } if (st.ffD) { SigSpec D = cell->getPort(ID::D); if (st.ffD->type.in(ID($adff), ID($adffe))) { f(D, st.ffD, ID(D_EN), ID(D_ARST_N), ID(D_BYPASS)); } else { f(D, st.ffD, ID(D_EN), ID(D_SRST_N), ID(D_BYPASS)); } pm.add_siguser(D, cell); cell->setPort(ID::D, D); } if (st.ffP) { SigSpec P; // unused f(P, st.ffP, ID(P_EN), ID(P_SRST_N), ID(P_BYPASS)); st.ffP->connections_.at(ID::Q).replace(st.sigP, pm.module->addWire(NEW_ID, GetSize(st.sigP))); } log(" clock: %s (%s)\n", log_signal(st.clock), "posedge"); if (st.ffA) log(" \t ffA:%s\n", log_id(st.ffA)); if (st.ffB) log(" \t ffB:%s\n", log_id(st.ffB)); if (st.ffD) log(" \t ffD:%s\n", log_id(st.ffD)); if (st.ffP) log(" \t ffP:%s\n", log_id(st.ffP)); } log("\n"); SigSpec P = st.sigP; if (GetSize(P) < 48) P.append(pm.module->addWire(NEW_ID, 48 - GetSize(P))); cell->setPort(ID::P, P); pm.blacklist(cell); } // For packing cascaded DSPs void microchip_dsp_packC(microchip_dsp_CREG_pm &pm) { auto &st = pm.st_microchip_dsp_packC; log_debug("Analysing %s.%s for Microchip DSP packing (REG_C).\n", log_id(pm.module), log_id(st.dsp)); log_debug("ffC: %s\n", log_id(st.ffC, "--")); Cell *cell = st.dsp; if (st.clock != SigBit()) { cell->setPort(ID::CLK, st.clock); // same function as above, used for the last CREG we need to absorb auto f = [&pm, cell](SigSpec &A, Cell *ff, IdString ceport, IdString rstport, IdString bypass) { // input/output ports SigSpec D = ff->getPort(ID::D); SigSpec Q = pm.sigmap(ff->getPort(ID::Q)); if (!A.empty()) A.replace(Q, D); if (rstport != IdString()) { if (ff->type.in(ID($sdff), ID($sdffe))) { SigSpec srst = ff->getPort(ID::SRST); bool rstpol_n = !ff->getParam(ID::SRST_POLARITY).as_bool(); // active low sync rst cell->setPort(rstport, rstpol_n ? srst : pm.module->Not(NEW_ID, srst)); } else if (ff->type.in(ID($adff), ID($adffe))) { SigSpec arst = ff->getPort(ID::ARST); bool rstpol_n = !ff->getParam(ID::ARST_POLARITY).as_bool(); // active low async rst cell->setPort(rstport, rstpol_n ? arst : pm.module->Not(NEW_ID, arst)); } else { // active low async/sync rst cell->setPort(rstport, State::S1); } } if (ff->type.in(ID($dffe), ID($sdffe), ID($adffe))) { SigSpec ce = ff->getPort(ID::EN); bool cepol = ff->getParam(ID::EN_POLARITY).as_bool(); // enables are all active high cell->setPort(ceport, cepol ? ce : pm.module->Not(NEW_ID, ce)); } else { // enables are all active high cell->setPort(ceport, State::S1); } // bypass set to 0 cell->setPort(bypass, State::S0); for (auto c : Q.chunks()) { auto it = c.wire->attributes.find(ID::init); if (it == c.wire->attributes.end()) continue; for (int i = c.offset; i < c.offset + c.width; i++) { log_assert(it->second[i] == State::S0 || it->second[i] == State::Sx); it->second[i] = State::Sx; } } }; if (st.ffC) { SigSpec C = cell->getPort(ID::C); if (st.ffC->type.in(ID($adff), ID($adffe))) { f(C, st.ffC, ID(C_EN), ID(C_ARST_N), ID(C_BYPASS)); } else { f(C, st.ffC, ID(C_EN), ID(C_SRST_N), ID(C_BYPASS)); } pm.add_siguser(C, cell); cell->setPort(ID::C, C); } log(" clock: %s (%s)", log_signal(st.clock), "posedge"); if (st.ffC) log(" ffC:%s", log_id(st.ffC)); log("\n"); } pm.blacklist(cell); } struct MicrochipDspPass : public Pass { MicrochipDspPass() : Pass("microchip_dsp", "MICROCHIP: pack resources into DSPs") {} void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" microchip_dsp [options] [selection]\n"); log("\n"); log("Pack input registers 'A', 'B', 'C', and 'D' (with optional enable/reset),\n"); log("output register 'P' (with optional enable/reset), pre-adder and/or post-adder into\n"); log("Microchip DSP resources.\n"); log("\n"); log("Multiply-accumulate operations using the post-adder with feedback on the 'C'\n"); log("input will be folded into the DSP. In this scenario only, the 'C' input can be\n"); log("used to override the current accumulation result with a new value. This will\n"); log("be added to the multiplier result to form the next accumulation result.\n"); log("\n"); log("Use of the dedicated 'PCOUT' -> 'PCIN' cascade path is detected for 'P' -> 'C'\n"); log("connections (optionally, where 'P' is right-shifted by 17-bits and used as an\n"); log("input to the post-adder. This pattern is common for summing partial products to\n"); log("implement wide multipliers). Cascade chains are limited to a mazimum length \n"); log("of 24 cells, corresponding to PolarFire (pf) devices.\n"); log("\n"); log("This pass is a no-op if the scratchpad variable 'microchip_dsp.multonly' is set\n"); log("to 1.\n"); log("\n"); log("\n"); log(" -family {polarfire}\n"); log(" select the family to target\n"); log(" default: polarfire\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) override { log_header(design, "Executing MICROCHIP_DSP pass (pack resources into DSPs).\n"); std::string family = "polarfire"; size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if ((args[argidx] == "-family") && argidx + 1 < args.size()) { family = args[++argidx]; continue; } break; } extra_args(args, argidx, design); for (auto module : design->selected_modules()) { if (design->scratchpad_get_bool("microchip_dsp.multonly")) continue; { // For more details on PolarFire MACC_PA, consult // the "PolarFire FPGA Macro Library Guide" // Main pattern matching step to capture a DSP cell. // Match for pre-adder, post-adder, as well as // registers 'A', 'B', 'D', and 'P'. Additionally, // check for an accumulator pattern based on whether // a post-adder and PREG are both present AND // if PREG feeds into this post-adder. microchip_dsp_pm pm(module, module->selected_cells()); pm.run_microchip_dsp_pack(microchip_dsp_pack); } // Separating out CREG packing is necessary since there // is no guarantee that the cell ordering corresponds // to the "expected" case (i.e. the order in which // they appear in the source). There existed the possibility // where a register got packed as a CREG into a // downstream DSP that should have otherwise been a // PREG of an upstream DSP that had not been visited // yet { microchip_dsp_CREG_pm pm(module, module->selected_cells()); pm.run_microchip_dsp_packC(microchip_dsp_packC); } // Lastly, identify and utilise PCOUT -> PCIN chains { microchip_dsp_cascade_pm pm(module, module->selected_cells()); pm.run_microchip_dsp_cascade(); } } } } MicrochipDspPass; PRIVATE_NAMESPACE_END