/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Claire Xenia Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/register.h" #include "kernel/sigtools.h" #include "kernel/log.h" #include "kernel/celltypes.h" #include #include #include USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN struct OptReduceWorker { RTLIL::Design *design; RTLIL::Module *module; SigMap assign_map; int total_count; bool did_something; void opt_reduce(pool &cells, SigSet &drivers, RTLIL::Cell *cell) { if (cells.count(cell) == 0) return; cells.erase(cell); RTLIL::SigSpec sig_a = assign_map(cell->getPort(ID::A)); sig_a.sort_and_unify(); pool new_sig_a_bits; for (auto &bit : sig_a) { if (bit == RTLIL::State::S0) { if (cell->type == ID($reduce_and)) { new_sig_a_bits.clear(); new_sig_a_bits.insert(RTLIL::State::S0); break; } continue; } if (bit == RTLIL::State::S1) { if (cell->type == ID($reduce_or)) { new_sig_a_bits.clear(); new_sig_a_bits.insert(RTLIL::State::S1); break; } continue; } if (bit.wire == NULL) { new_sig_a_bits.insert(bit); continue; } bool imported_children = false; for (auto child_cell : drivers.find(bit)) { if (child_cell->type == cell->type) { opt_reduce(cells, drivers, child_cell); if (child_cell->getPort(ID::Y)[0] == bit) { pool child_sig_a_bits = assign_map(child_cell->getPort(ID::A)).to_sigbit_pool(); new_sig_a_bits.insert(child_sig_a_bits.begin(), child_sig_a_bits.end()); } else new_sig_a_bits.insert(RTLIL::State::S0); imported_children = true; } } if (!imported_children) new_sig_a_bits.insert(bit); } RTLIL::SigSpec new_sig_a(new_sig_a_bits); new_sig_a.sort_and_unify(); if (new_sig_a != sig_a || sig_a.size() != cell->getPort(ID::A).size()) { log(" New input vector for %s cell %s: %s\n", cell->type.c_str(), cell->name.c_str(), log_signal(new_sig_a)); did_something = true; total_count++; } cell->setPort(ID::A, new_sig_a); cell->parameters[ID::A_WIDTH] = RTLIL::Const(new_sig_a.size()); return; } void opt_pmux(RTLIL::Cell *cell) { RTLIL::SigSpec sig_a = assign_map(cell->getPort(ID::A)); RTLIL::SigSpec sig_b = assign_map(cell->getPort(ID::B)); RTLIL::SigSpec sig_s = assign_map(cell->getPort(ID::S)); RTLIL::SigSpec new_sig_b, new_sig_s; pool handled_sig; handled_sig.insert(sig_a); for (int i = 0; i < sig_s.size(); i++) { RTLIL::SigSpec this_b = sig_b.extract(i*sig_a.size(), sig_a.size()); if (handled_sig.count(this_b) > 0) continue; RTLIL::SigSpec this_s = sig_s.extract(i, 1); for (int j = i+1; j < sig_s.size(); j++) { RTLIL::SigSpec that_b = sig_b.extract(j*sig_a.size(), sig_a.size()); if (this_b == that_b) this_s.append(sig_s.extract(j, 1)); } if (this_s.size() > 1) { RTLIL::Cell *reduce_or_cell = module->addCell(NEW_ID, ID($reduce_or)); reduce_or_cell->setPort(ID::A, this_s); reduce_or_cell->parameters[ID::A_SIGNED] = RTLIL::Const(0); reduce_or_cell->parameters[ID::A_WIDTH] = RTLIL::Const(this_s.size()); reduce_or_cell->parameters[ID::Y_WIDTH] = RTLIL::Const(1); RTLIL::Wire *reduce_or_wire = module->addWire(NEW_ID); this_s = RTLIL::SigSpec(reduce_or_wire); reduce_or_cell->setPort(ID::Y, this_s); } new_sig_b.append(this_b); new_sig_s.append(this_s); handled_sig.insert(this_b); } if (new_sig_s.size() == 0) { module->connect(cell->getPort(ID::Y), cell->getPort(ID::A)); assign_map.add(cell->getPort(ID::Y), cell->getPort(ID::A)); module->remove(cell); did_something = true; total_count++; return; } if (new_sig_s.size() != sig_s.size() || (new_sig_s.size() == 1 && cell->type == ID($pmux))) { log(" New ctrl vector for %s cell %s: %s\n", cell->type.c_str(), cell->name.c_str(), log_signal(new_sig_s)); did_something = true; total_count++; cell->setPort(ID::B, new_sig_b); cell->setPort(ID::S, new_sig_s); if (new_sig_s.size() > 1) { cell->parameters[ID::S_WIDTH] = RTLIL::Const(new_sig_s.size()); } else { cell->type = ID($mux); cell->parameters.erase(ID::S_WIDTH); } } } void opt_bmux(RTLIL::Cell *cell) { RTLIL::SigSpec sig_a = assign_map(cell->getPort(ID::A)); RTLIL::SigSpec sig_s = assign_map(cell->getPort(ID::S)); int width = cell->getParam(ID::WIDTH).as_int(); RTLIL::SigSpec new_sig_a, new_sig_s; dict handled_bits; // 0 and up: index of new_sig_s bit // -1: const 0 // -2: const 1 std::vector swizzle; for (int i = 0; i < sig_s.size(); i++) { SigBit bit = sig_s[i]; if (bit == State::S0) { swizzle.push_back(-1); } else if (bit == State::S1) { swizzle.push_back(-2); } else { auto it = handled_bits.find(bit); if (it == handled_bits.end()) { int new_idx = GetSize(new_sig_s); new_sig_s.append(bit); handled_bits[bit] = new_idx; swizzle.push_back(new_idx); } else { swizzle.push_back(it->second); } } } for (int i = 0; i < (1 << GetSize(new_sig_s)); i++) { int idx = 0; for (int j = 0; j < GetSize(sig_s); j++) { if (swizzle[j] == -1) { // const 0. } else if (swizzle[j] == -2) { // const 1. idx |= 1 << j; } else { if (i & 1 << swizzle[j]) idx |= 1 << j; } } new_sig_a.append(sig_a.extract(idx * width, width)); } if (new_sig_s.size() == 0) { module->connect(cell->getPort(ID::Y), new_sig_a); assign_map.add(cell->getPort(ID::Y), new_sig_a); module->remove(cell); did_something = true; total_count++; return; } if (new_sig_s.size() == 1) { cell->type = ID($mux); cell->setPort(ID::A, new_sig_a.extract(0, width)); cell->setPort(ID::B, new_sig_a.extract(width, width)); cell->setPort(ID::S, new_sig_s); cell->parameters.erase(ID::S_WIDTH); did_something = true; total_count++; return; } if (new_sig_s.size() != sig_s.size()) { log(" New ctrl vector for %s cell %s: %s\n", cell->type.c_str(), cell->name.c_str(), log_signal(new_sig_s)); did_something = true; total_count++; cell->setPort(ID::A, new_sig_a); cell->setPort(ID::S, new_sig_s); cell->parameters[ID::S_WIDTH] = RTLIL::Const(new_sig_s.size()); } } void opt_demux(RTLIL::Cell *cell) { RTLIL::SigSpec sig_y = assign_map(cell->getPort(ID::Y)); RTLIL::SigSpec sig_s = assign_map(cell->getPort(ID::S)); int width = cell->getParam(ID::WIDTH).as_int(); RTLIL::SigSpec new_sig_y, new_sig_s; dict handled_bits; // 0 and up: index of new_sig_s bit // -1: const 0 // -2: const 1 std::vector swizzle; for (int i = 0; i < sig_s.size(); i++) { SigBit bit = sig_s[i]; if (bit == State::S0) { swizzle.push_back(-1); } else if (bit == State::S1) { swizzle.push_back(-2); } else { auto it = handled_bits.find(bit); if (it == handled_bits.end()) { int new_idx = GetSize(new_sig_s); new_sig_s.append(bit); handled_bits[bit] = new_idx; swizzle.push_back(new_idx); } else { swizzle.push_back(it->second); } } } pool nonzero_idx; for (int i = 0; i < (1 << GetSize(new_sig_s)); i++) { int idx = 0; for (int j = 0; j < GetSize(sig_s); j++) { if (swizzle[j] == -1) { // const 0. } else if (swizzle[j] == -2) { // const 1. idx |= 1 << j; } else { if (i & 1 << swizzle[j]) idx |= 1 << j; } } log_assert(!nonzero_idx.count(idx)); nonzero_idx.insert(idx); new_sig_y.append(sig_y.extract(idx * width, width)); } if (new_sig_s.size() == sig_s.size() && sig_s.size() > 0) return; log(" New ctrl vector for %s cell %s: %s\n", cell->type.c_str(), cell->name.c_str(), log_signal(new_sig_s)); did_something = true; total_count++; for (int i = 0; i < (1 << GetSize(sig_s)); i++) { if (!nonzero_idx.count(i)) { SigSpec slice = sig_y.extract(i * width, width); module->connect(slice, Const(State::S0, width)); assign_map.add(slice, Const(State::S0, width)); } } if (new_sig_s.size() == 0) { module->connect(new_sig_y, cell->getPort(ID::A)); assign_map.add(new_sig_y, cell->getPort(ID::A)); module->remove(cell); } else { cell->setPort(ID::S, new_sig_s); cell->setPort(ID::Y, new_sig_y); cell->parameters[ID::S_WIDTH] = RTLIL::Const(new_sig_s.size()); } } bool opt_mux_bits(RTLIL::Cell *cell) { SigSpec sig_a = assign_map(cell->getPort(ID::A)); SigSpec sig_b; SigSpec sig_y = assign_map(cell->getPort(ID::Y)); int width = GetSize(sig_y); if (cell->type != ID($bmux)) sig_b = assign_map(cell->getPort(ID::B)); RTLIL::SigSig old_sig_conn; dict consolidated_in_tuples; std::vector swizzle; for (int i = 0; i < width; i++) { SigSpec in_tuple; bool all_tuple_bits_same = true; in_tuple.append(sig_a[i]); for (int j = i; j < GetSize(sig_a); j += width) { in_tuple.append(sig_a[j]); if (sig_a[j] != in_tuple[0]) all_tuple_bits_same = false; } for (int j = i; j < GetSize(sig_b); j += width) { in_tuple.append(sig_b[j]); if (sig_b[j] != in_tuple[0]) all_tuple_bits_same = false; } if (all_tuple_bits_same) { old_sig_conn.first.append(sig_y[i]); old_sig_conn.second.append(sig_a[i]); continue; } auto it = consolidated_in_tuples.find(in_tuple); if (it == consolidated_in_tuples.end()) { consolidated_in_tuples[in_tuple] = sig_y[i]; swizzle.push_back(i); } else { old_sig_conn.first.append(sig_y[i]); old_sig_conn.second.append(it->second); } } if (GetSize(swizzle) != width) { log(" Consolidated identical input bits for %s cell %s:\n", cell->type.c_str(), cell->name.c_str()); if (cell->type != ID($bmux)) { log(" Old ports: A=%s, B=%s, Y=%s\n", log_signal(cell->getPort(ID::A)), log_signal(cell->getPort(ID::B)), log_signal(cell->getPort(ID::Y))); } else { log(" Old ports: A=%s, Y=%s\n", log_signal(cell->getPort(ID::A)), log_signal(cell->getPort(ID::Y))); } if (swizzle.empty()) { module->remove(cell); } else { SigSpec new_sig_a; for (int i = 0; i < GetSize(sig_a); i += width) for (int j: swizzle) new_sig_a.append(sig_a[i+j]); cell->setPort(ID::A, new_sig_a); if (cell->type != ID($bmux)) { SigSpec new_sig_b; for (int i = 0; i < GetSize(sig_b); i += width) for (int j: swizzle) new_sig_b.append(sig_b[i+j]); cell->setPort(ID::B, new_sig_b); } SigSpec new_sig_y; for (int j: swizzle) new_sig_y.append(sig_y[j]); cell->setPort(ID::Y, new_sig_y); cell->parameters[ID::WIDTH] = RTLIL::Const(GetSize(swizzle)); if (cell->type != ID($bmux)) { log(" New ports: A=%s, B=%s, Y=%s\n", log_signal(cell->getPort(ID::A)), log_signal(cell->getPort(ID::B)), log_signal(cell->getPort(ID::Y))); } else { log(" New ports: A=%s, Y=%s\n", log_signal(cell->getPort(ID::A)), log_signal(cell->getPort(ID::Y))); } } log(" New connections: %s = %s\n", log_signal(old_sig_conn.first), log_signal(old_sig_conn.second)); module->connect(old_sig_conn); did_something = true; total_count++; } return swizzle.empty(); } bool opt_demux_bits(RTLIL::Cell *cell) { SigSpec sig_a = assign_map(cell->getPort(ID::A)); SigSpec sig_y = assign_map(cell->getPort(ID::Y)); int width = GetSize(sig_a); RTLIL::SigSig old_sig_conn; dict handled_bits; std::vector swizzle; for (int i = 0; i < width; i++) { if (sig_a[i] == State::S0) { for (int j = i; j < GetSize(sig_y); j += width) { old_sig_conn.first.append(sig_y[j]); old_sig_conn.second.append(State::S0); } continue; } auto it = handled_bits.find(sig_a[i]); if (it == handled_bits.end()) { handled_bits[sig_a[i]] = i; swizzle.push_back(i); } else { for (int j = 0; j < GetSize(sig_y); j += width) { old_sig_conn.first.append(sig_y[i+j]); old_sig_conn.second.append(sig_y[it->second+j]); } } } if (GetSize(swizzle) != width) { log(" Consolidated identical input bits for %s cell %s:\n", cell->type.c_str(), cell->name.c_str()); log(" Old ports: A=%s, Y=%s\n", log_signal(cell->getPort(ID::A)), log_signal(cell->getPort(ID::Y))); if (swizzle.empty()) { module->remove(cell); } else { SigSpec new_sig_a; for (int j: swizzle) new_sig_a.append(sig_a[j]); cell->setPort(ID::A, new_sig_a); SigSpec new_sig_y; for (int i = 0; i < GetSize(sig_y); i += width) for (int j: swizzle) new_sig_y.append(sig_y[i+j]); cell->setPort(ID::Y, new_sig_y); cell->parameters[ID::WIDTH] = RTLIL::Const(GetSize(swizzle)); log(" New ports: A=%s, Y=%s\n", log_signal(cell->getPort(ID::A)), log_signal(cell->getPort(ID::Y))); } log(" New connections: %s = %s\n", log_signal(old_sig_conn.first), log_signal(old_sig_conn.second)); module->connect(old_sig_conn); did_something = true; total_count++; } return swizzle.empty(); } OptReduceWorker(RTLIL::Design *design, RTLIL::Module *module, bool do_fine) : design(design), module(module), assign_map(module) { log(" Optimizing cells in module %s.\n", module->name.c_str()); total_count = 0; did_something = true; SigPool mem_wren_sigs; for (auto &cell_it : module->cells_) { RTLIL::Cell *cell = cell_it.second; if (cell->type.in(ID($mem), ID($mem_v2))) mem_wren_sigs.add(assign_map(cell->getPort(ID::WR_EN))); if (cell->type.in(ID($memwr), ID($memwr_v2))) mem_wren_sigs.add(assign_map(cell->getPort(ID::EN))); } for (auto &cell_it : module->cells_) { RTLIL::Cell *cell = cell_it.second; if (cell->type == ID($dff) && mem_wren_sigs.check_any(assign_map(cell->getPort(ID::Q)))) mem_wren_sigs.add(assign_map(cell->getPort(ID::D))); } bool keep_expanding_mem_wren_sigs = true; while (keep_expanding_mem_wren_sigs) { keep_expanding_mem_wren_sigs = false; for (auto &cell_it : module->cells_) { RTLIL::Cell *cell = cell_it.second; if (cell->type == ID($mux) && mem_wren_sigs.check_any(assign_map(cell->getPort(ID::Y)))) { if (!mem_wren_sigs.check_all(assign_map(cell->getPort(ID::A))) || !mem_wren_sigs.check_all(assign_map(cell->getPort(ID::B)))) keep_expanding_mem_wren_sigs = true; mem_wren_sigs.add(assign_map(cell->getPort(ID::A))); mem_wren_sigs.add(assign_map(cell->getPort(ID::B))); } } } while (did_something) { did_something = false; // merge trees of reduce_* cells to one single cell and unify input vectors // (only handle reduce_and and reduce_or for various reasons) const IdString type_list[] = { ID($reduce_or), ID($reduce_and) }; for (auto type : type_list) { SigSet drivers; pool cells; for (auto &cell_it : module->cells_) { RTLIL::Cell *cell = cell_it.second; if (cell->type != type || !design->selected(module, cell)) continue; drivers.insert(assign_map(cell->getPort(ID::Y)), cell); cells.insert(cell); } while (cells.size() > 0) { RTLIL::Cell *cell = *cells.begin(); opt_reduce(cells, drivers, cell); } } // merge identical inputs on $mux and $pmux cells for (auto cell : module->selected_cells()) { if (!cell->type.in(ID($mux), ID($pmux), ID($bmux), ID($demux))) continue; // this optimization is to aggressive for most coarse-grain applications. // but we always want it for multiplexers driving write enable ports. if (do_fine || mem_wren_sigs.check_any(assign_map(cell->getPort(ID::Y)))) { if (cell->type == ID($demux)) { if (opt_demux_bits(cell)) continue; } else { if (opt_mux_bits(cell)) continue; } } if (cell->type.in(ID($mux), ID($pmux))) opt_pmux(cell); if (cell->type == ID($bmux)) opt_bmux(cell); if (cell->type == ID($demux)) opt_demux(cell); } } module->check(); } }; struct OptReducePass : public Pass { OptReducePass() : Pass("opt_reduce", "simplify large MUXes and AND/OR gates") { } void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" opt_reduce [options] [selection]\n"); log("\n"); log("This pass performs two interlinked optimizations:\n"); log("\n"); log("1. it consolidates trees of large AND gates or OR gates and eliminates\n"); log("duplicated inputs.\n"); log("\n"); log("2. it identifies duplicated inputs to MUXes and replaces them with a single\n"); log("input with the original control signals OR'ed together.\n"); log("\n"); log(" -fine\n"); log(" perform fine-grain optimizations\n"); log("\n"); log(" -full\n"); log(" alias for -fine\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) override { bool do_fine = false; log_header(design, "Executing OPT_REDUCE pass (consolidate $*mux and $reduce_* inputs).\n"); size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-fine") { do_fine = true; continue; } if (args[argidx] == "-full") { do_fine = true; continue; } break; } extra_args(args, argidx, design); int total_count = 0; for (auto module : design->selected_modules()) while (1) { OptReduceWorker worker(design, module, do_fine); total_count += worker.total_count; if (worker.total_count == 0) break; } if (total_count) design->scratchpad_set_bool("opt.did_something", true); log("Performed a total of %d changes.\n", total_count); } } OptReducePass; PRIVATE_NAMESPACE_END