/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * 2019 Eddie Hung * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ // https://stackoverflow.com/a/46137633 #ifdef _MSC_VER #include #define bswap32 _byteswap_ulong #elif defined(__APPLE__) #include #define bswap32 OSSwapInt32 #elif defined(__GNUC__) #define bswap32 __builtin_bswap32 #else #include inline static uint32_t bswap32(uint32_t x) { // https://stackoverflow.com/a/27796212 register uint32_t value = number_to_be_reversed; uint8_t lolo = (value >> 0) & 0xFF; uint8_t lohi = (value >> 8) & 0xFF; uint8_t hilo = (value >> 16) & 0xFF; uint8_t hihi = (value >> 24) & 0xFF; return (hihi << 24) | (hilo << 16) | (lohi << 8) | (lolo << 0); } #endif #include "kernel/yosys.h" #include "kernel/sigtools.h" #include "kernel/utils.h" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN inline int32_t to_big_endian(int32_t i32) { #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ return bswap32(i32); #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ return i32; #else #error "Unknown endianness" #endif } void aiger_encode(std::ostream &f, int x) { log_assert(x >= 0); while (x & ~0x7f) { f.put((x & 0x7f) | 0x80); x = x >> 7; } f.put(x); } struct XAigerWriter { Module *module; SigMap sigmap; pool input_bits, output_bits, external_bits; dict not_map, alias_map; dict> and_map; vector> ci_bits; vector> co_bits; dict> ff_bits; dict arrival_times; vector> aig_gates; vector aig_outputs; int aig_m = 0, aig_i = 0, aig_l = 0, aig_o = 0, aig_a = 0; dict aig_map; dict ordered_outputs; vector box_list; bool omode = false; int mkgate(int a0, int a1) { aig_m++, aig_a++; aig_gates.push_back(a0 > a1 ? make_pair(a0, a1) : make_pair(a1, a0)); return 2*aig_m; } int bit2aig(SigBit bit) { auto it = aig_map.find(bit); if (it != aig_map.end()) { log_assert(it->second >= 0); return it->second; } // NB: Cannot use iterator returned from aig_map.insert() // since this function is called recursively int a = -1; if (not_map.count(bit)) { a = bit2aig(not_map.at(bit)) ^ 1; } else if (and_map.count(bit)) { auto args = and_map.at(bit); int a0 = bit2aig(args.first); int a1 = bit2aig(args.second); a = mkgate(a0, a1); } else if (alias_map.count(bit)) { a = bit2aig(alias_map.at(bit)); } if (bit == State::Sx || bit == State::Sz) { log_debug("Design contains 'x' or 'z' bits. Treating as 1'b0.\n"); a = aig_map.at(State::S0); } log_assert(a >= 0); aig_map[bit] = a; return a; } XAigerWriter(Module *module, bool holes_mode=false) : module(module), sigmap(module) { pool undriven_bits; pool unused_bits; pool inout_bits; // promote public wires for (auto wire : module->wires()) if (wire->name[0] == '\\') sigmap.add(wire); // promote input wires for (auto wire : module->wires()) if (wire->port_input) sigmap.add(wire); // promote keep wires for (auto wire : module->wires()) if (wire->get_bool_attribute(ID::keep)) sigmap.add(wire); for (auto wire : module->wires()) for (int i = 0; i < GetSize(wire); i++) { SigBit wirebit(wire, i); SigBit bit = sigmap(wirebit); if (bit.wire == nullptr) { if (wire->port_output) { aig_map[wirebit] = (bit == State::S1) ? 1 : 0; if (holes_mode) output_bits.insert(wirebit); //external_bits.insert(wirebit); } continue; } undriven_bits.insert(bit); unused_bits.insert(bit); if (wire->port_input) input_bits.insert(bit); if (wire->port_output) { if (bit != wirebit) alias_map[wirebit] = bit; if (holes_mode) output_bits.insert(wirebit); else external_bits.insert(wirebit); } if (wire->port_input && wire->port_output) inout_bits.insert(wirebit); } // TODO: Speed up toposort -- ultimately we care about // box ordering, but not individual AIG cells dict> bit_drivers, bit_users; TopoSort toposort; bool abc9_box_seen = false; std::vector flop_boxes; for (auto cell : module->selected_cells()) { if (cell->type == "$_NOT_") { SigBit A = sigmap(cell->getPort("\\A").as_bit()); SigBit Y = sigmap(cell->getPort("\\Y").as_bit()); unused_bits.erase(A); undriven_bits.erase(Y); not_map[Y] = A; if (!holes_mode) { toposort.node(cell->name); bit_users[A].insert(cell->name); bit_drivers[Y].insert(cell->name); } continue; } if (cell->type == "$_AND_") { SigBit A = sigmap(cell->getPort("\\A").as_bit()); SigBit B = sigmap(cell->getPort("\\B").as_bit()); SigBit Y = sigmap(cell->getPort("\\Y").as_bit()); unused_bits.erase(A); unused_bits.erase(B); undriven_bits.erase(Y); and_map[Y] = make_pair(A, B); if (!holes_mode) { toposort.node(cell->name); bit_users[A].insert(cell->name); bit_users[B].insert(cell->name); bit_drivers[Y].insert(cell->name); } continue; } log_assert(!holes_mode); if (cell->type == "$__ABC9_FF_") { SigBit D = sigmap(cell->getPort("\\D").as_bit()); SigBit Q = sigmap(cell->getPort("\\Q").as_bit()); unused_bits.erase(D); undriven_bits.erase(Q); alias_map[Q] = D; auto r = ff_bits.insert(std::make_pair(D, std::make_pair(0, 2))); log_assert(r.second); continue; } RTLIL::Module* inst_module = module->design->module(cell->type); if (inst_module && inst_module->attributes.count("\\abc9_box_id")) { abc9_box_seen = true; toposort.node(cell->name); for (const auto &conn : cell->connections()) { auto port_wire = inst_module->wire(conn.first); if (port_wire->port_input) { // Ignore inout for the sake of topographical ordering if (port_wire->port_output) continue; for (auto bit : sigmap(conn.second)) bit_users[bit].insert(cell->name); } if (port_wire->port_output) { int arrival = 0; auto it = port_wire->attributes.find("\\abc9_arrival"); if (it != port_wire->attributes.end()) { if (it->second.flags != 0) log_error("Attribute 'abc9_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(port_wire), log_id(cell->type)); arrival = it->second.as_int(); } for (auto bit : sigmap(conn.second)) { bit_drivers[bit].insert(cell->name); if (arrival) arrival_times[bit] = arrival; } } } if (inst_module->attributes.count("\\abc9_flop")) flop_boxes.push_back(cell); continue; } bool cell_known = inst_module || cell->known(); for (const auto &c : cell->connections()) { if (c.second.is_fully_const()) continue; auto port_wire = inst_module ? inst_module->wire(c.first) : nullptr; auto is_input = (port_wire && port_wire->port_input) || !cell_known || cell->input(c.first); auto is_output = (port_wire && port_wire->port_output) || !cell_known || cell->output(c.first); if (!is_input && !is_output) log_error("Connection '%s' on cell '%s' (type '%s') not recognised!\n", log_id(c.first), log_id(cell), log_id(cell->type)); if (is_input) { for (auto b : c.second) { Wire *w = b.wire; if (!w) continue; if (!w->port_output || !cell_known) { SigBit I = sigmap(b); if (I != b) alias_map[b] = I; if (holes_mode) output_bits.insert(b); else external_bits.insert(b); } } } } //log_warning("Unsupported cell type: %s (%s)\n", log_id(cell->type), log_id(cell)); } if (abc9_box_seen) { dict> flop_q; for (auto cell : flop_boxes) { auto r = flop_q.insert(std::make_pair(cell->type, std::make_pair(IdString(), 0))); SigBit d; if (r.second) { for (const auto &conn : cell->connections()) { const SigSpec &rhs = conn.second; if (!rhs.is_bit()) continue; if (!ff_bits.count(rhs)) continue; r.first->second.first = conn.first; Module *inst_module = module->design->module(cell->type); Wire *wire = inst_module->wire(conn.first); log_assert(wire); auto jt = wire->attributes.find("\\abc9_arrival"); if (jt != wire->attributes.end()) { if (jt->second.flags != 0) log_error("Attribute 'abc9_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(wire), log_id(cell->type)); r.first->second.second = jt->second.as_int(); } d = rhs; log_assert(d == sigmap(d)); break; } } else d = cell->getPort(r.first->second.first); auto &rhs = ff_bits.at(d); auto it = cell->attributes.find(ID(abc9_mergeability)); log_assert(it != cell->attributes.end()); rhs.first = it->second.as_int(); cell->attributes.erase(it); it = cell->attributes.find(ID(abc9_init)); log_assert(it != cell->attributes.end()); log_assert(GetSize(it->second) == 1); if (it->second[0] == State::S1) rhs.second = 1; else if (it->second[0] == State::S0) rhs.second = 0; else { log_assert(it->second[0] == State::Sx); rhs.second = 0; } cell->attributes.erase(it); auto arrival = r.first->second.second; if (arrival) arrival_times[d] = arrival; } for (auto &it : bit_users) if (bit_drivers.count(it.first)) for (auto driver_cell : bit_drivers.at(it.first)) for (auto user_cell : it.second) toposort.edge(driver_cell, user_cell); #if 0 toposort.analyze_loops = true; #endif bool no_loops YS_ATTRIBUTE(unused) = toposort.sort(); #if 0 unsigned i = 0; for (auto &it : toposort.loops) { log(" loop %d\n", i++); for (auto cell_name : it) { auto cell = module->cell(cell_name); log_assert(cell); log("\t%s (%s @ %s)\n", log_id(cell), log_id(cell->type), cell->get_src_attribute().c_str()); } } #endif log_assert(no_loops); for (auto cell_name : toposort.sorted) { RTLIL::Cell *cell = module->cell(cell_name); log_assert(cell); RTLIL::Module* box_module = module->design->module(cell->type); if (!box_module || !box_module->attributes.count("\\abc9_box_id")) continue; bool blackbox = box_module->get_blackbox_attribute(true /* ignore_wb */); // Fully pad all unused input connections of this box cell with S0 // Fully pad all undriven output connections of this box cell with anonymous wires // NB: Assume box_module->ports are sorted alphabetically // (as RTLIL::Module::fixup_ports() would do) for (const auto &port_name : box_module->ports) { RTLIL::Wire* w = box_module->wire(port_name); log_assert(w); auto it = cell->connections_.find(port_name); if (w->port_input) { RTLIL::SigSpec rhs; if (it != cell->connections_.end()) { if (GetSize(it->second) < GetSize(w)) it->second.append(RTLIL::SigSpec(State::S0, GetSize(w)-GetSize(it->second))); rhs = it->second; } else { rhs = RTLIL::SigSpec(State::S0, GetSize(w)); cell->setPort(port_name, rhs); } int offset = 0; for (auto b : rhs.bits()) { SigBit I = sigmap(b); if (b == RTLIL::Sx) b = State::S0; else if (I != b) { if (I == RTLIL::Sx) alias_map[b] = State::S0; else alias_map[b] = I; } co_bits.emplace_back(b, cell, port_name, offset++, 0); unused_bits.erase(I); } } if (w->port_output) { RTLIL::SigSpec rhs; auto it = cell->connections_.find(w->name); if (it != cell->connections_.end()) { if (GetSize(it->second) < GetSize(w)) it->second.append(module->addWire(NEW_ID, GetSize(w)-GetSize(it->second))); rhs = it->second; } else { Wire *wire = module->addWire(NEW_ID, GetSize(w)); if (blackbox) wire->set_bool_attribute(ID(abc9_padding)); rhs = wire; cell->setPort(port_name, rhs); } int offset = 0; for (const auto &b : rhs.bits()) { ci_bits.emplace_back(b, cell, port_name, offset++); SigBit O = sigmap(b); if (O != b) alias_map[O] = b; input_bits.erase(O); undriven_bits.erase(O); } } } // Connect .$abc9_currQ (inserted by abc9_map.v) as an input to the flop box if (box_module->get_bool_attribute("\\abc9_flop")) { SigSpec rhs = module->wire(stringf("%s.$abc9_currQ", cell->name.c_str())); if (rhs.empty()) log_error("'%s.$abc9_currQ' is not a wire present in module '%s'.\n", log_id(cell), log_id(module)); int offset = 0; for (auto b : rhs) { SigBit I = sigmap(b); if (b == RTLIL::Sx) b = State::S0; else if (I != b) { if (I == RTLIL::Sx) alias_map[b] = State::S0; else alias_map[b] = I; } co_bits.emplace_back(b, cell, "\\$abc9_currQ", offset++, 0); unused_bits.erase(I); } } box_list.emplace_back(cell); } // TODO: Free memory from toposort, bit_drivers, bit_users } if (!holes_mode) for (auto cell : module->cells()) if (!module->selected(cell)) for (auto &conn : cell->connections()) if (cell->input(conn.first)) for (auto wirebit : conn.second) if (sigmap(wirebit).wire) external_bits.insert(wirebit); // For all bits consumed outside of the selected cells, // but driven from a selected cell, then add it as // a primary output for (auto wirebit : external_bits) { SigBit bit = sigmap(wirebit); if (!bit.wire) continue; if (!undriven_bits.count(bit)) { if (bit != wirebit) alias_map[wirebit] = bit; output_bits.insert(wirebit); } } for (auto bit : input_bits) undriven_bits.erase(sigmap(bit)); for (auto bit : output_bits) unused_bits.erase(sigmap(bit)); for (auto bit : unused_bits) undriven_bits.erase(bit); // Make all undriven bits a primary input if (!holes_mode) for (auto bit : undriven_bits) { input_bits.insert(bit); undriven_bits.erase(bit); } if (holes_mode) { struct sort_by_port_id { bool operator()(const RTLIL::SigBit& a, const RTLIL::SigBit& b) const { return a.wire->port_id < b.wire->port_id; } }; input_bits.sort(sort_by_port_id()); output_bits.sort(sort_by_port_id()); } else { input_bits.sort(); output_bits.sort(); } not_map.sort(); and_map.sort(); aig_map[State::S0] = 0; aig_map[State::S1] = 1; for (auto bit : input_bits) { aig_m++, aig_i++; log_assert(!aig_map.count(bit)); aig_map[bit] = 2*aig_m; } for (const auto &i : ff_bits) { const SigBit &bit = i.first; aig_m++, aig_i++; log_assert(!aig_map.count(bit)); aig_map[bit] = 2*aig_m; } dict ff_aig_map; for (auto &c : ci_bits) { RTLIL::SigBit bit = std::get<0>(c); aig_m++, aig_i++; auto r = aig_map.insert(std::make_pair(bit, 2*aig_m)); if (!r.second) ff_aig_map[bit] = 2*aig_m; } for (auto &c : co_bits) { RTLIL::SigBit bit = std::get<0>(c); std::get<4>(c) = ordered_outputs[bit] = aig_o++; aig_outputs.push_back(bit2aig(bit)); } if (output_bits.empty()) { output_bits.insert(State::S0); omode = true; } for (auto bit : output_bits) { ordered_outputs[bit] = aig_o++; aig_outputs.push_back(bit2aig(bit)); } for (auto &i : ff_bits) { const SigBit &bit = i.first; aig_o++; aig_outputs.push_back(ff_aig_map.at(bit)); } if (output_bits.empty()) { aig_o++; aig_outputs.push_back(0); omode = true; } } void write_aiger(std::ostream &f, bool ascii_mode) { int aig_obc = aig_o; int aig_obcj = aig_obc; int aig_obcjf = aig_obcj; log_assert(aig_m == aig_i + aig_l + aig_a); log_assert(aig_obcjf == GetSize(aig_outputs)); f << stringf("%s %d %d %d %d %d", ascii_mode ? "aag" : "aig", aig_m, aig_i, aig_l, aig_o, aig_a); f << stringf("\n"); if (ascii_mode) { for (int i = 0; i < aig_i; i++) f << stringf("%d\n", 2*i+2); for (int i = 0; i < aig_obc; i++) f << stringf("%d\n", aig_outputs.at(i)); for (int i = aig_obc; i < aig_obcj; i++) f << stringf("1\n"); for (int i = aig_obc; i < aig_obcj; i++) f << stringf("%d\n", aig_outputs.at(i)); for (int i = aig_obcj; i < aig_obcjf; i++) f << stringf("%d\n", aig_outputs.at(i)); for (int i = 0; i < aig_a; i++) f << stringf("%d %d %d\n", 2*(aig_i+aig_l+i)+2, aig_gates.at(i).first, aig_gates.at(i).second); } else { for (int i = 0; i < aig_obc; i++) f << stringf("%d\n", aig_outputs.at(i)); for (int i = aig_obc; i < aig_obcj; i++) f << stringf("1\n"); for (int i = aig_obc; i < aig_obcj; i++) f << stringf("%d\n", aig_outputs.at(i)); for (int i = aig_obcj; i < aig_obcjf; i++) f << stringf("%d\n", aig_outputs.at(i)); for (int i = 0; i < aig_a; i++) { int lhs = 2*(aig_i+aig_l+i)+2; int rhs0 = aig_gates.at(i).first; int rhs1 = aig_gates.at(i).second; int delta0 = lhs - rhs0; int delta1 = rhs0 - rhs1; aiger_encode(f, delta0); aiger_encode(f, delta1); } } f << "c"; log_assert(!output_bits.empty()); auto write_buffer = [](std::stringstream &buffer, int i32) { int32_t i32_be = to_big_endian(i32); buffer.write(reinterpret_cast(&i32_be), sizeof(i32_be)); }; std::stringstream h_buffer; auto write_h_buffer = std::bind(write_buffer, std::ref(h_buffer), std::placeholders::_1); write_h_buffer(1); log_debug("ciNum = %d\n", GetSize(input_bits) + GetSize(ff_bits) + GetSize(ci_bits)); write_h_buffer(input_bits.size() + ff_bits.size() + ci_bits.size()); log_debug("coNum = %d\n", GetSize(output_bits) + GetSize(ff_bits) + GetSize(co_bits)); write_h_buffer(output_bits.size() + GetSize(ff_bits) + GetSize(co_bits)); log_debug("piNum = %d\n", GetSize(input_bits) + GetSize(ff_bits)); write_h_buffer(input_bits.size() + ff_bits.size()); log_debug("poNum = %d\n", GetSize(output_bits) + GetSize(ff_bits)); write_h_buffer(output_bits.size() + ff_bits.size()); log_debug("boxNum = %d\n", GetSize(box_list)); write_h_buffer(box_list.size()); auto write_buffer_float = [](std::stringstream &buffer, float f32) { buffer.write(reinterpret_cast(&f32), sizeof(f32)); }; std::stringstream i_buffer; auto write_i_buffer = std::bind(write_buffer_float, std::ref(i_buffer), std::placeholders::_1); for (auto bit : input_bits) write_i_buffer(arrival_times.at(bit, 0)); //std::stringstream o_buffer; //auto write_o_buffer = std::bind(write_buffer_float, std::ref(o_buffer), std::placeholders::_1); //for (auto bit : output_bits) // write_o_buffer(0); if (!box_list.empty() || !ff_bits.empty()) { RTLIL::Module *holes_module = module->design->addModule("$__holes__"); log_assert(holes_module); dict cell_cache; int port_id = 1; int box_count = 0; for (auto cell : box_list) { RTLIL::Module* box_module = module->design->module(cell->type); log_assert(box_module); IdString derived_name = box_module->derive(module->design, cell->parameters); box_module = module->design->module(derived_name); if (box_module->has_processes()) Pass::call_on_module(module->design, box_module, "proc"); int box_inputs = 0, box_outputs = 0; auto r = cell_cache.insert(std::make_pair(derived_name, nullptr)); Cell *holes_cell = r.first->second; if (r.second && !holes_cell && box_module->get_bool_attribute("\\whitebox")) { holes_cell = holes_module->addCell(cell->name, cell->type); holes_cell->parameters = cell->parameters; r.first->second = holes_cell; } // NB: Assume box_module->ports are sorted alphabetically // (as RTLIL::Module::fixup_ports() would do) for (const auto &port_name : box_module->ports) { RTLIL::Wire *w = box_module->wire(port_name); log_assert(w); RTLIL::Wire *holes_wire; RTLIL::SigSpec port_sig; if (w->port_input) for (int i = 0; i < GetSize(w); i++) { box_inputs++; holes_wire = holes_module->wire(stringf("\\i%d", box_inputs)); if (!holes_wire) { holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs)); holes_wire->port_input = true; holes_wire->port_id = port_id++; holes_module->ports.push_back(holes_wire->name); } if (holes_cell) port_sig.append(holes_wire); } if (w->port_output) { box_outputs += GetSize(w); for (int i = 0; i < GetSize(w); i++) { if (GetSize(w) == 1) holes_wire = holes_module->addWire(stringf("$abc%s.%s", cell->name.c_str(), log_id(w->name))); else holes_wire = holes_module->addWire(stringf("$abc%s.%s[%d]", cell->name.c_str(), log_id(w->name), i)); holes_wire->port_output = true; holes_wire->port_id = port_id++; holes_module->ports.push_back(holes_wire->name); if (holes_cell) port_sig.append(holes_wire); else holes_module->connect(holes_wire, State::S0); } } if (!port_sig.empty()) { if (r.second) holes_cell->setPort(w->name, port_sig); else holes_module->connect(holes_cell->getPort(w->name), port_sig); } } // For flops only, create an extra 1-bit input that drives a new wire // called ".$abc9_currQ" that is used below if (box_module->get_bool_attribute("\\abc9_flop")) { log_assert(holes_cell); box_inputs++; Wire *holes_wire = holes_module->wire(stringf("\\i%d", box_inputs)); if (!holes_wire) { holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs)); holes_wire->port_input = true; holes_wire->port_id = port_id++; holes_module->ports.push_back(holes_wire->name); } Wire *w = holes_module->addWire(stringf("%s.$abc9_currQ", cell->name.c_str())); holes_module->connect(w, holes_wire); } write_h_buffer(box_inputs); write_h_buffer(box_outputs); write_h_buffer(box_module->attributes.at("\\abc9_box_id").as_int()); write_h_buffer(box_count++); } std::stringstream r_buffer; auto write_r_buffer = std::bind(write_buffer, std::ref(r_buffer), std::placeholders::_1); log_debug("flopNum = %d\n", GetSize(ff_bits)); write_r_buffer(ff_bits.size()); std::stringstream s_buffer; auto write_s_buffer = std::bind(write_buffer, std::ref(s_buffer), std::placeholders::_1); write_s_buffer(ff_bits.size()); for (const auto &i : ff_bits) { const SigBit &bit = i.first; int mergeability = i.second.first; log_assert(mergeability > 0); write_r_buffer(mergeability); int init = i.second.second; write_s_buffer(init); write_i_buffer(arrival_times.at(bit, 0)); //write_o_buffer(0); } f << "r"; std::string buffer_str = r_buffer.str(); int32_t buffer_size_be = to_big_endian(buffer_str.size()); f.write(reinterpret_cast(&buffer_size_be), sizeof(buffer_size_be)); f.write(buffer_str.data(), buffer_str.size()); f << "s"; buffer_str = s_buffer.str(); buffer_size_be = to_big_endian(buffer_str.size()); f.write(reinterpret_cast(&buffer_size_be), sizeof(buffer_size_be)); f.write(buffer_str.data(), buffer_str.size()); if (holes_module) { log_push(); // NB: fixup_ports() will sort ports by name //holes_module->fixup_ports(); holes_module->check(); // TODO: Should techmap/aigmap/check all lib_whitebox-es just once, // instead of per write_xaiger call Pass::call_on_module(holes_module->design, holes_module, "flatten -wb; techmap; aigmap"); dict replace; for (auto it = holes_module->cells_.begin(); it != holes_module->cells_.end(); ) { auto cell = it->second; if (cell->type.in("$_DFF_N_", "$_DFF_NN0_", "$_DFF_NN1_", "$_DFF_NP0_", "$_DFF_NP1_", "$_DFF_P_", "$_DFF_PN0_", "$_DFF_PN1", "$_DFF_PP0_", "$_DFF_PP1_")) { SigBit D = cell->getPort("\\D"); SigBit Q = cell->getPort("\\Q"); // Remove the DFF cell from what needs to be a combinatorial box it = holes_module->cells_.erase(it); Wire *port; if (GetSize(Q.wire) == 1) port = holes_module->wire(stringf("$abc%s", Q.wire->name.c_str())); else port = holes_module->wire(stringf("$abc%s[%d]", Q.wire->name.c_str(), Q.offset)); log_assert(port); // Prepare to replace "assign = DFF.Q;" with "assign = DFF.D;" // in order to extract the combinatorial control logic that feeds the box // (i.e. clock enable, synchronous reset, etc.) replace.insert(std::make_pair(SigSig(port,Q), SigSig(port,D))); // Since `flatten` above would have created wires named ".Q", // extract the pre-techmap cell name auto pos = Q.wire->name.str().rfind("."); log_assert(pos != std::string::npos); IdString driver = Q.wire->name.substr(0, pos); // And drive the signal that was previously driven by "DFF.Q" (typically // used to implement clock-enable functionality) with the ".$abc9_currQ" // wire (which itself is driven an input port) we inserted above Wire *currQ = holes_module->wire(stringf("%s.$abc9_currQ", driver.c_str())); log_assert(currQ); holes_module->connect(Q, currQ); continue; } else if (!cell->type.in("$_NOT_", "$_AND_")) log_error("Whitebox contents cannot be represented as AIG. Please verify whiteboxes are synthesisable.\n"); ++it; } for (auto &conn : holes_module->connections_) { auto it = replace.find(conn); if (it != replace.end()) conn = it->second; } // Move into a new (temporary) design so that "clean" will only // operate (and run checks on) this one module RTLIL::Design *holes_design = new RTLIL::Design; module->design->modules_.erase(holes_module->name); holes_design->add(holes_module); Pass::call(holes_design, "clean -purge"); std::stringstream a_buffer; XAigerWriter writer(holes_module, true /* holes_mode */); writer.write_aiger(a_buffer, false /*ascii_mode*/); delete holes_design; f << "a"; std::string buffer_str = a_buffer.str(); int32_t buffer_size_be = to_big_endian(buffer_str.size()); f.write(reinterpret_cast(&buffer_size_be), sizeof(buffer_size_be)); f.write(buffer_str.data(), buffer_str.size()); log_pop(); } } f << "h"; std::string buffer_str = h_buffer.str(); int32_t buffer_size_be = to_big_endian(buffer_str.size()); f.write(reinterpret_cast(&buffer_size_be), sizeof(buffer_size_be)); f.write(buffer_str.data(), buffer_str.size()); f << "i"; buffer_str = i_buffer.str(); buffer_size_be = to_big_endian(buffer_str.size()); f.write(reinterpret_cast(&buffer_size_be), sizeof(buffer_size_be)); f.write(buffer_str.data(), buffer_str.size()); //f << "o"; //buffer_str = o_buffer.str(); //buffer_size_be = to_big_endian(buffer_str.size()); //f.write(reinterpret_cast(&buffer_size_be), sizeof(buffer_size_be)); //f.write(buffer_str.data(), buffer_str.size()); f << stringf("Generated by %s\n", yosys_version_str); } void write_map(std::ostream &f, bool verbose_map) { dict input_lines; dict init_lines; dict output_lines; dict wire_lines; for (auto wire : module->wires()) { //if (!verbose_map && wire->name[0] == '$') // continue; SigSpec sig = sigmap(wire); for (int i = 0; i < GetSize(wire); i++) { RTLIL::SigBit b(wire, i); if (input_bits.count(b)) { int a = aig_map.at(b); log_assert((a & 1) == 0); input_lines[a] += stringf("input %d %d %s\n", (a >> 1)-1, i, log_id(wire)); } if (output_bits.count(b)) { int o = ordered_outputs.at(b); int init = 2; output_lines[o] += stringf("output %d %d %s %d\n", o - GetSize(co_bits), i, log_id(wire), init); continue; } if (verbose_map) { if (aig_map.count(sig[i]) == 0) continue; int a = aig_map.at(sig[i]); wire_lines[a] += stringf("wire %d %d %s\n", a, i, log_id(wire)); } } } input_lines.sort(); for (auto &it : input_lines) f << it.second; log_assert(input_lines.size() == input_bits.size()); init_lines.sort(); for (auto &it : init_lines) f << it.second; int box_count = 0; for (auto cell : box_list) f << stringf("box %d %d %s\n", box_count++, 0, log_id(cell->name)); output_lines.sort(); if (omode) output_lines[State::S0] = "output 0 0 $__dummy__\n"; for (auto &it : output_lines) f << it.second; log_assert(output_lines.size() == output_bits.size()); if (omode && output_bits.empty()) f << "output " << output_lines.size() << " 0 $__dummy__\n"; wire_lines.sort(); for (auto &it : wire_lines) f << it.second; } }; struct XAigerBackend : public Backend { XAigerBackend() : Backend("xaiger", "write design to XAIGER file") { } void help() YS_OVERRIDE { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" write_xaiger [options] [filename]\n"); log("\n"); log("Write the current design to an XAIGER file. The design must be flattened and\n"); log("all unsupported cells will be converted into psuedo-inputs and pseudo-outputs.\n"); log("\n"); log(" -ascii\n"); log(" write ASCII version of AIGER format\n"); log("\n"); log(" -map \n"); log(" write an extra file with port and box symbols\n"); log("\n"); log(" -vmap \n"); log(" like -map, but more verbose\n"); log("\n"); } void execute(std::ostream *&f, std::string filename, std::vector args, RTLIL::Design *design) YS_OVERRIDE { bool ascii_mode = false; bool verbose_map = false; std::string map_filename; log_header(design, "Executing XAIGER backend.\n"); size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-ascii") { ascii_mode = true; continue; } if (map_filename.empty() && args[argidx] == "-map" && argidx+1 < args.size()) { map_filename = args[++argidx]; continue; } if (map_filename.empty() && args[argidx] == "-vmap" && argidx+1 < args.size()) { map_filename = args[++argidx]; verbose_map = true; continue; } break; } extra_args(f, filename, args, argidx, !ascii_mode); Module *top_module = design->top_module(); if (top_module == nullptr) log_error("Can't find top module in current design!\n"); XAigerWriter writer(top_module); writer.write_aiger(*f, ascii_mode); if (!map_filename.empty()) { std::ofstream mapf; mapf.open(map_filename.c_str(), std::ofstream::trunc); if (mapf.fail()) log_error("Can't open file `%s' for writing: %s\n", map_filename.c_str(), strerror(errno)); writer.write_map(mapf, verbose_map); } } } XAigerBackend; PRIVATE_NAMESPACE_END