#include "kernel/yosys.h" #include "kernel/ff.h" #include "libparse.h" #include USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN struct ClockGateCell { IdString name; IdString ce_pin; IdString clk_in_pin; IdString clk_out_pin; std::vector tie_lo_pins; }; ClockGateCell icg_from_arg(std::string& name, std::string& str) { ClockGateCell c; c.name = RTLIL::escape_id(name); char delimiter = ':'; size_t pos1 = str.find(delimiter); if (pos1 == std::string::npos) log_cmd_error("Not enough ports in descriptor string"); size_t pos2 = str.find(delimiter, pos1 + 1); if (pos2 == std::string::npos) log_cmd_error("Not enough ports in descriptor string"); size_t pos3 = str.find(delimiter, pos2 + 1); if (pos3 != std::string::npos) log_cmd_error("Too many ports in descriptor string"); std::string ce = str.substr(0, pos1); c.ce_pin = RTLIL::escape_id(ce); std::string clk_in = str.substr(pos1 + 1, pos2 - (pos1 + 1)); c.clk_in_pin = RTLIL::escape_id(clk_in); std::string clk_out = str.substr(pos2 + 1, str.size() - (pos2 + 1)); c.clk_out_pin = RTLIL::escape_id(clk_out); return c; } static std::pair, std::optional> find_icgs(std::string filename, std::vector const& dont_use_cells) { std::ifstream f; f.open(filename.c_str()); if (f.fail()) log_cmd_error("Can't open liberty file `%s': %s\n", filename.c_str(), strerror(errno)); LibertyParser libparser(f); f.close(); auto ast = libparser.ast; // We will pick the most suitable ICG absed on tie_lo count and area struct ICGRankable : public ClockGateCell { double area; }; std::optional best_pos; std::optional best_neg; if (ast->id != "library") log_error("Format error in liberty file.\n"); // This is a lot of boilerplate, isn't it? for (auto cell : ast->children) { if (cell->id != "cell" || cell->args.size() != 1) continue; const LibertyAst *dn = cell->find("dont_use"); if (dn != nullptr && dn->value == "true") continue; bool dont_use = false; for (auto dont_use_cell : dont_use_cells) { if (patmatch(dont_use_cell.c_str(), cell->args[0].c_str())) { dont_use = true; break; } } if (dont_use) continue; const LibertyAst *icg_kind_ast = cell->find("clock_gating_integrated_cell"); if (icg_kind_ast == nullptr) continue; auto cell_name = cell->args[0]; auto icg_kind = icg_kind_ast->value; auto starts_with = [&](std::string prefix) { return icg_kind.compare(0, prefix.size(), prefix) == 0; }; bool clk_pol; if (icg_kind == "latch_posedge" || starts_with("latch_posedge_")) { clk_pol = true; } else if (icg_kind == "latch_negedge" || starts_with("latch_negedge_")) { clk_pol = false; } else { log("Ignoring ICG primitive %s of kind '%s'\n", cell_name.c_str(), icg_kind.c_str()); continue; } log_debug("maybe valid icg: %s\n", cell_name.c_str()); ClockGateCell icg_interface; icg_interface.name = RTLIL::escape_id(cell_name); for (auto pin : cell->children) { if (pin->id != "pin" || pin->args.size() != 1) continue; if (auto clk = pin->find("clock_gate_clock_pin")) { if (!icg_interface.clk_in_pin.empty()) log_error("Malformed liberty file - multiple clock_gate_clock_pin in cell %s\n", cell_name.c_str()); else icg_interface.clk_in_pin = RTLIL::escape_id(pin->args[0]); } else if (auto gclk = pin->find("clock_gate_out_pin")) { if (!icg_interface.clk_out_pin.empty()) log_error("Malformed liberty file - multiple clock_gate_out_pin in cell %s\n", cell_name.c_str()); else icg_interface.clk_out_pin = RTLIL::escape_id(pin->args[0]); } else if (auto en = pin->find("clock_gate_enable_pin")) { if (!icg_interface.ce_pin.empty()) log_error("Malformed liberty file - multiple clock_gate_enable_pin in cell %s\n", cell_name.c_str()); else icg_interface.ce_pin = RTLIL::escape_id(pin->args[0]); } else if (auto se = pin->find("clock_gate_test_pin")) { icg_interface.tie_lo_pins.push_back(RTLIL::escape_id(pin->args[0])); } else { const LibertyAst *dir = pin->find("direction"); if (dir->value == "internal") continue; log_error("Malformed liberty file - extra pin %s in cell %s\n", pin->args[0].c_str(), cell_name.c_str()); } } if (icg_interface.clk_in_pin.empty()) log_error("Malformed liberty file - missing clock_gate_clock_pin in cell %s", cell_name.c_str()); if (icg_interface.clk_out_pin.empty()) log_error("Malformed liberty file - missing clock_gate_out_pin in cell %s", cell_name.c_str()); if (icg_interface.ce_pin.empty()) log_error("Malformed liberty file - missing clock_gate_enable_pin in cell %s", cell_name.c_str()); double area = 0; const LibertyAst *ar = cell->find("area"); if (ar != nullptr && !ar->value.empty()) area = atof(ar->value.c_str()); std::optional& icg_to_beat = clk_pol ? best_pos : best_neg; bool winning = false; if (icg_to_beat) { log_debug("ties: %zu ? %zu\n", icg_to_beat->tie_lo_pins.size(), icg_interface.tie_lo_pins.size()); log_debug("area: %f ? %f\n", icg_to_beat->area, area); // Prefer fewer test enables over area reduction (unlikely to matter) auto goal = std::make_pair(icg_to_beat->tie_lo_pins.size(), icg_to_beat->area); auto cost = std::make_pair(icg_interface.tie_lo_pins.size(), area); winning = cost < goal; if (winning) log_debug("%s beats %s\n", icg_interface.name.c_str(), icg_to_beat->name.c_str()); } else { log_debug("%s is the first of its polarity\n", icg_interface.name.c_str()); winning = true; } if (winning) { ICGRankable new_icg {icg_interface, area}; icg_to_beat.emplace(new_icg); } } std::optional pos; std::optional neg; if (best_pos) { log("Selected rising edge ICG %s\n", best_pos->name.c_str()); pos.emplace(*best_pos); } if (best_neg) { log("Selected falling edge ICG %s\n", best_neg->name.c_str()); neg.emplace(*best_neg); } return std::make_pair(pos, neg); } struct ClockgatePass : public Pass { ClockgatePass() : Pass("clockgate", "extract clock gating out of flip flops") { } void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" clockgate [options] [selection]\n"); log("\n"); log("This pass transforms each set of FFs sharing the same clock and\n"); log("enable signal into a clock-gating cell and a set of enable-less FFs.\n"); log("Primarily a power-saving transformation on ASIC designs.\n"); log("\n"); log(" -pos ::\n"); log(" If specified, rising-edge FFs will have CE inputs\n"); log(" removed and a gated clock will be created by the\n"); log(" user-specified ICG (integrated clock gating)\n"); log(" cell with ports named , , .\n"); log(" The ICG's clock enable pin must be active high.\n"); log(" -neg ::\n"); log(" If specified, falling-edge FFs will have CE inputs\n"); log(" removed and a gated clock will be created by the\n"); log(" user-specified ICG (integrated clock gating)\n"); log(" cell with ports named , , .\n"); log(" The ICG's clock enable pin must be active high.\n"); // TODO -liberty log(" -tie_lo \n"); log(" Port of the ICG will be tied to zero.\n"); log(" Intended for DFT scan-enable pins.\n"); log(" -min_net_size \n"); log(" Only transform sets of at least eligible FFs.\n"); // log(" \n"); } // One ICG will be generated per ClkNetInfo // if the number of FFs associated with it is sufficent struct ClkNetInfo { // Original, ungated clock into enabled FF SigBit clk_bit; // Original clock enable into enabled FF SigBit ce_bit; bool pol_clk; bool pol_ce; unsigned int hash() const { auto t = std::make_tuple(clk_bit, ce_bit, pol_clk, pol_ce); unsigned int h = mkhash_init; h = mkhash(h, hash_ops::hash(t)); return h; } bool operator==(const ClkNetInfo& other) const { return (clk_bit == other.clk_bit) && (ce_bit == other.ce_bit) && (pol_clk == other.pol_clk) && (pol_ce == other.pol_ce); } }; struct GClkNetInfo { // How many CE FFs on this CLK net have we seen? int net_size; // After ICG generation, we have new gated CLK signals Wire* new_net; }; ClkNetInfo clk_info_from_ff(FfData& ff) { SigBit clk = ff.sig_clk[0]; SigBit ce = ff.sig_ce[0]; ClkNetInfo info{clk, ce, ff.pol_clk, ff.pol_ce}; return info; } void execute(std::vector args, RTLIL::Design *design) override { log_header(design, "Executing CLOCK_GATE pass (extract clock gating out of flip flops).\n"); std::optional pos_icg_desc; std::optional neg_icg_desc; std::vector tie_lo_pins; std::string liberty_file; std::vector dont_use_cells; int min_net_size = 0; size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-pos" && argidx+2 < args.size()) { auto name = args[++argidx]; auto rest = args[++argidx]; pos_icg_desc = icg_from_arg(name, rest); } if (args[argidx] == "-neg" && argidx+2 < args.size()) { auto name = args[++argidx]; auto rest = args[++argidx]; neg_icg_desc = icg_from_arg(name, rest); } if (args[argidx] == "-tie_lo" && argidx+1 < args.size()) { tie_lo_pins.push_back(RTLIL::escape_id(args[++argidx])); } if (args[argidx] == "-liberty" && argidx+1 < args.size()) { liberty_file = args[++argidx]; rewrite_filename(liberty_file); } if (args[argidx] == "-dont_use" && argidx+1 < args.size()) { dont_use_cells.push_back(args[++argidx]); continue; } if (args[argidx] == "-min_net_size" && argidx+1 < args.size()) { min_net_size = atoi(args[++argidx].c_str()); } } if (!liberty_file.empty()) std::tie(pos_icg_desc, neg_icg_desc) = find_icgs(liberty_file, dont_use_cells); else { for (auto pin : tie_lo_pins) { if (pos_icg_desc) pos_icg_desc->tie_lo_pins.push_back(pin); if (neg_icg_desc) neg_icg_desc->tie_lo_pins.push_back(pin); } } extra_args(args, argidx, design); pool ce_ffs; dict clk_nets; int gated_flop_count = 0; for (auto module : design->selected_whole_modules()) { for (auto cell : module->cells()) { if (!RTLIL::builtin_ff_cell_types().count(cell->type)) continue; FfData ff(nullptr, cell); // It would be odd to get constants, but we better handle it if (ff.has_ce) { if (!ff.sig_clk.is_bit() || !ff.sig_ce.is_bit()) continue; if (!ff.sig_clk[0].is_wire() || !ff.sig_ce[0].is_wire()) continue; ce_ffs.insert(cell); ClkNetInfo info = clk_info_from_ff(ff); auto it = clk_nets.find(info); if (it == clk_nets.end()) clk_nets[info] = GClkNetInfo(); clk_nets[info].net_size++; } } for (auto& clk_net : clk_nets) { auto& clk = clk_net.first; auto& gclk = clk_net.second; if (gclk.net_size < min_net_size) continue; std::optional matching_icg_desc; if (pos_icg_desc && clk.pol_clk) matching_icg_desc = pos_icg_desc; else if (neg_icg_desc && !clk.pol_clk) matching_icg_desc = neg_icg_desc; if (!matching_icg_desc) continue; Cell* icg = module->addCell(NEW_ID, matching_icg_desc->name); icg->setPort(matching_icg_desc->ce_pin, clk.ce_bit); icg->setPort(matching_icg_desc->clk_in_pin, clk.clk_bit); gclk.new_net = module->addWire(NEW_ID); icg->setPort(matching_icg_desc->clk_out_pin, gclk.new_net); // Tie low DFT ports like scan chain enable for (auto port : matching_icg_desc->tie_lo_pins) icg->setPort(port, Const(0, 1)); // Fix CE polarity if needed if (!clk.pol_ce) { SigBit ce_fixed_pol = module->NotGate(NEW_ID, clk.ce_bit); icg->setPort(matching_icg_desc->ce_pin, ce_fixed_pol); } } for (auto cell : ce_ffs) { FfData ff(nullptr, cell); ClkNetInfo info = clk_info_from_ff(ff); auto it = clk_nets.find(info); log_assert(it != clk_nets.end() && "Bug: desync ce_ffs and clk_nets"); if (!it->second.new_net) continue; log_debug("Fix up FF %s\n", cell->name.c_str()); // Now we start messing with the design ff.has_ce = false; // Construct the clock gate // ICG = integrated clock gate, industry shorthand ff.sig_clk = (*it).second.new_net; // Rebuild the flop (void)ff.emit(); gated_flop_count++; } ce_ffs.clear(); clk_nets.clear(); } log("Converted %d FFs.\n", gated_flop_count); } } ClockgatePass; PRIVATE_NAMESPACE_END