/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * 2019 Eddie Hung * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/register.h" #include "kernel/sigtools.h" #include "kernel/utils.h" #include "kernel/celltypes.h" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN int map_autoidx; inline std::string remap_name(RTLIL::IdString abc9_name) { return stringf("$abc$%d$%s", map_autoidx, abc9_name.c_str()+1); } void break_scc(RTLIL::Module *module) { // For every unique SCC found, (arbitrarily) find the first // cell in the component, and convert all wires driven by // its output ports into a new PO, and drive its previous // sinks with a new PI pool ids_seen; for (auto cell : module->cells()) { auto it = cell->attributes.find(ID(abc9_scc_id)); if (it == cell->attributes.end()) continue; auto r = ids_seen.insert(it->second); cell->attributes.erase(it); if (!r.second) continue; for (auto &c : cell->connections_) { if (c.second.is_fully_const()) continue; if (cell->output(c.first)) { SigBit b = c.second.as_bit(); Wire *w = b.wire; if (w->port_input) { // In this case, hopefully the loop break has been already created // Get the non-prefixed wire Wire *wo = module->wire(stringf("%s.abco", b.wire->name.c_str())); log_assert(wo != nullptr); log_assert(wo->port_output); log_assert(b.offset < GetSize(wo)); c.second = RTLIL::SigBit(wo, b.offset); } else { // Create a new output/input loop break w->port_input = true; w = module->wire(stringf("%s.abco", w->name.c_str())); if (!w) { w = module->addWire(stringf("%s.abco", b.wire->name.c_str()), GetSize(b.wire)); w->port_output = true; } else { log_assert(w->port_input); log_assert(b.offset < GetSize(w)); } w->set_bool_attribute(ID(abc9_scc_break)); c.second = RTLIL::SigBit(w, b.offset); } } } } module->fixup_ports(); } void unbreak_scc(RTLIL::Module *module) { // Now 'unexpose' those wires by undoing // the expose operation -- remove them from PO/PI // and re-connecting them back together for (auto wire : module->wires()) { auto it = wire->attributes.find(ID(abc9_scc_break)); if (it != wire->attributes.end()) { wire->attributes.erase(it); log_assert(wire->port_output); wire->port_output = false; std::string name = wire->name.str(); RTLIL::Wire *i_wire = module->wire(name.substr(0, GetSize(name) - 5)); log_assert(i_wire); log_assert(i_wire->port_input); i_wire->port_input = false; module->connect(i_wire, wire); } } module->fixup_ports(); } void prep_dff(RTLIL::Module *module) { auto design = module->design; log_assert(design); SigMap assign_map(module); typedef SigSpec clkdomain_t; dict clk_to_mergeability; for (auto cell : module->cells()) { if (cell->type != "$__ABC9_FF_") continue; Wire *abc9_clock_wire = module->wire(stringf("%s.clock", cell->name.c_str())); if (abc9_clock_wire == NULL) log_error("'%s.clock' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module)); SigSpec abc9_clock = assign_map(abc9_clock_wire); clkdomain_t key(abc9_clock); auto r = clk_to_mergeability.insert(std::make_pair(abc9_clock, clk_to_mergeability.size() + 1)); auto r2 YS_ATTRIBUTE(unused) = cell->attributes.insert(std::make_pair(ID(abc9_mergeability), r.first->second)); log_assert(r2.second); Wire *abc9_init_wire = module->wire(stringf("%s.init", cell->name.c_str())); if (abc9_init_wire == NULL) log_error("'%s.init' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module)); log_assert(GetSize(abc9_init_wire) == 1); SigSpec abc9_init = assign_map(abc9_init_wire); if (!abc9_init.is_fully_const()) log_error("'%s.init' is not a constant wire present in module '%s'.\n", cell->name.c_str(), log_id(module)); r2 = cell->attributes.insert(std::make_pair(ID(abc9_init), abc9_init.as_const())); log_assert(r2.second); } RTLIL::Module *holes_module = design->module(stringf("%s$holes", module->name.c_str())); if (holes_module) { SigMap sigmap(holes_module); dict replace; for (auto it = holes_module->cells_.begin(); it != holes_module->cells_.end(); ) { auto cell = it->second; if (cell->type.in("$_DFF_N_", "$_DFF_NN0_", "$_DFF_NN1_", "$_DFF_NP0_", "$_DFF_NP1_", "$_DFF_P_", "$_DFF_PN0_", "$_DFF_PN1", "$_DFF_PP0_", "$_DFF_PP1_")) { SigBit D = cell->getPort("\\D"); SigBit Q = cell->getPort("\\Q"); // Remove the $_DFF_* cell from what needs to be a combinatorial box it = holes_module->cells_.erase(it); Wire *port; if (GetSize(Q.wire) == 1) port = holes_module->wire(stringf("$abc%s", Q.wire->name.c_str())); else port = holes_module->wire(stringf("$abc%s[%d]", Q.wire->name.c_str(), Q.offset)); log_assert(port); // Prepare to replace "assign = $_DFF_*.Q;" with "assign = $_DFF_*.D;" // in order to extract just the combinatorial control logic that feeds the box // (i.e. clock enable, synchronous reset, etc.) replace.insert(std::make_pair(Q,D)); // Since `flatten` above would have created wires named ".Q", // extract the pre-techmap cell name auto pos = Q.wire->name.str().rfind("."); log_assert(pos != std::string::npos); IdString driver = Q.wire->name.substr(0, pos); // And drive the signal that was previously driven by "DFF.Q" (typically // used to implement clock-enable functionality) with the ".$abc9_currQ" // wire (which itself is driven an by input port) we inserted above Wire *currQ = holes_module->wire(stringf("%s.abc9_ff.Q", driver.c_str())); log_assert(currQ); holes_module->connect(Q, currQ); } else ++it; } for (auto &conn : holes_module->connections_) conn.second = replace.at(sigmap(conn.second), conn.second); } } void prep_holes(RTLIL::Module *module, bool dff) { auto design = module->design; log_assert(design); SigMap sigmap(module); dict> bit_drivers, bit_users; TopoSort toposort; bool abc9_box_seen = false; for (auto cell : module->cells()) { if (cell->type == "$__ABC9_FF_") continue; auto inst_module = module->design->module(cell->type); bool abc9_box = inst_module && inst_module->attributes.count("\\abc9_box_id"); bool abc9_flop = false; if (abc9_box) { abc9_flop = inst_module->get_bool_attribute("\\abc9_flop"); if (abc9_flop && !dff) continue; abc9_box_seen = abc9_box; } else if (!yosys_celltypes.cell_known(cell->type)) continue; for (auto conn : cell->connections()) { if (cell->input(conn.first)) for (auto bit : sigmap(conn.second)) bit_users[bit].insert(cell->name); if (cell->output(conn.first) && !abc9_flop) for (auto bit : sigmap(conn.second)) bit_drivers[bit].insert(cell->name); } toposort.node(cell->name); } if (!abc9_box_seen) return; for (auto &it : bit_users) if (bit_drivers.count(it.first)) for (auto driver_cell : bit_drivers.at(it.first)) for (auto user_cell : it.second) toposort.edge(driver_cell, user_cell); if (ys_debug(1)) toposort.analyze_loops = true; bool no_loops YS_ATTRIBUTE(unused) = toposort.sort(); if (ys_debug(1)) { unsigned i = 0; for (auto &it : toposort.loops) { log(" loop %d\n", i++); for (auto cell_name : it) { auto cell = module->cell(cell_name); log_assert(cell); log("\t%s (%s @ %s)\n", log_id(cell), log_id(cell->type), cell->get_src_attribute().c_str()); } } } log_assert(no_loops); vector box_list; for (auto cell_name : toposort.sorted) { RTLIL::Cell *cell = module->cell(cell_name); log_assert(cell); RTLIL::Module* box_module = design->module(cell->type); if (!box_module || !box_module->attributes.count("\\abc9_box_id")) continue; bool blackbox = box_module->get_blackbox_attribute(true /* ignore_wb */); // Fully pad all unused input connections of this box cell with S0 // Fully pad all undriven output connections of this box cell with anonymous wires for (const auto &port_name : box_module->ports) { RTLIL::Wire* w = box_module->wire(port_name); log_assert(w); auto it = cell->connections_.find(port_name); if (w->port_input) { RTLIL::SigSpec rhs; if (it != cell->connections_.end()) { if (GetSize(it->second) < GetSize(w)) it->second.append(RTLIL::SigSpec(State::S0, GetSize(w)-GetSize(it->second))); rhs = it->second; } else { rhs = RTLIL::SigSpec(State::S0, GetSize(w)); cell->setPort(port_name, rhs); } } if (w->port_output) { RTLIL::SigSpec rhs; auto it = cell->connections_.find(w->name); if (it != cell->connections_.end()) { if (GetSize(it->second) < GetSize(w)) it->second.append(module->addWire(NEW_ID, GetSize(w)-GetSize(it->second))); rhs = it->second; } else { Wire *wire = module->addWire(NEW_ID, GetSize(w)); if (blackbox) wire->set_bool_attribute(ID(abc9_padding)); rhs = wire; cell->setPort(port_name, rhs); } } } cell->attributes["\\abc9_box_seq"] = box_list.size(); box_list.emplace_back(cell); } log_assert(!box_list.empty()); RTLIL::Module *holes_module = design->addModule(stringf("%s$holes", module->name.c_str())); log_assert(holes_module); holes_module->set_bool_attribute("\\abc9_holes"); dict cell_cache; dict> box_ports; int port_id = 1; for (auto cell : box_list) { RTLIL::Module* orig_box_module = design->module(cell->type); log_assert(orig_box_module); IdString derived_name = orig_box_module->derive(design, cell->parameters); RTLIL::Module* box_module = design->module(derived_name); auto r = cell_cache.insert(derived_name); auto &holes_cell = r.first->second; if (r.second) { if (box_module->has_processes()) Pass::call_on_module(design, box_module, "proc"); auto r2 = box_ports.insert(cell->type); if (r2.second) { // Make carry in the last PI, and carry out the last PO // since ABC requires it this way IdString carry_in, carry_out; for (const auto &port_name : box_module->ports) { auto w = box_module->wire(port_name); log_assert(w); if (w->get_bool_attribute("\\abc9_carry")) { if (w->port_input) { if (carry_in != IdString()) log_error("Module '%s' contains more than one 'abc9_carry' input port.\n", log_id(box_module)); carry_in = port_name; } if (w->port_output) { if (carry_out != IdString()) log_error("Module '%s' contains more than one 'abc9_carry' output port.\n", log_id(box_module)); carry_out = port_name; } } else r2.first->second.push_back(port_name); } if (carry_in != IdString() && carry_out == IdString()) log_error("Module '%s' contains an 'abc9_carry' input port but no output port.\n", log_id(box_module)); if (carry_in == IdString() && carry_out != IdString()) log_error("Module '%s' contains an 'abc9_carry' output port but no input port.\n", log_id(box_module)); if (carry_in != IdString()) { r2.first->second.push_back(carry_in); r2.first->second.push_back(carry_out); } } if (box_module->get_bool_attribute("\\whitebox")) { holes_cell = holes_module->addCell(cell->name, derived_name); int box_inputs = 0; for (auto port_name : box_ports.at(cell->type)) { RTLIL::Wire *w = box_module->wire(port_name); log_assert(w); log_assert(!w->port_input || !w->port_output); auto &conn = holes_cell->connections_[port_name]; if (w->port_input) { for (int i = 0; i < GetSize(w); i++) { box_inputs++; RTLIL::Wire *holes_wire = holes_module->wire(stringf("\\i%d", box_inputs)); if (!holes_wire) { holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs)); holes_wire->port_input = true; holes_wire->port_id = port_id++; holes_module->ports.push_back(holes_wire->name); } conn.append(holes_wire); } } else if (w->port_output) conn = holes_module->addWire(stringf("%s.%s", derived_name.c_str(), log_id(port_name)), GetSize(w)); } // For flops only, create an extra 1-bit input that drives a new wire // called ".abc9_ff.Q" that is used below if (box_module->get_bool_attribute("\\abc9_flop")) { box_inputs++; Wire *holes_wire = holes_module->wire(stringf("\\i%d", box_inputs)); if (!holes_wire) { holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs)); holes_wire->port_input = true; holes_wire->port_id = port_id++; holes_module->ports.push_back(holes_wire->name); } Wire *Q = holes_module->addWire(stringf("%s.abc9_ff.Q", cell->name.c_str())); holes_module->connect(Q, holes_wire); } } else // box_module is a blackbox log_assert(holes_cell == nullptr); } for (auto port_name : box_ports.at(cell->type)) { RTLIL::Wire *w = box_module->wire(port_name); log_assert(w); if (!w->port_output) continue; Wire *holes_wire = holes_module->addWire(stringf("$abc%s.%s", cell->name.c_str(), log_id(port_name)), GetSize(w)); holes_wire->port_output = true; holes_wire->port_id = port_id++; holes_module->ports.push_back(holes_wire->name); if (holes_cell) // whitebox holes_module->connect(holes_wire, holes_cell->getPort(port_name)); else // blackbox holes_module->connect(holes_wire, Const(State::S0, GetSize(w))); } } } void reintegrate(RTLIL::Module *module) { auto design = module->design; log_assert(design); map_autoidx = autoidx++; RTLIL::Module *mapped_mod = design->module(stringf("%s$abc9", module->name.c_str())); if (mapped_mod == NULL) log_error("ABC output file does not contain a module `%s$abc'.\n", log_id(module)); for (auto w : mapped_mod->wires()) module->addWire(remap_name(w->name), GetSize(w)); dict box_lookup; dict> box_ports; for (auto m : design->modules()) { auto it = m->attributes.find(ID(abc9_box_id)); if (it == m->attributes.end()) continue; if (m->name.begins_with("$paramod")) continue; auto id = it->second.as_int(); auto r = box_lookup.insert(std::make_pair(stringf("$__boxid%d", id), m->name)); if (!r.second) log_error("Module '%s' has the same abc9_box_id = %d value as '%s'.\n", log_id(m), id, log_id(r.first->second)); log_assert(r.second); auto r2 = box_ports.insert(m->name); if (r2.second) { // Make carry in the last PI, and carry out the last PO // since ABC requires it this way IdString carry_in, carry_out; for (const auto &port_name : m->ports) { auto w = m->wire(port_name); log_assert(w); if (w->get_bool_attribute("\\abc9_carry")) { if (w->port_input) { if (carry_in != IdString()) log_error("Module '%s' contains more than one 'abc9_carry' input port.\n", log_id(m)); carry_in = port_name; } if (w->port_output) { if (carry_out != IdString()) log_error("Module '%s' contains more than one 'abc9_carry' output port.\n", log_id(m)); carry_out = port_name; } } else r2.first->second.push_back(port_name); } if (carry_in != IdString() && carry_out == IdString()) log_error("Module '%s' contains an 'abc9_carry' input port but no output port.\n", log_id(m)); if (carry_in == IdString() && carry_out != IdString()) log_error("Module '%s' contains an 'abc9_carry' output port but no input port.\n", log_id(m)); if (carry_in != IdString()) { r2.first->second.push_back(carry_in); r2.first->second.push_back(carry_out); } } } std::vector boxes; for (auto cell : module->cells().to_vector()) { if (cell->has_keep_attr()) continue; if (cell->type.in(ID($_AND_), ID($_NOT_), ID($__ABC9_FF_))) module->remove(cell); else if (cell->attributes.erase("\\abc9_box_seq")) boxes.emplace_back(cell); } dict> bit_drivers, bit_users; TopoSort toposort; dict not2drivers; dict> bit2sinks; std::map cell_stats; for (auto mapped_cell : mapped_mod->cells()) { toposort.node(mapped_cell->name); if (mapped_cell->type == ID($_NOT_)) { RTLIL::SigBit a_bit = mapped_cell->getPort(ID::A); RTLIL::SigBit y_bit = mapped_cell->getPort(ID::Y); bit_users[a_bit].insert(mapped_cell->name); bit_drivers[y_bit].insert(mapped_cell->name); if (!a_bit.wire) { mapped_cell->setPort(ID::Y, module->addWire(NEW_ID)); RTLIL::Wire *wire = module->wire(remap_name(y_bit.wire->name)); log_assert(wire); module->connect(RTLIL::SigBit(wire, y_bit.offset), State::S1); } else { RTLIL::Cell* driver_lut = nullptr; // ABC can return NOT gates that drive POs if (!a_bit.wire->port_input) { // If it's not a NOT gate that that comes from a PI directly, // find the driver LUT and clone that to guarantee that we won't // increase the max logic depth // (TODO: Optimise by not cloning unless will increase depth) RTLIL::IdString driver_name; if (GetSize(a_bit.wire) == 1) driver_name = stringf("%s$lut", a_bit.wire->name.c_str()); else driver_name = stringf("%s[%d]$lut", a_bit.wire->name.c_str(), a_bit.offset); driver_lut = mapped_mod->cell(driver_name); } if (!driver_lut) { // If a driver couldn't be found (could be from PI or box CI) // then implement using a LUT RTLIL::Cell *cell = module->addLut(remap_name(stringf("%s$lut", mapped_cell->name.c_str())), RTLIL::SigBit(module->wires_.at(remap_name(a_bit.wire->name)), a_bit.offset), RTLIL::SigBit(module->wires_.at(remap_name(y_bit.wire->name)), y_bit.offset), RTLIL::Const::from_string("01")); bit2sinks[cell->getPort(ID::A)].push_back(cell); cell_stats[ID($lut)]++; } else not2drivers[mapped_cell] = driver_lut; } continue; } if (mapped_cell->type.in(ID($lut), ID($__ABC9_FF_))) { // Convert buffer into direct connection if (mapped_cell->type == ID($lut) && GetSize(mapped_cell->getPort(ID::A)) == 1 && mapped_cell->getParam(ID(LUT)) == RTLIL::Const::from_string("01")) { SigSpec my_a = module->wires_.at(remap_name(mapped_cell->getPort(ID::A).as_wire()->name)); SigSpec my_y = module->wires_.at(remap_name(mapped_cell->getPort(ID::Y).as_wire()->name)); module->connect(my_y, my_a); log_abort(); continue; } RTLIL::Cell *cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type); cell->parameters = mapped_cell->parameters; cell->attributes = mapped_cell->attributes; for (auto &mapped_conn : mapped_cell->connections()) { RTLIL::SigSpec newsig; for (auto c : mapped_conn.second.chunks()) { if (c.width == 0) continue; //log_assert(c.width == 1); if (c.wire) c.wire = module->wires_.at(remap_name(c.wire->name)); newsig.append(c); } cell->setPort(mapped_conn.first, newsig); if (cell->input(mapped_conn.first)) { for (auto i : newsig) bit2sinks[i].push_back(cell); for (auto i : mapped_conn.second) bit_users[i].insert(mapped_cell->name); } if (cell->output(mapped_conn.first)) for (auto i : mapped_conn.second) bit_drivers[i].insert(mapped_cell->name); } } else { RTLIL::Cell *existing_cell = module->cell(mapped_cell->name); log_assert(existing_cell); log_assert(mapped_cell->type.begins_with("$__boxid")); auto type = box_lookup.at(mapped_cell->type, IdString()); if (type == IdString()) log_error("No module with abc9_box_id = %s found.\n", mapped_cell->type.c_str() + strlen("$__boxid")); mapped_cell->type = type; RTLIL::Cell *cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type); cell->parameters = existing_cell->parameters; cell->attributes = existing_cell->attributes; module->swap_names(cell, existing_cell); auto it = mapped_cell->connections_.find("\\i"); log_assert(it != mapped_cell->connections_.end()); SigSpec inputs = std::move(it->second); mapped_cell->connections_.erase(it); it = mapped_cell->connections_.find("\\o"); log_assert(it != mapped_cell->connections_.end()); SigSpec outputs = std::move(it->second); mapped_cell->connections_.erase(it); RTLIL::Module* box_module = design->module(mapped_cell->type); auto abc9_flop = box_module->attributes.count("\\abc9_flop"); if (!abc9_flop) { for (const auto &i : inputs) bit_users[i].insert(mapped_cell->name); for (const auto &i : outputs) bit_drivers[i].insert(mapped_cell->name); } int input_count = 0, output_count = 0; for (const auto &port_name : box_ports.at(cell->type)) { RTLIL::Wire *w = box_module->wire(port_name); log_assert(w); SigSpec sig; if (w->port_input) { sig = inputs.extract(input_count, GetSize(w)); input_count += GetSize(w); } if (w->port_output) { sig = outputs.extract(output_count, GetSize(w)); output_count += GetSize(w); } SigSpec newsig; for (auto c : sig.chunks()) { if (c.width == 0) continue; //log_assert(c.width == 1); if (c.wire) c.wire = module->wires_.at(remap_name(c.wire->name)); newsig.append(c); } auto it = existing_cell->connections_.find(port_name); if (it == existing_cell->connections_.end()) continue; if (GetSize(newsig) > GetSize(it->second)) newsig = newsig.extract(0, GetSize(it->second)); else log_assert(GetSize(newsig) == GetSize(it->second)); cell->setPort(port_name, newsig); if (w->port_input && !abc9_flop) for (const auto &i : newsig) bit2sinks[i].push_back(cell); } } cell_stats[mapped_cell->type]++; } for (auto cell : boxes) module->remove(cell); // Copy connections (and rename) from mapped_mod to module for (auto conn : mapped_mod->connections()) { if (!conn.first.is_fully_const()) { auto chunks = conn.first.chunks(); for (auto &c : chunks) c.wire = module->wires_.at(remap_name(c.wire->name)); conn.first = std::move(chunks); } if (!conn.second.is_fully_const()) { auto chunks = conn.second.chunks(); for (auto &c : chunks) if (c.wire) c.wire = module->wires_.at(remap_name(c.wire->name)); conn.second = std::move(chunks); } module->connect(conn); } for (auto &it : cell_stats) log("ABC RESULTS: %15s cells: %8d\n", it.first.c_str(), it.second); int in_wires = 0, out_wires = 0; // Stitch in mapped_mod's inputs/outputs into module for (auto port : mapped_mod->ports) { RTLIL::Wire *w = mapped_mod->wire(port); RTLIL::Wire *wire = module->wire(port); log_assert(wire); RTLIL::Wire *remap_wire = module->wire(remap_name(port)); RTLIL::SigSpec signal(wire, 0, GetSize(remap_wire)); log_assert(GetSize(signal) >= GetSize(remap_wire)); RTLIL::SigSig conn; if (w->port_output) { conn.first = signal; conn.second = remap_wire; out_wires++; module->connect(conn); } else if (w->port_input) { conn.first = remap_wire; conn.second = signal; in_wires++; module->connect(conn); } } for (auto &it : bit_users) if (bit_drivers.count(it.first)) for (auto driver_cell : bit_drivers.at(it.first)) for (auto user_cell : it.second) toposort.edge(driver_cell, user_cell); bool no_loops YS_ATTRIBUTE(unused) = toposort.sort(); log_assert(no_loops); for (auto ii = toposort.sorted.rbegin(); ii != toposort.sorted.rend(); ii++) { RTLIL::Cell *not_cell = mapped_mod->cell(*ii); log_assert(not_cell); if (not_cell->type != ID($_NOT_)) continue; auto it = not2drivers.find(not_cell); if (it == not2drivers.end()) continue; RTLIL::Cell *driver_lut = it->second; RTLIL::SigBit a_bit = not_cell->getPort(ID::A); RTLIL::SigBit y_bit = not_cell->getPort(ID::Y); RTLIL::Const driver_mask; a_bit.wire = module->wires_.at(remap_name(a_bit.wire->name)); y_bit.wire = module->wires_.at(remap_name(y_bit.wire->name)); auto jt = bit2sinks.find(a_bit); if (jt == bit2sinks.end()) goto clone_lut; for (auto sink_cell : jt->second) if (sink_cell->type != ID($lut)) goto clone_lut; // Push downstream LUTs past inverter for (auto sink_cell : jt->second) { SigSpec A = sink_cell->getPort(ID::A); RTLIL::Const mask = sink_cell->getParam(ID(LUT)); int index = 0; for (; index < GetSize(A); index++) if (A[index] == a_bit) break; log_assert(index < GetSize(A)); int i = 0; while (i < GetSize(mask)) { for (int j = 0; j < (1 << index); j++) std::swap(mask[i+j], mask[i+j+(1 << index)]); i += 1 << (index+1); } A[index] = y_bit; sink_cell->setPort(ID::A, A); sink_cell->setParam(ID(LUT), mask); } // Since we have rewritten all sinks (which we know // to be only LUTs) to be after the inverter, we can // go ahead and clone the LUT with the expectation // that the original driving LUT will become dangling // and get cleaned away clone_lut: driver_mask = driver_lut->getParam(ID(LUT)); for (auto &b : driver_mask.bits) { if (b == RTLIL::State::S0) b = RTLIL::State::S1; else if (b == RTLIL::State::S1) b = RTLIL::State::S0; } auto cell = module->addLut(NEW_ID, driver_lut->getPort(ID::A), y_bit, driver_mask); for (auto &bit : cell->connections_.at(ID::A)) { bit.wire = module->wires_.at(remap_name(bit.wire->name)); bit2sinks[bit].push_back(cell); } } //log("ABC RESULTS: internal signals: %8d\n", int(signal_list.size()) - in_wires - out_wires); log("ABC RESULTS: input signals: %8d\n", in_wires); log("ABC RESULTS: output signals: %8d\n", out_wires); design->remove(mapped_mod); } struct Abc9OpsPass : public Pass { Abc9OpsPass() : Pass("abc9_ops", "helper functions for ABC9") { } void help() YS_OVERRIDE { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" abc9_ops [options] [selection]\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) YS_OVERRIDE { log_header(design, "Executing ABC9_OPS pass (helper functions for ABC9).\n"); bool break_scc_mode = false; bool unbreak_scc_mode = false; bool prep_dff_mode = false; bool prep_holes_mode = false; bool reintegrate_mode = false; bool dff_mode = false; size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { std::string arg = args[argidx]; if (arg == "-break_scc") { break_scc_mode = true; continue; } if (arg == "-unbreak_scc") { unbreak_scc_mode = true; continue; } if (arg == "-prep_dff") { prep_dff_mode = true; continue; } if (arg == "-prep_holes") { prep_holes_mode = true; continue; } if (arg == "-reintegrate") { reintegrate_mode = true; continue; } if (arg == "-dff") { dff_mode = true; continue; } break; } extra_args(args, argidx, design); if (!(break_scc_mode || unbreak_scc_mode || prep_dff_mode || reintegrate_mode)) log_cmd_error("At least one of -{,un}break_scc, -prep_{dff,holes}, -reintegrate must be specified.\n"); if (dff_mode && !prep_holes_mode) log_cmd_error("'-dff' option is only relevant for -prep_holes.\n"); for (auto mod : design->selected_modules()) { if (mod->get_bool_attribute("\\abc9_holes")) continue; if (mod->processes.size() > 0) { log("Skipping module %s as it contains processes.\n", log_id(mod)); continue; } if (!design->selected_whole_module(mod)) log_error("Can't handle partially selected module %s!\n", log_id(mod)); if (break_scc_mode) break_scc(mod); if (unbreak_scc_mode) unbreak_scc(mod); if (prep_dff_mode) prep_dff(mod); if (prep_holes_mode) prep_holes(mod, dff_mode); if (reintegrate_mode) reintegrate(mod); } } } Abc9OpsPass; PRIVATE_NAMESPACE_END