/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ // See Xilinx UG953 and UG474 for a description of the cell types below. // http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf // http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug953-vivado-7series-libraries.pdf module VCC(output P); assign P = 1; endmodule module GND(output G); assign G = 0; endmodule module IBUF( output O, (* iopad_external_pin *) input I); parameter IOSTANDARD = "default"; parameter IBUF_LOW_PWR = 0; assign O = I; endmodule module OBUF( (* iopad_external_pin *) output O, input I); parameter IOSTANDARD = "default"; parameter DRIVE = 12; parameter SLEW = "SLOW"; assign O = I; endmodule module BUFG( (* clkbuf_driver *) output O, input I); assign O = I; endmodule module BUFGCTRL( (* clkbuf_driver *) output O, input I0, input I1, (* invertible_pin = "IS_S0_INVERTED" *) input S0, (* invertible_pin = "IS_S1_INVERTED" *) input S1, (* invertible_pin = "IS_CE0_INVERTED" *) input CE0, (* invertible_pin = "IS_CE1_INVERTED" *) input CE1, (* invertible_pin = "IS_IGNORE0_INVERTED" *) input IGNORE0, (* invertible_pin = "IS_IGNORE1_INVERTED" *) input IGNORE1); parameter [0:0] INIT_OUT = 1'b0; parameter PRESELECT_I0 = "FALSE"; parameter PRESELECT_I1 = "FALSE"; parameter [0:0] IS_CE0_INVERTED = 1'b0; parameter [0:0] IS_CE1_INVERTED = 1'b0; parameter [0:0] IS_S0_INVERTED = 1'b0; parameter [0:0] IS_S1_INVERTED = 1'b0; parameter [0:0] IS_IGNORE0_INVERTED = 1'b0; parameter [0:0] IS_IGNORE1_INVERTED = 1'b0; wire I0_internal = ((CE0 ^ IS_CE0_INVERTED) ? I0 : INIT_OUT); wire I1_internal = ((CE1 ^ IS_CE1_INVERTED) ? I1 : INIT_OUT); wire S0_true = (S0 ^ IS_S0_INVERTED); wire S1_true = (S1 ^ IS_S1_INVERTED); assign O = S0_true ? I0_internal : (S1_true ? I1_internal : INIT_OUT); endmodule module BUFHCE( (* clkbuf_driver *) output O, input I, (* invertible_pin = "IS_CE_INVERTED" *) input CE); parameter [0:0] INIT_OUT = 1'b0; parameter CE_TYPE = "SYNC"; parameter [0:0] IS_CE_INVERTED = 1'b0; assign O = ((CE ^ IS_CE_INVERTED) ? I : INIT_OUT); endmodule // module OBUFT(output O, input I, T); // assign O = T ? 1'bz : I; // endmodule // module IOBUF(inout IO, output O, input I, T); // assign O = IO, IO = T ? 1'bz : I; // endmodule module INV(output O, input I); assign O = !I; endmodule module LUT1(output O, input I0); parameter [1:0] INIT = 0; assign O = I0 ? INIT[1] : INIT[0]; endmodule module LUT2(output O, input I0, I1); parameter [3:0] INIT = 0; wire [ 1: 0] s1 = I1 ? INIT[ 3: 2] : INIT[ 1: 0]; assign O = I0 ? s1[1] : s1[0]; endmodule module LUT3(output O, input I0, I1, I2); parameter [7:0] INIT = 0; wire [ 3: 0] s2 = I2 ? INIT[ 7: 4] : INIT[ 3: 0]; wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0]; assign O = I0 ? s1[1] : s1[0]; endmodule module LUT4(output O, input I0, I1, I2, I3); parameter [15:0] INIT = 0; wire [ 7: 0] s3 = I3 ? INIT[15: 8] : INIT[ 7: 0]; wire [ 3: 0] s2 = I2 ? s3[ 7: 4] : s3[ 3: 0]; wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0]; assign O = I0 ? s1[1] : s1[0]; endmodule module LUT5(output O, input I0, I1, I2, I3, I4); parameter [31:0] INIT = 0; wire [15: 0] s4 = I4 ? INIT[31:16] : INIT[15: 0]; wire [ 7: 0] s3 = I3 ? s4[15: 8] : s4[ 7: 0]; wire [ 3: 0] s2 = I2 ? s3[ 7: 4] : s3[ 3: 0]; wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0]; assign O = I0 ? s1[1] : s1[0]; endmodule module LUT6(output O, input I0, I1, I2, I3, I4, I5); parameter [63:0] INIT = 0; wire [31: 0] s5 = I5 ? INIT[63:32] : INIT[31: 0]; wire [15: 0] s4 = I4 ? s5[31:16] : s5[15: 0]; wire [ 7: 0] s3 = I3 ? s4[15: 8] : s4[ 7: 0]; wire [ 3: 0] s2 = I2 ? s3[ 7: 4] : s3[ 3: 0]; wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0]; assign O = I0 ? s1[1] : s1[0]; endmodule module LUT6_2(output O6, output O5, input I0, I1, I2, I3, I4, I5); parameter [63:0] INIT = 0; wire [31: 0] s5 = I5 ? INIT[63:32] : INIT[31: 0]; wire [15: 0] s4 = I4 ? s5[31:16] : s5[15: 0]; wire [ 7: 0] s3 = I3 ? s4[15: 8] : s4[ 7: 0]; wire [ 3: 0] s2 = I2 ? s3[ 7: 4] : s3[ 3: 0]; wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0]; assign O6 = I0 ? s1[1] : s1[0]; wire [15: 0] s5_4 = I4 ? INIT[31:16] : INIT[15: 0]; wire [ 7: 0] s5_3 = I3 ? s5_4[15: 8] : s5_4[ 7: 0]; wire [ 3: 0] s5_2 = I2 ? s5_3[ 7: 4] : s5_3[ 3: 0]; wire [ 1: 0] s5_1 = I1 ? s5_2[ 3: 2] : s5_2[ 1: 0]; assign O5 = I0 ? s5_1[1] : s5_1[0]; endmodule module MUXCY(output O, input CI, DI, S); assign O = S ? CI : DI; endmodule (* abc_box_id = 1, lib_whitebox *) module MUXF7(output O, input I0, I1, S); assign O = S ? I1 : I0; endmodule (* abc_box_id = 2, lib_whitebox *) module MUXF8(output O, input I0, I1, S); assign O = S ? I1 : I0; endmodule module XORCY(output O, input CI, LI); assign O = CI ^ LI; endmodule (* abc_box_id = 4, lib_whitebox *) module CARRY4( (* abc_carry *) output [3:0] CO, output [3:0] O, (* abc_carry *) input CI, input CYINIT, input [3:0] DI, S ); assign O = S ^ {CO[2:0], CI | CYINIT}; assign CO[0] = S[0] ? CI | CYINIT : DI[0]; assign CO[1] = S[1] ? CO[0] : DI[1]; assign CO[2] = S[2] ? CO[1] : DI[2]; assign CO[3] = S[3] ? CO[2] : DI[3]; endmodule `ifdef _EXPLICIT_CARRY module CARRY0(output CO_CHAIN, CO_FABRIC, O, input CI, CI_INIT, DI, S); parameter CYINIT_FABRIC = 0; wire CI_COMBINE; if(CYINIT_FABRIC) begin assign CI_COMBINE = CI_INIT; end else begin assign CI_COMBINE = CI; end assign CO_CHAIN = S ? CI_COMBINE : DI; assign CO_FABRIC = S ? CI_COMBINE : DI; assign O = S ^ CI_COMBINE; endmodule module CARRY(output CO_CHAIN, CO_FABRIC, O, input CI, DI, S); assign CO_CHAIN = S ? CI : DI; assign CO_FABRIC = S ? CI : DI; assign O = S ^ CI; endmodule `endif // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf#L238-L250 module FDRE ( (* abc_arrival=303 *) output reg Q, (* clkbuf_sink *) (* invertible_pin = "IS_C_INVERTED" *) input C, input CE, (* invertible_pin = "IS_D_INVERTED" *) input D, (* invertible_pin = "IS_R_INVERTED" *) input R ); parameter [0:0] INIT = 1'b0; parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_R_INVERTED = 1'b0; initial Q <= INIT; generate case (|IS_C_INVERTED) 1'b0: always @(posedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; 1'b1: always @(negedge C) if (R == !IS_R_INVERTED) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; endcase endgenerate endmodule module FDSE ( (* abc_arrival=303 *) output reg Q, (* clkbuf_sink *) (* invertible_pin = "IS_C_INVERTED" *) input C, input CE, (* invertible_pin = "IS_D_INVERTED" *) input D, (* invertible_pin = "IS_S_INVERTED" *) input S ); parameter [0:0] INIT = 1'b1; parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_S_INVERTED = 1'b0; initial Q <= INIT; generate case (|IS_C_INVERTED) 1'b0: always @(posedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; 1'b1: always @(negedge C) if (S == !IS_S_INVERTED) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; endcase endgenerate endmodule module FDCE ( (* abc_arrival=303 *) output reg Q, (* clkbuf_sink *) (* invertible_pin = "IS_C_INVERTED" *) input C, input CE, (* invertible_pin = "IS_D_INVERTED" *) input D, (* invertible_pin = "IS_CLR_INVERTED" *) input CLR ); parameter [0:0] INIT = 1'b0; parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_CLR_INVERTED = 1'b0; initial Q <= INIT; generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED}) 2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; 2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; 2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; 2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else if (CE) Q <= D ^ IS_D_INVERTED; endcase endgenerate endmodule module FDPE ( (* abc_arrival=303 *) output reg Q, (* clkbuf_sink *) (* invertible_pin = "IS_C_INVERTED" *) input C, input CE, (* invertible_pin = "IS_D_INVERTED" *) input D, (* invertible_pin = "IS_PRE_INVERTED" *) input PRE ); parameter [0:0] INIT = 1'b1; parameter [0:0] IS_C_INVERTED = 1'b0; parameter [0:0] IS_D_INVERTED = 1'b0; parameter [0:0] IS_PRE_INVERTED = 1'b0; initial Q <= INIT; generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED}) 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else if (CE) Q <= D ^ IS_D_INVERTED; endcase endgenerate endmodule module FDRE_1 ( (* abc_arrival=303 *) output reg Q, (* clkbuf_sink *) input C, input CE, D, R ); parameter [0:0] INIT = 1'b0; initial Q <= INIT; always @(negedge C) if (R) Q <= 1'b0; else if(CE) Q <= D; endmodule module FDSE_1 ( (* abc_arrival=303 *) output reg Q, (* clkbuf_sink *) input C, input CE, D, S ); parameter [0:0] INIT = 1'b1; initial Q <= INIT; always @(negedge C) if (S) Q <= 1'b1; else if(CE) Q <= D; endmodule module FDCE_1 ( (* abc_arrival=303 *) output reg Q, (* clkbuf_sink *) input C, input CE, D, CLR ); parameter [0:0] INIT = 1'b0; initial Q <= INIT; always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else if (CE) Q <= D; endmodule module FDPE_1 ( (* abc_arrival=303 *) output reg Q, (* clkbuf_sink *) input C, input CE, D, PRE ); parameter [0:0] INIT = 1'b1; initial Q <= INIT; always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else if (CE) Q <= D; endmodule module LDCE ( output reg Q, (* invertible_pin = "IS_CLR_INVERTED" *) input CLR, input D, (* invertible_pin = "IS_G_INVERTED" *) input G, input GE ); parameter [0:0] INIT = 1'b0; parameter [0:0] IS_CLR_INVERTED = 1'b0; parameter [0:0] IS_G_INVERTED = 1'b0; parameter MSGON = "TRUE"; parameter XON = "TRUE"; initial Q = INIT; wire clr = CLR ^ IS_CLR_INVERTED; wire g = G ^ IS_G_INVERTED; always @* if (clr) Q = 1'b0; else if (GE && g) Q = D; endmodule module LDPE ( output reg Q, input D, (* invertible_pin = "IS_G_INVERTED" *) input G, input GE, (* invertible_pin = "IS_PRE_INVERTED" *) input PRE ); parameter [0:0] INIT = 1'b1; parameter [0:0] IS_G_INVERTED = 1'b0; parameter [0:0] IS_PRE_INVERTED = 1'b0; parameter MSGON = "TRUE"; parameter XON = "TRUE"; initial Q = INIT; wire g = G ^ IS_G_INVERTED; wire pre = PRE ^ IS_PRE_INVERTED; always @* if (pre) Q = 1'b1; else if (GE && g) Q = D; endmodule module RAM32X1D ( // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957 (* abc_arrival=1153 *) output DPO, SPO, input D, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE, input A0, A1, A2, A3, A4, input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4 ); parameter INIT = 32'h0; parameter IS_WCLK_INVERTED = 1'b0; wire [4:0] a = {A4, A3, A2, A1, A0}; wire [4:0] dpra = {DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}; reg [31:0] mem = INIT; assign SPO = mem[a]; assign DPO = mem[dpra]; wire clk = WCLK ^ IS_WCLK_INVERTED; always @(posedge clk) if (WE) mem[a] <= D; endmodule module RAM64X1D ( // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957 (* abc_arrival=1153 *) output DPO, SPO, input D, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE, input A0, A1, A2, A3, A4, A5, input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4, DPRA5 ); parameter INIT = 64'h0; parameter IS_WCLK_INVERTED = 1'b0; wire [5:0] a = {A5, A4, A3, A2, A1, A0}; wire [5:0] dpra = {DPRA5, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0}; reg [63:0] mem = INIT; assign SPO = mem[a]; assign DPO = mem[dpra]; wire clk = WCLK ^ IS_WCLK_INVERTED; always @(posedge clk) if (WE) mem[a] <= D; endmodule module RAM128X1D ( // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957 (* abc_arrival=1153 *) output DPO, SPO, input D, (* clkbuf_sink *) (* invertible_pin = "IS_WCLK_INVERTED" *) input WCLK, input WE, input [6:0] A, DPRA ); parameter INIT = 128'h0; parameter IS_WCLK_INVERTED = 1'b0; reg [127:0] mem = INIT; assign SPO = mem[A]; assign DPO = mem[DPRA]; wire clk = WCLK ^ IS_WCLK_INVERTED; always @(posedge clk) if (WE) mem[A] <= D; endmodule module SRL16E ( // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L904-L905 (* abc_arrival=1472 *) output Q, input A0, A1, A2, A3, CE, (* clkbuf_sink *) (* invertible_pin = "IS_CLK_INVERTED" *) input CLK, input D ); parameter [15:0] INIT = 16'h0000; parameter [0:0] IS_CLK_INVERTED = 1'b0; reg [15:0] r = INIT; assign Q = r[{A3,A2,A1,A0}]; generate if (IS_CLK_INVERTED) begin always @(negedge CLK) if (CE) r <= { r[14:0], D }; end else always @(posedge CLK) if (CE) r <= { r[14:0], D }; endgenerate endmodule module SRLC16E ( output Q, output Q15, input A0, A1, A2, A3, CE, (* clkbuf_sink *) (* invertible_pin = "IS_CLK_INVERTED" *) input CLK, input D ); parameter [15:0] INIT = 16'h0000; parameter [0:0] IS_CLK_INVERTED = 1'b0; reg [15:0] r = INIT; assign Q15 = r[15]; assign Q = r[{A3,A2,A1,A0}]; generate if (IS_CLK_INVERTED) begin always @(negedge CLK) if (CE) r <= { r[14:0], D }; end else always @(posedge CLK) if (CE) r <= { r[14:0], D }; endgenerate endmodule module SRLC32E ( // Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L904-L905 (* abc_arrival=1472 *) output Q, (* abc_arrival=1114 *) output Q31, input [4:0] A, input CE, (* clkbuf_sink *) (* invertible_pin = "IS_CLK_INVERTED" *) input CLK, input D ); parameter [31:0] INIT = 32'h00000000; parameter [0:0] IS_CLK_INVERTED = 1'b0; reg [31:0] r = INIT; assign Q31 = r[31]; assign Q = r[A]; generate if (IS_CLK_INVERTED) begin always @(negedge CLK) if (CE) r <= { r[30:0], D }; end else always @(posedge CLK) if (CE) r <= { r[30:0], D }; endgenerate endmodule module DSP48E1 ( output [29:0] ACOUT, output [17:0] BCOUT, output reg CARRYCASCOUT, output reg [3:0] CARRYOUT, output reg MULTSIGNOUT, output OVERFLOW, output reg signed [47:0] P, output reg PATTERNBDETECT, output reg PATTERNDETECT, output [47:0] PCOUT, output UNDERFLOW, input signed [29:0] A, input [29:0] ACIN, input [3:0] ALUMODE, input signed [17:0] B, input [17:0] BCIN, input [47:0] C, input CARRYCASCIN, input CARRYIN, input [2:0] CARRYINSEL, input CEA1, input CEA2, input CEAD, input CEALUMODE, input CEB1, input CEB2, input CEC, input CECARRYIN, input CECTRL, input CED, input CEINMODE, input CEM, input CEP, (* clkbuf_sink *) input CLK, input [24:0] D, input [4:0] INMODE, input MULTSIGNIN, input [6:0] OPMODE, input [47:0] PCIN, input RSTA, input RSTALLCARRYIN, input RSTALUMODE, input RSTB, input RSTC, input RSTCTRL, input RSTD, input RSTINMODE, input RSTM, input RSTP ); parameter integer ACASCREG = 1; parameter integer ADREG = 1; parameter integer ALUMODEREG = 1; parameter integer AREG = 1; parameter AUTORESET_PATDET = "NO_RESET"; parameter A_INPUT = "DIRECT"; parameter integer BCASCREG = 1; parameter integer BREG = 1; parameter B_INPUT = "DIRECT"; parameter integer CARRYINREG = 1; parameter integer CARRYINSELREG = 1; parameter integer CREG = 1; parameter integer DREG = 1; parameter integer INMODEREG = 1; parameter integer MREG = 1; parameter integer OPMODEREG = 1; parameter integer PREG = 1; parameter SEL_MASK = "MASK"; parameter SEL_PATTERN = "PATTERN"; parameter USE_DPORT = "FALSE"; parameter USE_MULT = "MULTIPLY"; parameter USE_PATTERN_DETECT = "NO_PATDET"; parameter USE_SIMD = "ONE48"; parameter [47:0] MASK = 48'h3FFFFFFFFFFF; parameter [47:0] PATTERN = 48'h000000000000; parameter [3:0] IS_ALUMODE_INVERTED = 4'b0; parameter [0:0] IS_CARRYIN_INVERTED = 1'b0; parameter [0:0] IS_CLK_INVERTED = 1'b0; parameter [4:0] IS_INMODE_INVERTED = 5'b0; parameter [6:0] IS_OPMODE_INVERTED = 7'b0; initial begin `ifdef __ICARUS__ if (AUTORESET_PATDET != "NO_RESET") $fatal(1, "Unsupported AUTORESET_PATDET value"); if (SEL_MASK != "MASK") $fatal(1, "Unsupported SEL_MASK value"); if (SEL_PATTERN != "PATTERN") $fatal(1, "Unsupported SEL_PATTERN value"); if (USE_SIMD != "ONE48" && USE_SIMD != "TWO24" && USE_SIMD != "FOUR12") $fatal(1, "Unsupported USE_SIMD value"); if (IS_ALUMODE_INVERTED != 4'b0) $fatal(1, "Unsupported IS_ALUMODE_INVERTED value"); if (IS_CARRYIN_INVERTED != 1'b0) $fatal(1, "Unsupported IS_CARRYIN_INVERTED value"); if (IS_CLK_INVERTED != 1'b0) $fatal(1, "Unsupported IS_CLK_INVERTED value"); if (IS_INMODE_INVERTED != 5'b0) $fatal(1, "Unsupported IS_INMODE_INVERTED value"); if (IS_OPMODE_INVERTED != 7'b0) $fatal(1, "Unsupported IS_OPMODE_INVERTED value"); `endif end wire signed [29:0] A_muxed; wire signed [17:0] B_muxed; generate if (A_INPUT == "CASCADE") assign A_muxed = ACIN; else assign A_muxed = A; if (B_INPUT == "CASCADE") assign B_muxed = BCIN; else assign B_muxed = B; endgenerate reg signed [29:0] Ar1, Ar2; reg signed [24:0] Dr; reg signed [17:0] Br1, Br2; reg signed [47:0] Cr; reg [4:0] INMODEr = 5'b0; reg [6:0] OPMODEr = 7'b0; reg [3:0] ALUMODEr = 4'b0; reg [2:0] CARRYINSELr = 3'b0; generate // Configurable A register if (AREG == 2) begin initial Ar1 = 30'b0; initial Ar2 = 30'b0; always @(posedge CLK) if (RSTA) begin Ar1 <= 30'b0; Ar2 <= 30'b0; end else begin if (CEA1) Ar1 <= A_muxed; if (CEA2) Ar2 <= Ar1; end end else if (AREG == 1) begin //initial Ar1 = 30'b0; initial Ar2 = 30'b0; always @(posedge CLK) if (RSTA) begin Ar1 <= 30'b0; Ar2 <= 30'b0; end else begin if (CEA1) Ar1 <= A_muxed; if (CEA2) Ar2 <= A_muxed; end end else begin always @* Ar1 <= A_muxed; always @* Ar2 <= A_muxed; end // Configurable B register if (BREG == 2) begin initial Br1 = 25'b0; initial Br2 = 25'b0; always @(posedge CLK) if (RSTB) begin Br1 <= 18'b0; Br2 <= 18'b0; end else begin if (CEB1) Br1 <= B_muxed; if (CEB2) Br2 <= Br1; end end else if (BREG == 1) begin //initial Br1 = 25'b0; initial Br2 = 25'b0; always @(posedge CLK) if (RSTB) begin Br1 <= 18'b0; Br2 <= 18'b0; end else begin if (CEB1) Br1 <= B_muxed; if (CEB2) Br2 <= B_muxed; end end else begin always @* Br1 <= B_muxed; always @* Br2 <= B_muxed; end // C and D registers if (CREG == 1) initial Cr = 48'b0; if (CREG == 1) begin always @(posedge CLK) if (RSTC) Cr <= 48'b0; else if (CEC) Cr <= C; end else always @* Cr <= C; if (CREG == 1) initial Dr = 25'b0; if (DREG == 1) begin always @(posedge CLK) if (RSTD) Dr <= 25'b0; else if (CED) Dr <= D; end else always @* Dr <= D; // Control registers if (INMODEREG == 1) initial INMODEr = 5'b0; if (INMODEREG == 1) begin always @(posedge CLK) if (RSTINMODE) INMODEr <= 5'b0; else if (CEINMODE) INMODEr <= INMODE; end else always @* INMODEr <= INMODE; if (OPMODEREG == 1) initial OPMODEr = 7'b0; if (OPMODEREG == 1) begin always @(posedge CLK) if (RSTCTRL) OPMODEr <= 7'b0; else if (CECTRL) OPMODEr <= OPMODE; end else always @* OPMODEr <= OPMODE; if (ALUMODEREG == 1) initial ALUMODEr = 4'b0; if (ALUMODEREG == 1) begin always @(posedge CLK) if (RSTALUMODE) ALUMODEr <= 4'b0; else if (CEALUMODE) ALUMODEr <= ALUMODE; end else always @* ALUMODEr <= ALUMODE; if (CARRYINSELREG == 1) initial CARRYINSELr = 3'b0; if (CARRYINSELREG == 1) begin always @(posedge CLK) if (RSTCTRL) CARRYINSELr <= 3'b0; else if (CECTRL) CARRYINSELr <= CARRYINSEL; end else always @* CARRYINSELr <= CARRYINSEL; endgenerate // A and B cascade generate if (ACASCREG == 1 && AREG == 2) assign ACOUT = Ar1; else assign ACOUT = Ar2; if (BCASCREG == 1 && BREG == 2) assign BCOUT = Br1; else assign BCOUT = Br2; endgenerate // A/D input selection and pre-adder wire signed [29:0] Ar12_muxed = INMODEr[0] ? Ar1 : Ar2; wire signed [24:0] Ar12_gated = INMODEr[1] ? 25'b0 : Ar12_muxed; wire signed [24:0] Dr_gated = INMODEr[2] ? Dr : 25'b0; wire signed [24:0] AD_result = INMODEr[3] ? (Dr_gated - Ar12_gated) : (Dr_gated + Ar12_gated); reg signed [24:0] ADr; generate if (ADREG == 1) initial ADr = 25'b0; if (ADREG == 1) begin always @(posedge CLK) if (RSTD) ADr <= 25'b0; else if (CEAD) ADr <= AD_result; end else always @* ADr <= AD_result; endgenerate // 25x18 multiplier wire signed [24:0] A_MULT; wire signed [17:0] B_MULT = INMODEr[4] ? Br1 : Br2; generate if (USE_DPORT == "TRUE") assign A_MULT = ADr; else assign A_MULT = Ar12_gated; endgenerate wire signed [42:0] M = A_MULT * B_MULT; wire signed [42:0] Mx = (CARRYINSEL == 3'b010) ? 43'bx : M; reg signed [42:0] Mr = 43'b0; // Multiplier result register generate if (MREG == 1) begin always @(posedge CLK) if (RSTM) Mr <= 43'b0; else if (CEM) Mr <= Mx; end else always @* Mr <= Mx; endgenerate wire signed [42:0] Mrx = (CARRYINSELr == 3'b010) ? 43'bx : Mr; // X, Y and Z ALU inputs reg signed [47:0] X, Y, Z; always @* begin // X multiplexer case (OPMODEr[1:0]) 2'b00: X = 48'b0; 2'b01: begin X = $signed(Mrx); `ifdef __ICARUS__ if (OPMODEr[3:2] != 2'b01) $fatal(1, "OPMODEr[3:2] must be 2'b01 when OPMODEr[1:0] is 2'b01"); `endif end 2'b10: begin X = P; `ifdef __ICARUS__ if (PREG != 1) $fatal(1, "PREG must be 1 when OPMODEr[1:0] is 2'b10"); `endif end 2'b11: X = $signed({Ar2, Br2}); default: X = 48'bx; endcase // Y multiplexer case (OPMODEr[3:2]) 2'b00: Y = 48'b0; 2'b01: begin Y = 48'b0; // FIXME: more accurate partial product modelling? `ifdef __ICARUS__ if (OPMODEr[1:0] != 2'b01) $fatal(1, "OPMODEr[1:0] must be 2'b01 when OPMODEr[3:2] is 2'b01"); `endif end 2'b10: Y = {48{1'b1}}; 2'b11: Y = Cr; default: Y = 48'bx; endcase // Z multiplexer case (OPMODEr[6:4]) 3'b000: Z = 48'b0; 3'b001: Z = PCIN; 3'b010: begin Z = P; `ifdef __ICARUS__ if (PREG != 1) $fatal(1, "PREG must be 1 when OPMODEr[6:4] i0s 3'b010"); `endif end 3'b011: Z = Cr; 3'b100: begin Z = P; `ifdef __ICARUS__ if (PREG != 1) $fatal(1, "PREG must be 1 when OPMODEr[6:4] is 3'b100"); if (OPMODEr[3:0] != 4'b1000) $fatal(1, "OPMODEr[3:0] must be 4'b1000 when OPMODEr[6:4] i0s 3'b100"); `endif end 3'b101: Z = $signed(PCIN[47:17]); 3'b110: Z = $signed(P[47:17]); default: Z = 48'bx; endcase end // Carry in wire A24_xnor_B17d = A_MULT[24] ~^ B_MULT[17]; reg CARRYINr = 1'b0, A24_xnor_B17 = 1'b0; generate if (CARRYINREG == 1) begin always @(posedge CLK) if (RSTALLCARRYIN) CARRYINr <= 1'b0; else if (CECARRYIN) CARRYINr <= CARRYIN; end else always @* CARRYINr = CARRYIN; if (MREG == 1) begin always @(posedge CLK) if (RSTALLCARRYIN) A24_xnor_B17 <= 1'b0; else if (CEM) A24_xnor_B17 <= A24_xnor_B17d; end else always @* A24_xnor_B17 = A24_xnor_B17d; endgenerate reg cin_muxed; always @(*) begin case (CARRYINSELr) 3'b000: cin_muxed = CARRYINr; 3'b001: cin_muxed = ~PCIN[47]; 3'b010: cin_muxed = CARRYCASCIN; 3'b011: cin_muxed = PCIN[47]; 3'b100: cin_muxed = CARRYCASCOUT; 3'b101: cin_muxed = ~P[47]; 3'b110: cin_muxed = A24_xnor_B17; 3'b111: cin_muxed = P[47]; default: cin_muxed = 1'bx; endcase end wire alu_cin = (ALUMODEr[3] || ALUMODEr[2]) ? 1'b0 : cin_muxed; // ALU core wire [47:0] Z_muxinv = ALUMODEr[0] ? ~Z : Z; wire [47:0] xor_xyz = X ^ Y ^ Z_muxinv; wire [47:0] maj_xyz = (X & Y) | (X & Z_muxinv) | (Y & Z_muxinv); wire [47:0] xor_xyz_muxed = ALUMODEr[3] ? maj_xyz : xor_xyz; wire [47:0] maj_xyz_gated = ALUMODEr[2] ? 48'b0 : maj_xyz; wire [48:0] maj_xyz_simd_gated; wire [3:0] int_carry_in, int_carry_out, ext_carry_out; wire [47:0] alu_sum; assign int_carry_in[0] = 1'b0; wire [3:0] carryout_reset; generate if (USE_SIMD == "FOUR12") begin assign maj_xyz_simd_gated = { maj_xyz_gated[47:36], 1'b0, maj_xyz_gated[34:24], 1'b0, maj_xyz_gated[22:12], 1'b0, maj_xyz_gated[10:0], alu_cin }; assign int_carry_in[3:1] = 3'b000; assign ext_carry_out = { int_carry_out[3], maj_xyz_gated[35] ^ int_carry_out[2], maj_xyz_gated[23] ^ int_carry_out[1], maj_xyz_gated[11] ^ int_carry_out[0] }; assign carryout_reset = 4'b0000; end else if (USE_SIMD == "TWO24") begin assign maj_xyz_simd_gated = { maj_xyz_gated[47:24], 1'b0, maj_xyz_gated[22:0], alu_cin }; assign int_carry_in[3:1] = {int_carry_out[2], 1'b0, int_carry_out[0]}; assign ext_carry_out = { int_carry_out[3], 1'bx, maj_xyz_gated[23] ^ int_carry_out[1], 1'bx }; assign carryout_reset = 4'b0x0x; end else begin assign maj_xyz_simd_gated = {maj_xyz_gated, alu_cin}; assign int_carry_in[3:1] = int_carry_out[2:0]; assign ext_carry_out = { int_carry_out[3], 3'bxxx }; assign carryout_reset = 4'b0xxx; end genvar i; for (i = 0; i < 4; i = i + 1) assign {int_carry_out[i], alu_sum[i*12 +: 12]} = {1'b0, maj_xyz_simd_gated[i*12 +: ((i == 3) ? 13 : 12)]} + xor_xyz_muxed[i*12 +: 12] + int_carry_in[i]; endgenerate wire signed [47:0] Pd = ALUMODEr[1] ? ~alu_sum : alu_sum; wire [3:0] CARRYOUTd = (OPMODEr[3:0] == 4'b0101 || ALUMODEr[3:2] != 2'b00) ? 4'bxxxx : ((ALUMODEr[0] & ALUMODEr[1]) ? ~ext_carry_out : ext_carry_out); wire CARRYCASCOUTd = ext_carry_out[3]; wire MULTSIGNOUTd = Mrx[42]; generate if (PREG == 1) begin initial P = 48'b0; initial CARRYOUT = carryout_reset; initial CARRYCASCOUT = 1'b0; initial MULTSIGNOUT = 1'b0; always @(posedge CLK) if (RSTP) begin P <= 48'b0; CARRYOUT <= carryout_reset; CARRYCASCOUT <= 1'b0; MULTSIGNOUT <= 1'b0; end else if (CEP) begin P <= Pd; CARRYOUT <= CARRYOUTd; CARRYCASCOUT <= CARRYCASCOUTd; MULTSIGNOUT <= MULTSIGNOUTd; end end else begin always @* begin P = Pd; CARRYOUT = CARRYOUTd; CARRYCASCOUT = CARRYCASCOUTd; MULTSIGNOUT = MULTSIGNOUTd; end end endgenerate assign PCOUT = P; generate wire PATTERNDETECTd, PATTERNBDETECTd; if (USE_PATTERN_DETECT == "PATDET") begin // TODO: Support SEL_PATTERN != "PATTERN" and SEL_MASK != "MASK assign PATTERNDETECTd = &(~(Pd ^ PATTERN) | MASK); assign PATTERNBDETECTd = &((Pd ^ PATTERN) | MASK); end else begin assign PATTERNDETECTd = 1'b1; assign PATTERNBDETECTd = 1'b1; end if (PREG == 1) begin reg PATTERNDETECTPAST, PATTERNBDETECTPAST; initial PATTERNDETECT = 1'b0; initial PATTERNBDETECT = 1'b0; initial PATTERNDETECTPAST = 1'b0; initial PATTERNBDETECTPAST = 1'b0; always @(posedge CLK) if (RSTP) begin PATTERNDETECT <= 1'b0; PATTERNBDETECT <= 1'b0; PATTERNDETECTPAST <= 1'b0; PATTERNBDETECTPAST <= 1'b0; end else if (CEP) begin PATTERNDETECT <= PATTERNDETECTd; PATTERNBDETECT <= PATTERNBDETECTd; PATTERNDETECTPAST <= PATTERNDETECT; PATTERNBDETECTPAST <= PATTERNBDETECT; end assign OVERFLOW = &{PATTERNDETECTPAST, ~PATTERNBDETECT, ~PATTERNDETECT}; assign UNDERFLOW = &{PATTERNBDETECTPAST, ~PATTERNBDETECT, ~PATTERNDETECT}; end else begin always @* begin PATTERNDETECT = PATTERNDETECTd; PATTERNBDETECT = PATTERNBDETECTd; end assign OVERFLOW = 1'bx, UNDERFLOW = 1'bx; end endgenerate endmodule