/*
 *  yosys -- Yosys Open SYnthesis Suite
 *
 *  Copyright (C) 2012  Claire Xenia Wolf <claire@yosyshq.com>
 *
 *  Permission to use, copy, modify, and/or distribute this software for any
 *  purpose with or without fee is hereby granted, provided that the above
 *  copyright notice and this permission notice appear in all copies.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 *  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 *  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 *  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 *  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 *  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 */

#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include "kernel/celltypes.h"

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

struct EquivMakeWorker
{
	Module *gold_mod, *gate_mod, *equiv_mod;
	pool<IdString> wire_names, cell_names;
	CellTypes ct;

	bool inames;
	vector<string> blacklists;
	vector<string> encfiles;

	pool<IdString> blacklist_names;
	dict<IdString, dict<Const, Const>> encdata;

	pool<SigBit> undriven_bits;
	SigMap assign_map;

	dict<SigBit, pool<Cell*>> bit2driven; // map: bit <--> and its driven cells

	CellTypes comb_ct;

	EquivMakeWorker()
	{
		comb_ct.setup_internals();
		comb_ct.setup_stdcells();
	}

	void read_blacklists()
	{
		for (auto fn : blacklists)
		{
			std::ifstream f(fn);
			if (f.fail())
				log_cmd_error("Can't open blacklist file '%s'!\n", fn.c_str());

			string line, token;
			while (std::getline(f, line)) {
				while (1) {
					token = next_token(line);
					if (token.empty())
						break;
					blacklist_names.insert(RTLIL::escape_id(token));
				}
			}
		}
	}

	void read_encfiles()
	{
		for (auto fn : encfiles)
		{
			std::ifstream f(fn);
			if (f.fail())
				log_cmd_error("Can't open encfile '%s'!\n", fn.c_str());

			dict<Const, Const> *ed = nullptr;
			string line, token;
			while (std::getline(f, line))
			{
				token = next_token(line);
				if (token.empty() || token[0] == '#')
					continue;

				if (token == ".fsm") {
					IdString modname = RTLIL::escape_id(next_token(line));
					IdString signame = RTLIL::escape_id(next_token(line));
					if (encdata.count(signame))
						log_cmd_error("Re-definition of signal '%s' in encfile '%s'!\n", signame.c_str(), fn.c_str());
					encdata[signame] = dict<Const, Const>();
					ed = &encdata[signame];
					continue;
				}

				if (token == ".map") {
					Const gold_bits = Const::from_string(next_token(line));
					Const gate_bits = Const::from_string(next_token(line));
					(*ed)[gold_bits] = gate_bits;
					continue;
				}

				log_cmd_error("Syntax error in encfile '%s'!\n", fn.c_str());
			}
		}
	}

	void copy_to_equiv()
	{
		Module *gold_clone = gold_mod->clone();
		Module *gate_clone = gate_mod->clone();

		for (auto it : gold_clone->wires().to_vector()) {
			if ((it->name.isPublic() || inames) && blacklist_names.count(it->name) == 0)
				wire_names.insert(it->name);
			gold_clone->rename(it, it->name.str() + "_gold");
		}

		for (auto it : gold_clone->cells().to_vector()) {
			if ((it->name.isPublic() || inames) && blacklist_names.count(it->name) == 0)
				cell_names.insert(it->name);
			gold_clone->rename(it, it->name.str() + "_gold");
		}

		for (auto it : gate_clone->wires().to_vector()) {
			if ((it->name.isPublic() || inames) && blacklist_names.count(it->name) == 0)
				wire_names.insert(it->name);
			gate_clone->rename(it, it->name.str() + "_gate");
		}

		for (auto it : gate_clone->cells().to_vector()) {
			if ((it->name.isPublic() || inames) && blacklist_names.count(it->name) == 0)
				cell_names.insert(it->name);
			gate_clone->rename(it, it->name.str() + "_gate");
		}

		gold_clone->cloneInto(equiv_mod);
		gate_clone->cloneInto(equiv_mod);
		delete gold_clone;
		delete gate_clone;
	}

	void find_same_wires()
	{
		SigMap assign_map(equiv_mod);
		SigMap rd_signal_map;

		// list of cells without added $equiv cells
		auto cells_list = equiv_mod->cells().to_vector();

		for (auto id : wire_names)
		{
			IdString gold_id = id.str() + "_gold";
			IdString gate_id = id.str() + "_gate";

			Wire *gold_wire = equiv_mod->wire(gold_id);
			Wire *gate_wire = equiv_mod->wire(gate_id);

			if (encdata.count(id))
			{
				log("Creating encoder/decoder for signal %s.\n", log_id(id));

				Wire *dec_wire = equiv_mod->addWire(id.str() + "_decoded", gold_wire->width);
				Wire *enc_wire = equiv_mod->addWire(id.str() + "_encoded", gate_wire->width);

				SigSpec dec_a, dec_b, dec_s;
				SigSpec enc_a, enc_b, enc_s;

				dec_a = SigSpec(State::Sx, dec_wire->width);
				enc_a = SigSpec(State::Sx, enc_wire->width);

				for (auto &it : encdata.at(id))
				{
					SigSpec dec_sig = gate_wire, dec_pat = it.second;
					SigSpec enc_sig = dec_wire, enc_pat = it.first;

					if (GetSize(dec_sig) != GetSize(dec_pat))
						log_error("Invalid pattern %s for signal %s of size %d!\n",
								log_signal(dec_pat), log_signal(dec_sig), GetSize(dec_sig));

					if (GetSize(enc_sig) != GetSize(enc_pat))
						log_error("Invalid pattern %s for signal %s of size %d!\n",
								log_signal(enc_pat), log_signal(enc_sig), GetSize(enc_sig));

					SigSpec reduced_dec_sig, reduced_dec_pat;
					for (int i = 0; i < GetSize(dec_sig); i++)
						if (dec_pat[i] == State::S0 || dec_pat[i] == State::S1) {
							reduced_dec_sig.append(dec_sig[i]);
							reduced_dec_pat.append(dec_pat[i]);
						}

					SigSpec reduced_enc_sig, reduced_enc_pat;
					for (int i = 0; i < GetSize(enc_sig); i++)
						if (enc_pat[i] == State::S0 || enc_pat[i] == State::S1) {
							reduced_enc_sig.append(enc_sig[i]);
							reduced_enc_pat.append(enc_pat[i]);
						}

					SigSpec dec_result = it.first;
					for (auto &bit : dec_result)
						if (bit != State::S1) bit = State::S0;

					SigSpec enc_result = it.second;
					for (auto &bit : enc_result)
						if (bit != State::S1) bit = State::S0;

					SigSpec dec_eq = equiv_mod->addWire(NEW_ID);
					SigSpec enc_eq = equiv_mod->addWire(NEW_ID);

					equiv_mod->addEq(NEW_ID, reduced_dec_sig, reduced_dec_pat, dec_eq);
					cells_list.push_back(equiv_mod->addEq(NEW_ID, reduced_enc_sig, reduced_enc_pat, enc_eq));

					dec_s.append(dec_eq);
					enc_s.append(enc_eq);
					dec_b.append(dec_result);
					enc_b.append(enc_result);
				}

				equiv_mod->addPmux(NEW_ID, dec_a, dec_b, dec_s, dec_wire);
				equiv_mod->addPmux(NEW_ID, enc_a, enc_b, enc_s, enc_wire);

				rd_signal_map.add(assign_map(gate_wire), enc_wire);
				gate_wire = dec_wire;
			}

			if (gold_wire == nullptr || gate_wire == nullptr || gold_wire->width != gate_wire->width) {
				if (gold_wire && gold_wire->port_id)
					log_error("Can't match gold port `%s' to a gate port.\n", log_id(gold_wire));
				if (gate_wire && gate_wire->port_id)
					log_error("Can't match gate port `%s' to a gold port.\n", log_id(gate_wire));
				continue;
			}

			log("Presumably equivalent wires: %s (%s), %s (%s) -> %s\n",
					log_id(gold_wire), log_signal(assign_map(gold_wire)),
					log_id(gate_wire), log_signal(assign_map(gate_wire)), log_id(id));

			if (gold_wire->port_output || gate_wire->port_output)
			{
				Wire *wire = equiv_mod->addWire(id, gold_wire->width);
				wire->port_output = true;
				gold_wire->port_input = false;
				gate_wire->port_input = false;
				gold_wire->port_output = false;
				gate_wire->port_output = false;

				for (int i = 0; i < wire->width; i++)
					equiv_mod->addEquiv(NEW_ID, SigSpec(gold_wire, i), SigSpec(gate_wire, i), SigSpec(wire, i));

				rd_signal_map.add(assign_map(gold_wire), wire);
				rd_signal_map.add(assign_map(gate_wire), wire);
			}
			else
			if (gold_wire->port_input || gate_wire->port_input)
			{
				Wire *wire = equiv_mod->addWire(id, gold_wire->width);
				wire->port_input = true;
				gold_wire->port_input = false;
				gate_wire->port_input = false;
				equiv_mod->connect(gold_wire, wire);
				equiv_mod->connect(gate_wire, wire);
			}
			else
			{
				Wire *wire = equiv_mod->addWire(id, gold_wire->width);
				SigSpec rdmap_gold, rdmap_gate, rdmap_equiv;

				for (int i = 0; i < wire->width; i++) {
					if (undriven_bits.count(assign_map(SigBit(gold_wire, i)))) {
						log("  Skipping signal bit %s [%d]: undriven on gold side.\n", id2cstr(gold_wire->name), i);
						continue;
					}
					if (undriven_bits.count(assign_map(SigBit(gate_wire, i)))) {
						log("  Skipping signal bit %s [%d]: undriven on gate side.\n", id2cstr(gate_wire->name), i);
						continue;
					}
					equiv_mod->addEquiv(NEW_ID, SigSpec(gold_wire, i), SigSpec(gate_wire, i), SigSpec(wire, i));
					rdmap_gold.append(SigBit(gold_wire, i));
					rdmap_gate.append(SigBit(gate_wire, i));
					rdmap_equiv.append(SigBit(wire, i));
				}

				rd_signal_map.add(rdmap_gold, rdmap_equiv);
				rd_signal_map.add(rdmap_gate, rdmap_equiv);
			}
		}

		init_bit2driven();

		pool<Cell*> visited_cells;
		for (auto c : cells_list)
		for (auto &conn : c->connections())
			if (!ct.cell_output(c->type, conn.first)) {
				SigSpec old_sig = assign_map(conn.second);
				SigSpec new_sig = rd_signal_map(old_sig);

				if(old_sig != new_sig) {
					SigSpec tmp_sig = old_sig;
					for (int i = 0; i < GetSize(old_sig); i++) {
						SigBit old_bit = old_sig[i], new_bit = new_sig[i];

						visited_cells.clear();
						if (check_signal_in_fanout(visited_cells, old_bit, new_bit))
							continue;

						log("Changing input %s of cell %s (%s): %s -> %s\n",
								log_id(conn.first), log_id(c), log_id(c->type),
								log_signal(old_bit), log_signal(new_bit));

						tmp_sig[i] = new_bit;
					}
					c->setPort(conn.first, tmp_sig);
				}
			}

		equiv_mod->fixup_ports();
	}

	void find_same_cells()
	{
		SigMap assign_map(equiv_mod);

		for (auto id : cell_names)
		{
			IdString gold_id = id.str() + "_gold";
			IdString gate_id = id.str() + "_gate";

			Cell *gold_cell = equiv_mod->cell(gold_id);
			Cell *gate_cell = equiv_mod->cell(gate_id);

			if (gold_cell == nullptr || gate_cell == nullptr || gold_cell->type != gate_cell->type || !ct.cell_known(gold_cell->type) ||
					gold_cell->parameters != gate_cell->parameters || GetSize(gold_cell->connections()) != GetSize(gate_cell->connections()))
		try_next_cell_name:
				continue;

			for (auto gold_conn : gold_cell->connections())
				if (!gate_cell->connections().count(gold_conn.first))
					goto try_next_cell_name;

			log("Presumably equivalent cells: %s %s (%s) -> %s\n",
					log_id(gold_cell), log_id(gate_cell), log_id(gold_cell->type), log_id(id));

			for (auto gold_conn : gold_cell->connections())
			{
				SigSpec gold_sig = assign_map(gold_conn.second);
				SigSpec gate_sig = assign_map(gate_cell->getPort(gold_conn.first));

				if (ct.cell_output(gold_cell->type, gold_conn.first)) {
					equiv_mod->connect(gate_sig, gold_sig);
					continue;
				}

				for (int i = 0; i < GetSize(gold_sig); i++)
					if (gold_sig[i] != gate_sig[i]) {
						Wire *w = equiv_mod->addWire(NEW_ID);
						equiv_mod->addEquiv(NEW_ID, gold_sig[i], gate_sig[i], w);
						gold_sig[i] = w;
					}

				gold_cell->setPort(gold_conn.first, gold_sig);
			}

			equiv_mod->remove(gate_cell);
			equiv_mod->rename(gold_cell, id);
		}
	}

	void find_undriven_nets(bool mark)
	{
		undriven_bits.clear();
		assign_map.set(equiv_mod);

		for (auto wire : equiv_mod->wires()) {
			for (auto bit : assign_map(wire))
				if (bit.wire)
					undriven_bits.insert(bit);
		}

		for (auto wire : equiv_mod->wires()) {
			if (wire->port_input)
				for (auto bit : assign_map(wire))
					undriven_bits.erase(bit);
		}

		for (auto cell : equiv_mod->cells()) {
			for (auto &conn : cell->connections())
				if (!ct.cell_known(cell->type) || ct.cell_output(cell->type, conn.first))
					for (auto bit : assign_map(conn.second))
						undriven_bits.erase(bit);
		}

		if (mark) {
			SigSpec undriven_sig(undriven_bits);
			undriven_sig.sort_and_unify();

			for (auto chunk : undriven_sig.chunks()) {
				log("Setting undriven nets to undef: %s\n", log_signal(chunk));
				equiv_mod->connect(chunk, SigSpec(State::Sx, chunk.width));
			}
		}
	}

	void init_bit2driven()
	{
		for (auto cell : equiv_mod->cells()) {
			if (!ct.cell_known(cell->type) && !cell->type.in(ID($dff), ID($_DFF_P_), ID($_DFF_N_), ID($ff), ID($_FF_)))
				continue;
			for (auto &conn : cell->connections())
			{
				if (yosys_celltypes.cell_input(cell->type, conn.first))
					for (auto bit : assign_map(conn.second))
					{
						bit2driven[bit].insert(cell);
					}
			}
		}
	}

	bool check_signal_in_fanout(pool<Cell*> & visited_cells, SigBit source_bit, SigBit target_bit)
	{
		if (source_bit == target_bit)
			return true;

		if (bit2driven.count(source_bit) == 0)
			return false;

		auto driven_cells = bit2driven.at(source_bit);
		for (auto driven_cell: driven_cells)
		{
			bool is_comb = comb_ct.cell_known(driven_cell->type);
			if (!is_comb)
				continue;

			if (visited_cells.count(driven_cell) > 0)
				continue;
			visited_cells.insert(driven_cell);

			for (auto &conn: driven_cell->connections())
			{
				if (yosys_celltypes.cell_input(driven_cell->type, conn.first))
					continue;

				for (auto bit: conn.second) {
					bool is_in_fanout = check_signal_in_fanout(visited_cells, bit, target_bit);
					if (is_in_fanout == true)
						return true;
				}
			}
		}

		return false;
	}

	void run()
	{
		copy_to_equiv();
		find_undriven_nets(false);
		find_same_wires();
		find_same_cells();
		find_undriven_nets(true);
	}
};

struct EquivMakePass : public Pass {
	EquivMakePass() : Pass("equiv_make", "prepare a circuit for equivalence checking") { }
	void help() override
	{
		//   |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
		log("\n");
		log("    equiv_make [options] gold_module gate_module equiv_module\n");
		log("\n");
		log("This creates a module annotated with $equiv cells from two presumably\n");
		log("equivalent modules. Use commands such as 'equiv_simple' and 'equiv_status'\n");
		log("to work with the created equivalent checking module.\n");
		log("\n");
		log("    -inames\n");
		log("        Also match cells and wires with $... names.\n");
		log("\n");
		log("    -blacklist <file>\n");
		log("        Do not match cells or signals that match the names in the file.\n");
		log("\n");
		log("    -encfile <file>\n");
		log("        Match FSM encodings using the description from the file.\n");
		log("        See 'help fsm_recode' for details.\n");
		log("\n");
		log("Note: The circuit created by this command is not a miter (with something like\n");
		log("a trigger output), but instead uses $equiv cells to encode the equivalence\n");
		log("checking problem. Use 'miter -equiv' if you want to create a miter circuit.\n");
		log("\n");
	}
	void execute(std::vector<std::string> args, RTLIL::Design *design) override
	{
		EquivMakeWorker worker;
		worker.ct.setup(design);
		worker.inames = false;

		size_t argidx;
		for (argidx = 1; argidx < args.size(); argidx++)
		{
			if (args[argidx] == "-inames") {
				worker.inames = true;
				continue;
			}
			if (args[argidx] == "-blacklist" && argidx+1 < args.size()) {
				worker.blacklists.push_back(args[++argidx]);
				continue;
			}
			if (args[argidx] == "-encfile" && argidx+1 < args.size()) {
				worker.encfiles.push_back(args[++argidx]);
				continue;
			}
			break;
		}

		if (argidx+3 != args.size())
			log_cmd_error("Invalid number of arguments.\n");

		worker.gold_mod = design->module(RTLIL::escape_id(args[argidx]));
		worker.gate_mod = design->module(RTLIL::escape_id(args[argidx+1]));
		worker.equiv_mod = design->module(RTLIL::escape_id(args[argidx+2]));

		if (worker.gold_mod == nullptr)
			log_cmd_error("Can't find gold module %s.\n", args[argidx].c_str());

		if (worker.gate_mod == nullptr)
			log_cmd_error("Can't find gate module %s.\n", args[argidx+1].c_str());

		if (worker.equiv_mod != nullptr)
			log_cmd_error("Equiv module %s already exists.\n", args[argidx+2].c_str());

		if (worker.gold_mod->has_memories() || worker.gold_mod->has_processes())
			log_cmd_error("Gold module contains memories or processes. Run 'memory' or 'proc' respectively.\n");

		if (worker.gate_mod->has_memories() || worker.gate_mod->has_processes())
			log_cmd_error("Gate module contains memories or processes. Run 'memory' or 'proc' respectively.\n");

		worker.read_blacklists();
		worker.read_encfiles();

		log_header(design, "Executing EQUIV_MAKE pass (creating equiv checking module).\n");

		worker.equiv_mod = design->addModule(RTLIL::escape_id(args[argidx+2]));
		worker.run();
	}
} EquivMakePass;

PRIVATE_NAMESPACE_END