/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2020 R. Ou <rqou@robertou.com> * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/yosys.h" #include "kernel/sigtools.h" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN RTLIL::Wire *makexorbuffer(RTLIL::Module *module, SigBit inwire, const char *cellname) { RTLIL::Wire *outwire = nullptr; if (inwire == SigBit(true)) { // Constant 1 outwire = module->addWire( module->uniquify(stringf("$xc2fix$%s_BUF1_XOR_OUT", cellname))); auto xor_cell = module->addCell( module->uniquify(stringf("$xc2fix$%s_BUF1_XOR", cellname)), ID(MACROCELL_XOR)); xor_cell->setParam(ID(INVERT_OUT), true); xor_cell->setPort(ID(OUT), outwire); } else if (inwire == SigBit(false)) { // Constant 0 outwire = module->addWire( module->uniquify(stringf("$xc2fix$%s_BUF0_XOR_OUT", cellname))); auto xor_cell = module->addCell( module->uniquify(stringf("$xc2fix$%s_BUF0_XOR", cellname)), ID(MACROCELL_XOR)); xor_cell->setParam(ID(INVERT_OUT), false); xor_cell->setPort(ID(OUT), outwire); } else if (inwire == SigBit(RTLIL::State::Sx)) { // x; treat as 0 log_warning("While buffering, changing x to 0 into cell %s\n", cellname); outwire = module->addWire( module->uniquify(stringf("$xc2fix$%s_BUF0_XOR_OUT", cellname))); auto xor_cell = module->addCell( module->uniquify(stringf("$xc2fix$%s_BUF0_XOR", cellname)), ID(MACROCELL_XOR)); xor_cell->setParam(ID(INVERT_OUT), false); xor_cell->setPort(ID(OUT), outwire); } else { auto inwire_name = inwire.wire->name.c_str(); outwire = module->addWire( module->uniquify(stringf("$xc2fix$%s_BUF_XOR_OUT", inwire_name))); auto and_to_xor_wire = module->addWire( module->uniquify(stringf("$xc2fix$%s_BUF_AND_OUT", inwire_name))); auto and_cell = module->addCell( module->uniquify(stringf("$xc2fix$%s_BUF_AND", inwire_name)), ID(ANDTERM)); and_cell->setParam(ID(TRUE_INP), 1); and_cell->setParam(ID(COMP_INP), 0); and_cell->setPort(ID(OUT), and_to_xor_wire); and_cell->setPort(ID(IN), inwire); and_cell->setPort(ID(IN_B), SigSpec()); auto xor_cell = module->addCell( module->uniquify(stringf("$xc2fix$%s_BUF_XOR", inwire_name)), ID(MACROCELL_XOR)); xor_cell->setParam(ID(INVERT_OUT), false); xor_cell->setPort(ID(IN_PTC), and_to_xor_wire); xor_cell->setPort(ID(OUT), outwire); } return outwire; } RTLIL::Wire *makeptermbuffer(RTLIL::Module *module, SigBit inwire) { auto inwire_name = inwire.wire->name.c_str(); auto outwire = module->addWire( module->uniquify(stringf("$xc2fix$%s_BUF_AND_OUT", inwire_name))); auto and_cell = module->addCell( module->uniquify(stringf("$xc2fix$%s_BUF_AND", inwire_name)), ID(ANDTERM)); and_cell->setParam(ID(TRUE_INP), 1); and_cell->setParam(ID(COMP_INP), 0); and_cell->setPort(ID(OUT), outwire); and_cell->setPort(ID(IN), inwire); and_cell->setPort(ID(IN_B), SigSpec()); return outwire; } struct Coolrunner2FixupPass : public Pass { Coolrunner2FixupPass() : Pass("coolrunner2_fixup", "insert necessary buffer cells for CoolRunner-II architecture") { } void help() override { log("\n"); log(" coolrunner2_fixup [options] [selection]\n"); log("\n"); log("Insert necessary buffer cells for CoolRunner-II architecture.\n"); log("\n"); } void execute(std::vector<std::string> args, RTLIL::Design *design) override { log_header(design, "Executing COOLRUNNER2_FIXUP pass (insert necessary buffer cells for CoolRunner-II architecture).\n"); extra_args(args, 1, design); for (auto module : design->selected_modules()) { SigMap sigmap(module); // Find all the FF outputs pool<SigBit> sig_fed_by_ff; for (auto cell : module->selected_cells()) { if (cell->type.in(ID(FDCP), ID(FDCP_N), ID(FDDCP), ID(LDCP), ID(LDCP_N), ID(FTCP), ID(FTCP_N), ID(FTDCP), ID(FDCPE), ID(FDCPE_N), ID(FDDCPE))) { auto output = sigmap(cell->getPort(ID::Q)[0]); sig_fed_by_ff.insert(output); } } // Find all the XOR outputs pool<SigBit> sig_fed_by_xor; for (auto cell : module->selected_cells()) { if (cell->type == ID(MACROCELL_XOR)) { auto output = sigmap(cell->getPort(ID(OUT))[0]); sig_fed_by_xor.insert(output); } } // Find all the input/inout outputs pool<SigBit> sig_fed_by_io; for (auto cell : module->selected_cells()) { if (cell->type.in(ID(IBUF), ID(IOBUFE))) { if (cell->hasPort(ID::O)) { auto output = sigmap(cell->getPort(ID::O)[0]); sig_fed_by_io.insert(output); } } } // Find all the pterm outputs pool<SigBit> sig_fed_by_pterm; for (auto cell : module->selected_cells()) { if (cell->type == ID(ANDTERM)) { auto output = sigmap(cell->getPort(ID(OUT))[0]); sig_fed_by_pterm.insert(output); } } // Find all the bufg outputs pool<SigBit> sig_fed_by_bufg; for (auto cell : module->selected_cells()) { if (cell->type == ID(BUFG)) { auto output = sigmap(cell->getPort(ID::O)[0]); sig_fed_by_bufg.insert(output); } } // Find all the bufgsr outputs pool<SigBit> sig_fed_by_bufgsr; for (auto cell : module->selected_cells()) { if (cell->type == ID(BUFGSR)) { auto output = sigmap(cell->getPort(ID::O)[0]); sig_fed_by_bufgsr.insert(output); } } // Find all the bufgts outputs pool<SigBit> sig_fed_by_bufgts; for (auto cell : module->selected_cells()) { if (cell->type == ID(BUFGTS)) { auto output = sigmap(cell->getPort(ID::O)[0]); sig_fed_by_bufgts.insert(output); } } // This is used to fix the input -> FF -> output scenario pool<SigBit> sig_fed_by_ibuf; for (auto cell : module->selected_cells()) { if (cell->type == ID(IBUF)) { auto output = sigmap(cell->getPort(ID::O)[0]); sig_fed_by_ibuf.insert(output); } } // Find all of the sinks for each output from an IBUF dict<SigBit, std::pair<int, RTLIL::Cell *>> ibuf_fanouts; for (auto cell : module->selected_cells()) { for (auto &conn : cell->connections()) { if (cell->input(conn.first)) { for (auto wire_in : sigmap(conn.second)) { if (sig_fed_by_ibuf[wire_in]) { auto existing_count = ibuf_fanouts[wire_in].first; ibuf_fanouts[wire_in] = std::pair<int, RTLIL::Cell *>(existing_count + 1, cell); } } } } } dict<SigBit, RTLIL::Cell *> ibuf_out_to_packed_reg_cell; pool<SigBit> packed_reg_out; for (auto x : ibuf_fanouts) { auto ibuf_out_wire = x.first; auto fanout_count = x.second.first; auto maybe_ff_cell = x.second.second; // The register can be packed with the IBUF only if it's // actually a register and it's the only fanout. Otherwise, // the pad-to-zia path has to be used up and the register // can't be packed with the ibuf. if (fanout_count == 1 && maybe_ff_cell->type.in( ID(FDCP), ID(FDCP_N), ID(FDDCP), ID(LDCP), ID(LDCP_N), ID(FTCP), ID(FTCP_N), ID(FTDCP), ID(FDCPE), ID(FDCPE_N), ID(FDDCPE))) { SigBit input; if (maybe_ff_cell->type.in(ID(FTCP), ID(FTCP_N), ID(FTDCP))) input = sigmap(maybe_ff_cell->getPort(ID::T)[0]); else input = sigmap(maybe_ff_cell->getPort(ID::D)[0]); SigBit output = sigmap(maybe_ff_cell->getPort(ID::Q)[0]); if (input == ibuf_out_wire) { log("Found IBUF %s that can be packed with FF %s (type %s)\n", ibuf_out_wire.wire->name.c_str(), maybe_ff_cell->name.c_str(), maybe_ff_cell->type.c_str()); ibuf_out_to_packed_reg_cell[ibuf_out_wire] = maybe_ff_cell; packed_reg_out.insert(output); } } } for (auto cell : module->selected_cells()) { if (cell->type.in(ID(FDCP), ID(FDCP_N), ID(FDDCP), ID(LDCP), ID(LDCP_N), ID(FTCP), ID(FTCP_N), ID(FTDCP), ID(FDCPE), ID(FDCPE_N), ID(FDDCPE))) { // Buffering FF inputs. FF inputs can only come from either // an IO pin or from an XOR. Otherwise AND/XOR cells need // to be inserted. SigBit input; if (cell->type.in(ID(FTCP), ID(FTCP_N), ID(FTDCP))) input = sigmap(cell->getPort(ID::T)[0]); else input = sigmap(cell->getPort(ID::D)[0]); // If the input wasn't an XOR nor an IO, then a buffer // definitely needs to be added. // Otherwise, if it is an IO, only leave unbuffered // if we're being packed with the IO. if ((!sig_fed_by_xor[input] && !sig_fed_by_io[input]) || (sig_fed_by_io[input] && ibuf_out_to_packed_reg_cell[input] != cell)) { log("Buffering input to \"%s\"\n", cell->name.c_str()); auto xor_to_ff_wire = makexorbuffer(module, input, cell->name.c_str()); if (cell->type.in(ID(FTCP), ID(FTCP_N), ID(FTDCP))) cell->setPort(ID::T, xor_to_ff_wire); else cell->setPort(ID::D, xor_to_ff_wire); } // Buffering FF clocks. FF clocks can only come from either // a pterm or a bufg. In some cases this will be handled // in coolrunner2_sop (e.g. if clock is generated from // AND-ing two signals) but not in all cases. SigBit clock; if (cell->type.in(ID(LDCP), ID(LDCP_N))) clock = sigmap(cell->getPort(ID::G)[0]); else clock = sigmap(cell->getPort(ID::C)[0]); if (!sig_fed_by_pterm[clock] && !sig_fed_by_bufg[clock]) { log("Buffering clock to \"%s\"\n", cell->name.c_str()); auto pterm_to_ff_wire = makeptermbuffer(module, clock); if (cell->type.in(ID(LDCP), ID(LDCP_N))) cell->setPort(ID::G, pterm_to_ff_wire); else cell->setPort(ID::C, pterm_to_ff_wire); } // Buffering FF set/reset. This can only come from either // a pterm or a bufgsr. SigBit set; set = sigmap(cell->getPort(ID(PRE))[0]); if (set != SigBit(false)) { if (!sig_fed_by_pterm[set] && !sig_fed_by_bufgsr[set]) { log("Buffering set to \"%s\"\n", cell->name.c_str()); auto pterm_to_ff_wire = makeptermbuffer(module, set); cell->setPort(ID(PRE), pterm_to_ff_wire); } } SigBit reset; reset = sigmap(cell->getPort(ID::CLR)[0]); if (reset != SigBit(false)) { if (!sig_fed_by_pterm[reset] && !sig_fed_by_bufgsr[reset]) { log("Buffering reset to \"%s\"\n", cell->name.c_str()); auto pterm_to_ff_wire = makeptermbuffer(module, reset); cell->setPort(ID::CLR, pterm_to_ff_wire); } } // Buffering FF clock enable // FIXME: This doesn't fully fix PTC conflicts // FIXME: Need to ensure constant enables are optimized out if (cell->type.in(ID(FDCPE), ID(FDCPE_N), ID(FDDCPE))) { SigBit ce; ce = sigmap(cell->getPort(ID(CE))[0]); if (!sig_fed_by_pterm[ce]) { log("Buffering clock enable to \"%s\"\n", cell->name.c_str()); auto pterm_to_ff_wire = makeptermbuffer(module, ce); cell->setPort(ID(CE), pterm_to_ff_wire); } } } } for (auto cell : module->selected_cells()) { if (cell->type == ID(IOBUFE)) { // Buffer IOBUFE inputs. This can only be fed from an XOR or FF. SigBit input = sigmap(cell->getPort(ID::I)[0]); if ((!sig_fed_by_xor[input] && !sig_fed_by_ff[input]) || packed_reg_out[input]) { log("Buffering input to \"%s\"\n", cell->name.c_str()); auto xor_to_io_wire = makexorbuffer(module, input, cell->name.c_str()); cell->setPort(ID::I, xor_to_io_wire); } // Buffer IOBUFE enables. This can only be fed from a pterm // or a bufgts. if (cell->hasPort(ID::E)) { SigBit oe; oe = sigmap(cell->getPort(ID::E)[0]); if (!sig_fed_by_pterm[oe] && !sig_fed_by_bufgts[oe]) { log("Buffering output enable to \"%s\"\n", cell->name.c_str()); auto pterm_to_oe_wire = makeptermbuffer(module, oe); cell->setPort(ID::E, pterm_to_oe_wire); } } } } // Now we have to fix up some cases where shared logic can // cause XORs to have multiple fanouts to something other than // pterms (which is not ok) // Find all the XOR outputs dict<SigBit, RTLIL::Cell *> xor_out_to_xor_cell; for (auto cell : module->selected_cells()) { if (cell->type == ID(MACROCELL_XOR)) { auto output = sigmap(cell->getPort(ID(OUT))[0]); xor_out_to_xor_cell[output] = cell; } } // Find all of the sinks for each output from an XOR pool<SigBit> xor_fanout_once; for (auto cell : module->selected_cells()) { if (cell->type == ID(ANDTERM)) continue; for (auto &conn : cell->connections()) { if (cell->input(conn.first)) { for (auto wire_in : sigmap(conn.second)) { auto xor_cell = xor_out_to_xor_cell[wire_in]; if (xor_cell) { if (xor_fanout_once[wire_in]) { log("Additional fanout found for %s into %s (type %s), duplicating\n", xor_cell->name.c_str(), cell->name.c_str(), cell->type.c_str()); auto new_xor_cell = module->addCell( module->uniquify(xor_cell->name), xor_cell); auto new_wire = module->addWire( module->uniquify(wire_in.wire->name)); new_xor_cell->setPort(ID(OUT), new_wire); cell->setPort(conn.first, new_wire); } xor_fanout_once.insert(wire_in); } } } } } // Do the same fanout fixing for OR terms. By doing this // after doing XORs, both pieces will be duplicated when necessary. // Find all the OR outputs dict<SigBit, RTLIL::Cell *> or_out_to_or_cell; for (auto cell : module->selected_cells()) { if (cell->type == ID(ORTERM)) { auto output = sigmap(cell->getPort(ID(OUT))[0]); or_out_to_or_cell[output] = cell; } } // Find all of the sinks for each output from an OR pool<SigBit> or_fanout_once; for (auto cell : module->selected_cells()) { for (auto &conn : cell->connections()) { if (cell->input(conn.first)) { for (auto wire_in : sigmap(conn.second)) { auto or_cell = or_out_to_or_cell[wire_in]; if (or_cell) { if (or_fanout_once[wire_in]) { log("Additional fanout found for %s into %s (type %s), duplicating\n", or_cell->name.c_str(), cell->name.c_str(), cell->type.c_str()); auto new_or_cell = module->addCell( module->uniquify(or_cell->name), or_cell); auto new_wire = module->addWire( module->uniquify(wire_in.wire->name)); new_or_cell->setPort(ID(OUT), new_wire); cell->setPort(conn.first, new_wire); } or_fanout_once.insert(wire_in); } } } } } } } } Coolrunner2FixupPass; PRIVATE_NAMESPACE_END