/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2014 Claire Xenia Wolf <claire@yosyshq.com> * Copyright (C) 2014 Johann Glaser <Johann.Glaser@gmx.at> * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/yosys.h" #include "kernel/satgen.h" #include "kernel/consteval.h" #include "kernel/celledges.h" #include "kernel/macc.h" #include "kernel/cost.h" #include <algorithm> USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN static int bloat_factor = 1; static uint32_t xorshift32_state = 123456789; static uint32_t xorshift32(uint32_t limit) { xorshift32_state ^= xorshift32_state << 13; xorshift32_state ^= xorshift32_state >> 17; xorshift32_state ^= xorshift32_state << 5; return xorshift32_state % limit; } static RTLIL::Cell* create_gold_module(RTLIL::Design *design, RTLIL::IdString cell_type, std::string cell_type_flags, bool constmode, bool muxdiv) { RTLIL::Module *module = design->addModule(ID(gold)); RTLIL::Cell *cell = module->addCell(ID(UUT), cell_type); RTLIL::Wire *wire; if (cell_type.in(ID($mux), ID($pmux))) { int width = 1 + xorshift32(8 * bloat_factor); int swidth = cell_type == ID($mux) ? 1 : 1 + xorshift32(8); wire = module->addWire(ID::A); wire->width = width; wire->port_input = true; cell->setPort(ID::A, wire); wire = module->addWire(ID::B); wire->width = width * swidth; wire->port_input = true; cell->setPort(ID::B, wire); wire = module->addWire(ID::S); wire->width = swidth; wire->port_input = true; cell->setPort(ID::S, wire); wire = module->addWire(ID::Y); wire->width = width; wire->port_output = true; cell->setPort(ID::Y, wire); } if (cell_type == ID($bmux)) { int width = 1 + xorshift32(8 * bloat_factor); int swidth = 1 + xorshift32(4 * bloat_factor); wire = module->addWire(ID::A); wire->width = width << swidth; wire->port_input = true; cell->setPort(ID::A, wire); wire = module->addWire(ID::S); wire->width = swidth; wire->port_input = true; cell->setPort(ID::S, wire); wire = module->addWire(ID::Y); wire->width = width; wire->port_output = true; cell->setPort(ID::Y, wire); } if (cell_type == ID($demux)) { int width = 1 + xorshift32(8 * bloat_factor); int swidth = 1 + xorshift32(6 * bloat_factor); wire = module->addWire(ID::A); wire->width = width; wire->port_input = true; cell->setPort(ID::A, wire); wire = module->addWire(ID::S); wire->width = swidth; wire->port_input = true; cell->setPort(ID::S, wire); wire = module->addWire(ID::Y); wire->width = width << swidth; wire->port_output = true; cell->setPort(ID::Y, wire); } if (cell_type == ID($fa)) { int width = 1 + xorshift32(8 * bloat_factor); wire = module->addWire(ID::A); wire->width = width; wire->port_input = true; cell->setPort(ID::A, wire); wire = module->addWire(ID::B); wire->width = width; wire->port_input = true; cell->setPort(ID::B, wire); wire = module->addWire(ID::C); wire->width = width; wire->port_input = true; cell->setPort(ID::C, wire); wire = module->addWire(ID::X); wire->width = width; wire->port_output = true; cell->setPort(ID::X, wire); wire = module->addWire(ID::Y); wire->width = width; wire->port_output = true; cell->setPort(ID::Y, wire); } if (cell_type == ID($lcu)) { int width = 1 + xorshift32(8 * bloat_factor); wire = module->addWire(ID::P); wire->width = width; wire->port_input = true; cell->setPort(ID::P, wire); wire = module->addWire(ID::G); wire->width = width; wire->port_input = true; cell->setPort(ID::G, wire); wire = module->addWire(ID::CI); wire->port_input = true; cell->setPort(ID::CI, wire); wire = module->addWire(ID::CO); wire->width = width; wire->port_output = true; cell->setPort(ID::CO, wire); } if (cell_type == ID($macc)) { Macc macc; int width = 1 + xorshift32(8 * bloat_factor); int depth = 1 + xorshift32(6); int mulbits_a = 0, mulbits_b = 0; RTLIL::Wire *wire_a = module->addWire(ID::A); wire_a->width = 0; wire_a->port_input = true; for (int i = 0; i < depth; i++) { int size_a = xorshift32(width) + 1; int size_b = depth > 4 ? 0 : xorshift32(width) + 1; if (mulbits_a + size_a*size_b <= 96 && mulbits_b + size_a + size_b <= 16 && xorshift32(2) == 1) { mulbits_a += size_a * size_b; mulbits_b += size_a + size_b; } else size_b = 0; Macc::port_t this_port; wire_a->width += size_a; this_port.in_a = RTLIL::SigSpec(wire_a, wire_a->width - size_a, size_a); wire_a->width += size_b; this_port.in_b = RTLIL::SigSpec(wire_a, wire_a->width - size_b, size_b); this_port.is_signed = xorshift32(2) == 1; this_port.do_subtract = xorshift32(2) == 1; macc.ports.push_back(this_port); } // Macc::to_cell sets the input ports macc.to_cell(cell); wire = module->addWire(ID::Y); wire->width = width; wire->port_output = true; cell->setPort(ID::Y, wire); // override the B input (macc helpers always sets an empty vector) wire = module->addWire(ID::B); wire->width = xorshift32(mulbits_a ? xorshift32(4)+1 : xorshift32(16)+1); wire->port_input = true; cell->setPort(ID::B, wire); } if (cell_type == ID($lut)) { int width = 1 + xorshift32(6 * bloat_factor); wire = module->addWire(ID::A); wire->width = width; wire->port_input = true; cell->setPort(ID::A, wire); wire = module->addWire(ID::Y); wire->port_output = true; cell->setPort(ID::Y, wire); RTLIL::SigSpec config; for (int i = 0; i < (1 << width); i++) config.append(xorshift32(2) ? State::S1 : State::S0); cell->setParam(ID::LUT, config.as_const()); } if (cell_type == ID($sop)) { int width = 1 + xorshift32(8 * bloat_factor); int depth = 1 + xorshift32(8 * bloat_factor); wire = module->addWire(ID::A); wire->width = width; wire->port_input = true; cell->setPort(ID::A, wire); wire = module->addWire(ID::Y); wire->port_output = true; cell->setPort(ID::Y, wire); RTLIL::SigSpec config; for (int i = 0; i < width*depth; i++) switch (xorshift32(3)) { case 0: config.append(State::S1); config.append(State::S0); break; case 1: config.append(State::S0); config.append(State::S1); break; case 2: config.append(State::S0); config.append(State::S0); break; } cell->setParam(ID::DEPTH, depth); cell->setParam(ID::TABLE, config.as_const()); } if (cell_type_flags.find('A') != std::string::npos) { wire = module->addWire(ID::A); wire->width = 1 + xorshift32(8 * bloat_factor); wire->port_input = true; cell->setPort(ID::A, wire); } if (cell_type_flags.find('B') != std::string::npos) { wire = module->addWire(ID::B); if (cell_type_flags.find('h') != std::string::npos) wire->width = 1 + xorshift32(6 * bloat_factor); else wire->width = 1 + xorshift32(8 * bloat_factor); wire->port_input = true; cell->setPort(ID::B, wire); } if (cell_type_flags.find('S') != std::string::npos && xorshift32(2)) { if (cell_type_flags.find('A') != std::string::npos) cell->parameters[ID::A_SIGNED] = true; if (cell_type_flags.find('B') != std::string::npos) cell->parameters[ID::B_SIGNED] = true; } if (cell_type_flags.find('s') != std::string::npos) { if (cell_type_flags.find('A') != std::string::npos && xorshift32(2)) cell->parameters[ID::A_SIGNED] = true; if (cell_type_flags.find('B') != std::string::npos && xorshift32(2)) cell->parameters[ID::B_SIGNED] = true; } if (cell_type_flags.find('Y') != std::string::npos) { wire = module->addWire(ID::Y); wire->width = 1 + xorshift32(8 * bloat_factor); wire->port_output = true; cell->setPort(ID::Y, wire); } if (cell_type.in(ID($shiftx))) { cell->parameters[ID::A_SIGNED] = false; } if (cell_type.in(ID($shl), ID($shr), ID($sshl), ID($sshr))) { cell->parameters[ID::B_SIGNED] = false; } if (muxdiv && cell_type.in(ID($div), ID($mod), ID($divfloor), ID($modfloor))) { auto b_not_zero = module->ReduceBool(NEW_ID, cell->getPort(ID::B)); auto div_out = module->addWire(NEW_ID, GetSize(cell->getPort(ID::Y))); module->addMux(NEW_ID, RTLIL::SigSpec(0, GetSize(div_out)), div_out, b_not_zero, cell->getPort(ID::Y)); cell->setPort(ID::Y, div_out); } if (cell_type == ID($alu)) { wire = module->addWire(ID::CI); wire->port_input = true; cell->setPort(ID::CI, wire); wire = module->addWire(ID::BI); wire->port_input = true; cell->setPort(ID::BI, wire); wire = module->addWire(ID::X); wire->width = GetSize(cell->getPort(ID::Y)); wire->port_output = true; cell->setPort(ID::X, wire); wire = module->addWire(ID::CO); wire->width = GetSize(cell->getPort(ID::Y)); wire->port_output = true; cell->setPort(ID::CO, wire); } if (constmode) { auto conn_list = cell->connections(); for (auto &conn : conn_list) { RTLIL::SigSpec sig = conn.second; if (GetSize(sig) == 0 || sig[0].wire == nullptr || sig[0].wire->port_output) continue; int n, m; switch (xorshift32(5)) { case 0: n = xorshift32(GetSize(sig) + 1); for (int i = 0; i < n; i++) sig[i] = xorshift32(2) == 1 ? State::S1 : State::S0; break; case 1: n = xorshift32(GetSize(sig) + 1); for (int i = n; i < GetSize(sig); i++) sig[i] = xorshift32(2) == 1 ? State::S1 : State::S0; break; case 2: n = xorshift32(GetSize(sig)); m = xorshift32(GetSize(sig)); for (int i = min(n, m); i < max(n, m); i++) sig[i] = xorshift32(2) == 1 ? State::S1 : State::S0; break; } cell->setPort(conn.first, sig); } } module->fixup_ports(); cell->fixup_parameters(); cell->check(); return cell; } static void run_edges_test(RTLIL::Design *design, bool verbose) { Module *module = *design->modules().begin(); Cell *cell = *module->cells().begin(); ezSatPtr ezptr; ezSAT &ez = *ezptr.get(); SigMap sigmap(module); SatGen satgen(&ez, &sigmap); FwdCellEdgesDatabase edges_db(sigmap); if (!edges_db.add_edges_from_cell(cell)) log_error("Creating edge database failed for this cell!\n"); dict<SigBit, pool<SigBit>> satgen_db; satgen.setContext(&sigmap, "X:"); satgen.importCell(cell); satgen.setContext(&sigmap, "Y:"); satgen.importCell(cell); vector<tuple<SigBit, int, int>> input_db, output_db; for (auto &conn : cell->connections()) { SigSpec bits = sigmap(conn.second); satgen.setContext(&sigmap, "X:"); std::vector<int> xbits = satgen.importSigSpec(bits); satgen.setContext(&sigmap, "Y:"); std::vector<int> ybits = satgen.importSigSpec(bits); for (int i = 0; i < GetSize(bits); i++) if (cell->input(conn.first)) input_db.emplace_back(bits[i], xbits[i], ybits[i]); else output_db.emplace_back(bits[i], xbits[i], ybits[i]); } if (verbose) log("\nSAT solving for all edges:\n"); for (int i = 0; i < GetSize(input_db); i++) { SigBit inbit = std::get<0>(input_db[i]); if (verbose) log(" Testing input signal %s:\n", log_signal(inbit)); vector<int> xinbits, yinbits; for (int k = 0; k < GetSize(input_db); k++) if (k != i) { xinbits.push_back(std::get<1>(input_db[k])); yinbits.push_back(std::get<2>(input_db[k])); } int xyinbit_ok = ez.vec_eq(xinbits, yinbits); for (int k = 0; k < GetSize(output_db); k++) { SigBit outbit = std::get<0>(output_db[k]); int xoutbit = std::get<1>(output_db[k]); int youtbit = std::get<2>(output_db[k]); bool is_edge = ez.solve(xyinbit_ok, ez.XOR(xoutbit, youtbit)); if (is_edge) satgen_db[inbit].insert(outbit); if (verbose) { bool is_ref_edge = edges_db.db.count(inbit) && edges_db.db.at(inbit).count(outbit); log(" %c %s %s\n", is_edge ? 'x' : 'o', log_signal(outbit), is_edge == is_ref_edge ? "OK" : "ERROR"); } } } if (satgen_db == edges_db.db) log("PASS.\n"); else log_error("SAT-based edge table does not match the database!\n"); } static void run_eval_test(RTLIL::Design *design, bool verbose, bool nosat, std::string uut_name, std::ofstream &vlog_file) { log("Eval testing:%c", verbose ? '\n' : ' '); RTLIL::Module *gold_mod = design->module(ID(gold)); RTLIL::Module *gate_mod = design->module(ID(gate)); ConstEval gold_ce(gold_mod), gate_ce(gate_mod); ezSatPtr ez1, ez2; SigMap sigmap(gold_mod); SatGen satgen1(ez1.get(), &sigmap); SatGen satgen2(ez2.get(), &sigmap); satgen2.model_undef = true; if (!nosat) for (auto cell : gold_mod->cells()) { satgen1.importCell(cell); satgen2.importCell(cell); } if (vlog_file.is_open()) { vlog_file << stringf("\nmodule %s;\n", uut_name.c_str()); for (auto port : gold_mod->ports) { RTLIL::Wire *wire = gold_mod->wire(port); if (wire->port_input) vlog_file << stringf(" reg [%d:0] %s;\n", GetSize(wire)-1, log_id(wire)); else vlog_file << stringf(" wire [%d:0] %s_expr, %s_noexpr;\n", GetSize(wire)-1, log_id(wire), log_id(wire)); } vlog_file << stringf(" %s_expr uut_expr(", uut_name.c_str()); for (int i = 0; i < GetSize(gold_mod->ports); i++) vlog_file << stringf("%s.%s(%s%s)", i ? ", " : "", log_id(gold_mod->ports[i]), log_id(gold_mod->ports[i]), gold_mod->wire(gold_mod->ports[i])->port_input ? "" : "_expr"); vlog_file << stringf(");\n"); vlog_file << stringf(" %s_expr uut_noexpr(", uut_name.c_str()); for (int i = 0; i < GetSize(gold_mod->ports); i++) vlog_file << stringf("%s.%s(%s%s)", i ? ", " : "", log_id(gold_mod->ports[i]), log_id(gold_mod->ports[i]), gold_mod->wire(gold_mod->ports[i])->port_input ? "" : "_noexpr"); vlog_file << stringf(");\n"); vlog_file << stringf(" task run;\n"); vlog_file << stringf(" begin\n"); vlog_file << stringf(" $display(\"%s\");\n", uut_name.c_str()); } for (int i = 0; i < 64; i++) { log(verbose ? "\n" : "."); gold_ce.clear(); gate_ce.clear(); RTLIL::SigSpec in_sig, in_val; RTLIL::SigSpec out_sig, out_val; std::string vlog_pattern_info; for (auto port : gold_mod->ports) { RTLIL::Wire *gold_wire = gold_mod->wire(port); RTLIL::Wire *gate_wire = gate_mod->wire(port); log_assert(gold_wire != nullptr); log_assert(gate_wire != nullptr); log_assert(gold_wire->port_input == gate_wire->port_input); log_assert(GetSize(gold_wire) == GetSize(gate_wire)); if (!gold_wire->port_input) continue; RTLIL::Const in_value; for (int i = 0; i < GetSize(gold_wire); i++) in_value.bits().push_back(xorshift32(2) ? State::S1 : State::S0); if (xorshift32(4) == 0) { int inv_chance = 1 + xorshift32(8); for (int i = 0; i < GetSize(gold_wire); i++) if (xorshift32(inv_chance) == 0) in_value.bits()[i] = RTLIL::Sx; } if (verbose) log("%s: %s\n", log_id(gold_wire), log_signal(in_value)); in_sig.append(gold_wire); in_val.append(in_value); gold_ce.set(gold_wire, in_value); gate_ce.set(gate_wire, in_value); if (vlog_file.is_open() && GetSize(in_value) > 0) { vlog_file << stringf(" %s = 'b%s;\n", log_id(gold_wire), in_value.as_string().c_str()); if (!vlog_pattern_info.empty()) vlog_pattern_info += " "; vlog_pattern_info += stringf("%s=%s", log_id(gold_wire), log_signal(in_value)); } } if (vlog_file.is_open()) vlog_file << stringf(" #1;\n"); for (auto port : gold_mod->ports) { RTLIL::Wire *gold_wire = gold_mod->wire(port); RTLIL::Wire *gate_wire = gate_mod->wire(port); log_assert(gold_wire != nullptr); log_assert(gate_wire != nullptr); log_assert(gold_wire->port_output == gate_wire->port_output); log_assert(GetSize(gold_wire) == GetSize(gate_wire)); if (!gold_wire->port_output) continue; RTLIL::SigSpec gold_outval(gold_wire); RTLIL::SigSpec gate_outval(gate_wire); if (!gold_ce.eval(gold_outval)) log_error("Failed to eval %s in gold module.\n", log_id(gold_wire)); if (!gate_ce.eval(gate_outval)) log_error("Failed to eval %s in gate module.\n", log_id(gate_wire)); bool gold_gate_mismatch = false; for (int i = 0; i < GetSize(gold_wire); i++) { if (gold_outval[i] == RTLIL::Sx) continue; if (gold_outval[i] == gate_outval[i]) continue; gold_gate_mismatch = true; break; } if (gold_gate_mismatch) log_error("Mismatch in output %s: gold:%s != gate:%s\n", log_id(gate_wire), log_signal(gold_outval), log_signal(gate_outval)); if (verbose) log("%s: %s\n", log_id(gold_wire), log_signal(gold_outval)); out_sig.append(gold_wire); out_val.append(gold_outval); if (vlog_file.is_open()) { vlog_file << stringf(" $display(\"[%s] %s expected: %%b, expr: %%b, noexpr: %%b\", %d'b%s, %s_expr, %s_noexpr);\n", vlog_pattern_info.c_str(), log_id(gold_wire), GetSize(gold_outval), gold_outval.as_string().c_str(), log_id(gold_wire), log_id(gold_wire)); vlog_file << stringf(" if (%s_expr !== %d'b%s) begin $display(\"ERROR\"); $finish; end\n", log_id(gold_wire), GetSize(gold_outval), gold_outval.as_string().c_str()); vlog_file << stringf(" if (%s_noexpr !== %d'b%s) begin $display(\"ERROR\"); $finish; end\n", log_id(gold_wire), GetSize(gold_outval), gold_outval.as_string().c_str()); } } if (verbose) log("EVAL: %s\n", out_val.as_string().c_str()); if (!nosat) { std::vector<int> sat1_in_sig = satgen1.importSigSpec(in_sig); std::vector<int> sat1_in_val = satgen1.importSigSpec(in_val); std::vector<int> sat1_model = satgen1.importSigSpec(out_sig); std::vector<bool> sat1_model_value; if (!ez1->solve(sat1_model, sat1_model_value, ez1->vec_eq(sat1_in_sig, sat1_in_val))) log_error("Evaluating sat model 1 (no undef modeling) failed!\n"); if (verbose) { log("SAT 1: "); for (int i = GetSize(out_sig)-1; i >= 0; i--) log("%c", sat1_model_value.at(i) ? '1' : '0'); log("\n"); } for (int i = 0; i < GetSize(out_sig); i++) { if (out_val[i] != State::S0 && out_val[i] != State::S1) continue; if (out_val[i] == State::S0 && sat1_model_value.at(i) == false) continue; if (out_val[i] == State::S1 && sat1_model_value.at(i) == true) continue; log_error("Mismatch in sat model 1 (no undef modeling) output!\n"); } std::vector<int> sat2_in_def_sig = satgen2.importDefSigSpec(in_sig); std::vector<int> sat2_in_def_val = satgen2.importDefSigSpec(in_val); std::vector<int> sat2_in_undef_sig = satgen2.importUndefSigSpec(in_sig); std::vector<int> sat2_in_undef_val = satgen2.importUndefSigSpec(in_val); std::vector<int> sat2_model_def_sig = satgen2.importDefSigSpec(out_sig); std::vector<int> sat2_model_undef_sig = satgen2.importUndefSigSpec(out_sig); std::vector<int> sat2_model; sat2_model.insert(sat2_model.end(), sat2_model_def_sig.begin(), sat2_model_def_sig.end()); sat2_model.insert(sat2_model.end(), sat2_model_undef_sig.begin(), sat2_model_undef_sig.end()); std::vector<bool> sat2_model_value; if (!ez2->solve(sat2_model, sat2_model_value, ez2->vec_eq(sat2_in_def_sig, sat2_in_def_val), ez2->vec_eq(sat2_in_undef_sig, sat2_in_undef_val))) log_error("Evaluating sat model 2 (undef modeling) failed!\n"); if (verbose) { log("SAT 2: "); for (int i = GetSize(out_sig)-1; i >= 0; i--) log("%c", sat2_model_value.at(GetSize(out_sig) + i) ? 'x' : sat2_model_value.at(i) ? '1' : '0'); log("\n"); } for (int i = 0; i < GetSize(out_sig); i++) { if (sat2_model_value.at(GetSize(out_sig) + i)) { if (out_val[i] != State::S0 && out_val[i] != State::S1) continue; } else { if (out_val[i] == State::S0 && sat2_model_value.at(i) == false) continue; if (out_val[i] == State::S1 && sat2_model_value.at(i) == true) continue; } log_error("Mismatch in sat model 2 (undef modeling) output!\n"); } } } if (vlog_file.is_open()) { vlog_file << stringf(" end\n"); vlog_file << stringf(" endtask\n"); vlog_file << stringf("endmodule\n"); } if (!verbose) log(" ok.\n"); } struct TestCellPass : public Pass { TestCellPass() : Pass("test_cell", "automatically test the implementation of a cell type") { } void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" test_cell [options] {cell-types}\n"); log("\n"); log("Tests the internal implementation of the given cell type (for example '$add')\n"); log("by comparing SAT solver, EVAL and TECHMAP implementations of the cell types..\n"); log("\n"); log("Run with 'all' instead of a cell type to run the test on all supported\n"); log("cell types. Use for example 'all /$add' for all cell types except $add.\n"); log("\n"); log(" -n {integer}\n"); log(" create this number of cell instances and test them (default = 100).\n"); log("\n"); log(" -s {positive_integer}\n"); log(" use this value as rng seed value (default = unix time).\n"); log("\n"); log(" -f {rtlil_file}\n"); log(" don't generate circuits. instead load the specified RTLIL file.\n"); log("\n"); log(" -w {filename_prefix}\n"); log(" don't test anything. just generate the circuits and write them\n"); log(" to RTLIL files with the specified prefix\n"); log("\n"); log(" -map {filename}\n"); log(" pass this option to techmap.\n"); log("\n"); log(" -simlib\n"); log(" use \"techmap -D SIMLIB_NOCHECKS -map +/simlib.v -max_iter 2 -autoproc\"\n"); log("\n"); log(" -aigmap\n"); log(" instead of calling \"techmap\", call \"aigmap\"\n"); log("\n"); log(" -muxdiv\n"); log(" when creating test benches with dividers, create an additional mux\n"); log(" to mask out the division-by-zero case\n"); log("\n"); log(" -script {script_file}\n"); log(" instead of calling \"techmap\", call \"script {script_file}\".\n"); log("\n"); log(" -const\n"); log(" set some input bits to random constant values\n"); log("\n"); log(" -nosat\n"); log(" do not check SAT model or run SAT equivalence checking\n"); log("\n"); log(" -noeval\n"); log(" do not check const-eval models\n"); log("\n"); log(" -noopt\n"); log(" do not opt tecchmapped design\n"); log("\n"); log(" -edges\n"); log(" test cell edges db creator against sat-based implementation\n"); log("\n"); log(" -v\n"); log(" print additional debug information to the console\n"); log("\n"); log(" -vlog {filename}\n"); log(" create a Verilog test bench to test simlib and write_verilog\n"); log(" -bloat {factor}\n"); log(" increase cell size limits b{factor} times where possible\n"); log(" -check_cost\n"); log(" check if the estimated cell cost is a valid upper bound for\n"); log(" the techmapped cell count \n"); log("\n"); } void execute(std::vector<std::string> args, RTLIL::Design*) override { int num_iter = 100; std::string techmap_cmd = "techmap -assert"; std::string rtlil_file, write_prefix; xorshift32_state = 0; std::ofstream vlog_file; bool muxdiv = false; bool verbose = false; bool constmode = false; bool nosat = false; bool noeval = false; bool noopt = false; bool edges = false; bool check_cost = false; int argidx; for (argidx = 1; argidx < GetSize(args); argidx++) { if (args[argidx] == "-n" && argidx+1 < GetSize(args)) { num_iter = atoi(args[++argidx].c_str()); continue; } if (args[argidx] == "-s" && argidx+1 < GetSize(args)) { xorshift32_state = atoi(args[++argidx].c_str()); continue; } if (args[argidx] == "-map" && argidx+1 < GetSize(args)) { techmap_cmd += " -map " + args[++argidx]; continue; } if (args[argidx] == "-f" && argidx+1 < GetSize(args)) { rtlil_file = args[++argidx]; num_iter = 1; continue; } if (args[argidx] == "-w" && argidx+1 < GetSize(args)) { write_prefix = args[++argidx]; continue; } if (args[argidx] == "-script" && argidx+1 < GetSize(args)) { techmap_cmd = "script " + args[++argidx]; continue; } if (args[argidx] == "-simlib") { techmap_cmd = "techmap -D SIMLIB_NOCHECKS -map +/simlib.v -max_iter 2 -autoproc"; continue; } if (args[argidx] == "-aigmap") { techmap_cmd = "aigmap"; continue; } if (args[argidx] == "-muxdiv") { muxdiv = true; continue; } if (args[argidx] == "-const") { constmode = true; continue; } if (args[argidx] == "-nosat") { nosat = true; continue; } if (args[argidx] == "-noeval") { noeval = true; continue; } if (args[argidx] == "-noopt") { noopt = true; continue; } if (args[argidx] == "-edges") { edges = true; continue; } if (args[argidx] == "-v") { verbose = true; continue; } if (args[argidx] == "-vlog" && argidx+1 < GetSize(args)) { vlog_file.open(args[++argidx], std::ios_base::trunc); if (!vlog_file.is_open()) log_cmd_error("Failed to open output file `%s'.\n", args[argidx].c_str()); continue; } if (args[argidx] == "-bloat" && argidx+1 < GetSize(args)) { bloat_factor = atoi(args[++argidx].c_str()); continue; } if (args[argidx] == "-check_cost") { check_cost = true; continue; } break; } if (xorshift32_state == 0) { xorshift32_state = time(NULL) & 0x7fffffff; log("Rng seed value: %d\n", int(xorshift32_state)); } std::map<IdString, std::string> cell_types; std::vector<IdString> selected_cell_types; cell_types[ID($not)] = "ASY"; cell_types[ID($pos)] = "ASY"; cell_types[ID($neg)] = "ASY"; cell_types[ID($and)] = "ABSY"; cell_types[ID($or)] = "ABSY"; cell_types[ID($xor)] = "ABSY"; cell_types[ID($xnor)] = "ABSY"; cell_types[ID($reduce_and)] = "ASY"; cell_types[ID($reduce_or)] = "ASY"; cell_types[ID($reduce_xor)] = "ASY"; cell_types[ID($reduce_xnor)] = "ASY"; cell_types[ID($reduce_bool)] = "ASY"; cell_types[ID($shl)] = "ABshY"; cell_types[ID($shr)] = "ABshY"; cell_types[ID($sshl)] = "ABshY"; cell_types[ID($sshr)] = "ABshY"; cell_types[ID($shift)] = "ABshY"; cell_types[ID($shiftx)] = "ABshY"; cell_types[ID($lt)] = "ABSY"; cell_types[ID($le)] = "ABSY"; cell_types[ID($eq)] = "ABSY"; cell_types[ID($ne)] = "ABSY"; // cell_types[ID($eqx)] = "ABSY"; // cell_types[ID($nex)] = "ABSY"; cell_types[ID($ge)] = "ABSY"; cell_types[ID($gt)] = "ABSY"; cell_types[ID($add)] = "ABSY"; cell_types[ID($sub)] = "ABSY"; cell_types[ID($mul)] = "ABSY"; cell_types[ID($div)] = "ABSY"; cell_types[ID($mod)] = "ABSY"; cell_types[ID($divfloor)] = "ABSY"; cell_types[ID($modfloor)] = "ABSY"; // cell_types[ID($pow)] = "ABsY"; cell_types[ID($logic_not)] = "ASY"; cell_types[ID($logic_and)] = "ABSY"; cell_types[ID($logic_or)] = "ABSY"; cell_types[ID($mux)] = "*"; cell_types[ID($bmux)] = "*"; cell_types[ID($demux)] = "*"; if (edges) { cell_types[ID($pmux)] = "*"; } // cell_types[ID($slice)] = "A"; // cell_types[ID($concat)] = "A"; cell_types[ID($lut)] = "*"; cell_types[ID($sop)] = "*"; cell_types[ID($alu)] = "ABSY"; cell_types[ID($lcu)] = "*"; cell_types[ID($macc)] = "*"; cell_types[ID($fa)] = "*"; for (; argidx < GetSize(args); argidx++) { if (args[argidx].rfind("-", 0) == 0) log_cmd_error("Unexpected option: %s\n", args[argidx].c_str()); if (args[argidx] == "all") { for (auto &it : cell_types) if (std::count(selected_cell_types.begin(), selected_cell_types.end(), it.first) == 0) selected_cell_types.push_back(it.first); continue; } if (args[argidx].compare(0, 1, "/") == 0) { std::vector<IdString> new_selected_cell_types; for (auto it : selected_cell_types) if (it != args[argidx].substr(1)) new_selected_cell_types.push_back(it); new_selected_cell_types.swap(selected_cell_types); continue; } if (cell_types.count(args[argidx]) == 0) { std::string cell_type_list; int charcount = 100; for (auto &it : cell_types) { if (charcount > 60) { cell_type_list += stringf("\n%s", + log_id(it.first)); charcount = 0; } else cell_type_list += stringf(" %s", log_id(it.first)); charcount += GetSize(it.first); } log_cmd_error("The cell type `%s' is currently not supported. Try one of these:%s\n", args[argidx].c_str(), cell_type_list.c_str()); } if (std::count(selected_cell_types.begin(), selected_cell_types.end(), args[argidx]) == 0) selected_cell_types.push_back(args[argidx]); } if (!rtlil_file.empty()) { if (!selected_cell_types.empty()) log_cmd_error("Do not specify any cell types when using -f.\n"); selected_cell_types.push_back(ID(rtlil)); } if (selected_cell_types.empty()) log_cmd_error("No cell type to test specified.\n"); std::vector<std::string> uut_names; for (auto cell_type : selected_cell_types) { // Cells that failed cell cost check int failed = 0; // How much bigger is the worst offender than estimated? int worst_abs = 0; // How many times is it bigger than estimated? float worst_rel = 0.0; for (int i = 0; i < num_iter; i++) { Cell* uut = nullptr; RTLIL::Design *design = new RTLIL::Design; if (cell_type == ID(rtlil)) Frontend::frontend_call(design, NULL, std::string(), "rtlil " + rtlil_file); else uut = create_gold_module(design, cell_type, cell_types.at(cell_type), constmode, muxdiv); if (!write_prefix.empty()) { Pass::call(design, stringf("write_rtlil %s_%s_%05d.il", write_prefix.c_str(), cell_type.c_str()+1, i)); } else if (edges) { Pass::call(design, "dump gold"); run_edges_test(design, verbose); } else { Pass::call(design, stringf("copy gold gate; cd gate; %s; cd ..", techmap_cmd.c_str())); if (!noopt) Pass::call(design, "opt -fast gate"); if (!nosat) Pass::call(design, "miter -equiv -flatten -make_outputs -ignore_gold_x gold gate miter"); if (verbose) Pass::call(design, "dump gate"); Pass::call(design, "dump gold"); if (!nosat) Pass::call(design, "sat -verify -enable_undef -prove trigger 0 -show-inputs -show-outputs miter"); std::string uut_name = stringf("uut_%s_%d", cell_type.substr(1).c_str(), i); if (vlog_file.is_open()) { Pass::call(design, stringf("copy gold %s_expr; select %s_expr", uut_name.c_str(), uut_name.c_str())); Backend::backend_call(design, &vlog_file, "<test_cell -vlog>", "verilog -selected"); Pass::call(design, stringf("copy gold %s_noexpr; select %s_noexpr", uut_name.c_str(), uut_name.c_str())); Backend::backend_call(design, &vlog_file, "<test_cell -vlog>", "verilog -selected -noexpr"); uut_names.push_back(uut_name); } if (!noeval) run_eval_test(design, verbose, nosat, uut_name, vlog_file); if (check_cost && uut) { Pass::call(design, "select gate"); int num_cells = 0; for (auto mod : design->selected_modules()) { // Expected to run once for (auto cell : mod->selected_cells()) { (void) cell; num_cells++; } } CellCosts costs(design); Pass::call(design, "select gold"); for (auto mod : design->selected_modules()) { log_assert(mod->name.str() == "\\gold"); // Expected to run once int num_cells_estimate = costs.get(uut); if (num_cells <= num_cells_estimate) { log_debug("Correct upper bound for %s: %d <= %d\n", cell_type.c_str(), num_cells, num_cells_estimate); } else { failed++; if (worst_abs < num_cells - num_cells_estimate) { worst_abs = num_cells - num_cells_estimate; worst_rel = (float)(num_cells - num_cells_estimate) / (float)num_cells_estimate; } log_warning("Upper bound violated for %s: %d > %d\n", cell_type.c_str(), num_cells, num_cells_estimate); } } } } delete design; } if (check_cost && failed) { log_warning("Cell type %s cost underestimated in %.1f%% cases " "with worst offender being by %d (%.1f%%)\n", cell_type.c_str(), 100 * (float)failed / (float)num_iter, worst_abs, 100 * worst_rel); } } if (vlog_file.is_open()) { vlog_file << "\nmodule testbench;\n"; for (auto &uut : uut_names) vlog_file << stringf(" %s %s ();\n", uut.c_str(), uut.c_str()); vlog_file << " initial begin\n"; for (auto &uut : uut_names) vlog_file << " " << uut << ".run;\n"; vlog_file << " end\n"; vlog_file << "endmodule\n"; } } } TestCellPass; PRIVATE_NAMESPACE_END