// This pass performs an optimisation that decomposes wide arithmetic // comparisons into LUT-size chunks (as guided by the `LUT_WIDTH // macro) connected to a single lookahead-carry-unit $lcu cell, // which is typically mapped to dedicated (and fast) FPGA // carry-chains. (* techmap_celltype = "$lt $le $gt $ge" *) module _90_lcu_cmp_ (A, B, Y); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 0; parameter B_WIDTH = 0; parameter Y_WIDTH = 0; input [A_WIDTH-1:0] A; input [B_WIDTH-1:0] B; output [Y_WIDTH-1:0] Y; parameter _TECHMAP_CELLTYPE_ = ""; localparam gt_width = `LUT_WIDTH/2; generate if (_TECHMAP_CELLTYPE_ == "" || (A_WIDTH <= gt_width || B_WIDTH <= gt_width)) wire _TECHMAP_FAIL_ = 1; else if (_TECHMAP_CELLTYPE_ == "$lt") begin // Transform $lt into $gt by swapping A and B $gt #(.A_SIGNED(B_SIGNED), .B_SIGNED(A_SIGNED), .A_WIDTH(B_WIDTH), .B_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(B), .B(A), .Y(Y)); end else if (_TECHMAP_CELLTYPE_ == "$le") begin // Transform $le into $ge by swapping A and B $ge #(.A_SIGNED(B_SIGNED), .B_SIGNED(A_SIGNED), .A_WIDTH(B_WIDTH), .B_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(B), .B(A), .Y(Y)); end else begin // Perform sign extension on A and B localparam WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH; wire [WIDTH-1:0] AA = {{(WIDTH-A_WIDTH){A_SIGNED ? A[A_WIDTH-1] : 1'b0}}, A}; wire [WIDTH-1:0] BB = {{(WIDTH-B_WIDTH){B_SIGNED ? B[B_WIDTH-1] : 1'b0}}, B}; // Compute width of $lcu/carry-chain cell localparam lcu_width = (WIDTH+gt_width-1)/gt_width; wire [lcu_width-1:0] P, G, CO; genvar i, j; integer j; for (i = 0; i < WIDTH; i=i+gt_width) begin wire [gt_width-1:0] PP, GG; if (i < WIDTH-gt_width) begin // Bit-wise equality (xnor) of sign-extended A and B assign PP = AA[i +: gt_width] ^~ BB[i +: gt_width]; // Priority "encoder" that checks A[i] == 1'b1 && B[i] == 1'b0 // from MSB down, deferring to less significant bits if the // MSBs are equal assign GG[gt_width-1] = AA[i+gt_width-1] & ~BB[i+gt_width-1]; for (j = gt_width-2; j >= 0; j=j-1) assign GG[j] = &PP[gt_width-1:j+1] & (AA[i+j] & ~BB[i+j]); // Propagate only if all bits are equal // (inconclusive evidence to say A >= B) assign P[i/gt_width] = &PP; // Generate if any pairs call for it assign G[i/gt_width] = |GG; end else begin assign PP = AA[WIDTH-1:i] ^~ BB[WIDTH-1:i]; if (A_SIGNED && B_SIGNED) assign GG[WIDTH-i-1] = ~AA[WIDTH-1] & BB[WIDTH-1]; else assign GG[WIDTH-i-1] = AA[WIDTH-1] & ~BB[WIDTH-1]; for (j = WIDTH-i-2; j >= 0; j=j-1) assign GG[j] = &PP[WIDTH-i-1:j+1] & (AA[i+j] & ~BB[i+j]); assign P[i/gt_width] = &PP[WIDTH-i-1:0]; assign G[i/gt_width] = |GG[WIDTH-i-1:0]; end end // For $ge operation, start with the assumption that A and B are // equal (propagating this equality if A and B turn out to be so) if (_TECHMAP_CELLTYPE_ == "$ge") wire CI = 1'b1; else wire CI = 1'b0; $lcu #(.WIDTH(lcu_width)) lcu (.P(P), .G(G), .CI(CI), .CO(CO)); assign Y = CO[lcu_width-1]; end endgenerate endmodule