/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2020 Marcelina Kościelnicka * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #ifndef MEM_H #define MEM_H #include "kernel/yosys.h" #include "kernel/ffinit.h" #include "kernel/utils.h" YOSYS_NAMESPACE_BEGIN struct MemRd : RTLIL::AttrObject { bool removed; Cell *cell; int wide_log2; bool clk_enable, clk_polarity, ce_over_srst; Const arst_value, srst_value, init_value; // One bit for every write port, true iff simultanous read on this // port and write on the other port will bypass the written data // to this port's output (default behavior is to read old value). // Can only be set for write ports that have the same clock domain. std::vector transparency_mask; // One bit for every write port, true iff simultanous read on this // port and write on the other port will return an all-X (don't care) // value. Mutually exclusive with transparency_mask. // Can only be set for write ports that have the same clock domain. // For optimization purposes, this will also be set if we can // determine that the two ports can never be active simultanously // (making the above vacuously true). std::vector collision_x_mask; SigSpec clk, en, arst, srst, addr, data; MemRd() : removed(false), cell(nullptr), wide_log2(0), clk_enable(false), clk_polarity(true), ce_over_srst(false), clk(State::Sx), en(State::S1), arst(State::S0), srst(State::S0) {} // Returns the address of given subword index accessed by this port. SigSpec sub_addr(int sub) { SigSpec res = addr; for (int i = 0; i < wide_log2; i++) res[i] = State(sub >> i & 1); return res; } }; struct MemWr : RTLIL::AttrObject { bool removed; Cell *cell; int wide_log2; bool clk_enable, clk_polarity; std::vector priority_mask; SigSpec clk, en, addr, data; MemWr() : removed(false), cell(nullptr) {} // Returns the address of given subword index accessed by this port. SigSpec sub_addr(int sub) { SigSpec res = addr; for (int i = 0; i < wide_log2; i++) res[i] = State(sub >> i & 1); return res; } std::pair> compress_en(); SigSpec decompress_en(const std::vector &swizzle, SigSpec sig); }; struct MemInit : RTLIL::AttrObject { bool removed; Cell *cell; Const addr; Const data; Const en; MemInit() : removed(false), cell(nullptr) {} }; struct Mem : RTLIL::AttrObject { Module *module; IdString memid; bool packed; RTLIL::Memory *mem; Cell *cell; int width, start_offset, size; std::vector inits; std::vector rd_ports; std::vector wr_ports; // Removes this memory from the module. The data in helper structures // is unaffected except for the cell/mem fields. void remove(); // Commits all changes in helper structures into the module — ports and // inits marked as removed are actually removed, new ports/inits create // new cells, modified port/inits are commited into their existing // cells. Note that this reindexes the ports and inits array (actually // removing the ports/inits marked as removed). void emit(); // Marks all inits as removed. void clear_inits(); // Coalesces inits: whenever two inits have overlapping or touching // address ranges, they are combined into one, with the higher-priority // one's data overwriting the other. Running this results in // an inits list equivalent to the original, in which all entries // cover disjoint (and non-touching) address ranges, and all enable // masks are all-1. void coalesce_inits(); // Checks consistency of this memory and all its ports/inits, using // log_assert. void check(); // Gathers all initialization data into a single big const covering // the whole memory. For all non-initialized bits, Sx will be returned. Const get_init_data() const; // Constructs and returns the helper structures for all memories // in a module. static std::vector get_all_memories(Module *module); // Constructs and returns the helper structures for all selected // memories in a module. static std::vector get_selected_memories(Module *module); // Converts a synchronous read port into an asynchronous one by // extracting the data (or, in some rare cases, address) register // into a separate cell, together with any soft-transparency // logic necessary to preserve its semantics. Returns the created // register cell, if any. Note that in some rare cases this function // may succeed and perform a conversion without creating a new // register — a nullptr result doesn't imply nothing was done. Cell *extract_rdff(int idx, FfInitVals *initvals); // Splits all wide ports in this memory into equivalent narrow ones. // This function performs no modifications at all to the actual // netlist unless and until emit() is called. void narrow(); // If write port idx2 currently has priority over write port idx1, // inserts extra logic on idx1's enable signal to disable writes // when idx2 is writing to the same address, then removes the priority // from the priority mask. If there is a memory port that is // transparent with idx1, but not with idx2, that port is converted // to use soft transparency logic. void emulate_priority(int idx1, int idx2, FfInitVals *initvals); // Creates soft-transparency logic on read port ridx, bypassing the // data from write port widx. Should only be called when ridx is // transparent wrt widx in the first place. Once we're done, the // transparency_mask bit will be cleared, and the collision_x_mask // bit will be set instead (since whatever value is read will be // replaced by the soft transparency logic). void emulate_transparency(int widx, int ridx, FfInitVals *initvals); // Prepares for merging write port idx2 into idx1 (where idx1 < idx2). // Specifically, takes care of priority masks: any priority relations // that idx2 had are replicated onto idx1, unless they conflict with // priorities already present on idx1, in which case emulate_priority // is called. Likewise, ensures transparency and undefined collision // masks of all read ports have the same values for both ports, // calling emulate_transparency if necessary. void prepare_wr_merge(int idx1, int idx2, FfInitVals *initvals); // Prepares for merging read port idx2 into idx1. // Specifically, makes sure the transparency and undefined collision // masks of both ports are equal, by changing undefined behavior // of one port to the other's defined behavior, or by calling // emulate_transparency if necessary. void prepare_rd_merge(int idx1, int idx2, FfInitVals *initvals); // Prepares the memory for widening a port to a given width. This // involves ensuring that start_offset and size are aligned to the // target width. void widen_prep(int wide_log2); // Widens a write port up to a given width. The newly port is // equivalent to the original, made by replicating enable/data bits // and masking enable bits with decoders on the low part of the // original address. void widen_wr_port(int idx, int wide_log2); // Emulates a sync read port's enable functionality in soft logic, // changing the actual read port's enable to be always-on. void emulate_rden(int idx, FfInitVals *initvals); // Emulates a sync read port's initial/reset value functionality in // soft logic, removing it from the actual read port. void emulate_reset(int idx, bool emu_init, bool emu_arst, bool emu_srst, FfInitVals *initvals); // Given a read port with ce_over_srst set, converts it to a port // with ce_over_srst unset without changing its behavior by adding // emulation logic. void emulate_rd_ce_over_srst(int idx); // Given a read port with ce_over_srst unset, converts it to a port // with ce_over_srst set without changing its behavior by adding // emulation logic. void emulate_rd_srst_over_ce(int idx); // Returns true iff emulate_read_first makes sense to call. bool emulate_read_first_ok(); // Emulates all read-first read-write port relationships in terms of // all-transparent ports, by delaying all write ports by one cycle. // This can only be used when all read ports and all write ports are // in the same clock domain. void emulate_read_first(FfInitVals *initvals); Mem(Module *module, IdString memid, int width, int start_offset, int size) : module(module), memid(memid), packed(false), mem(nullptr), cell(nullptr), width(width), start_offset(start_offset), size(size) {} }; // MemContents efficiently represents the contents of a potentially sparse memory by storing only those segments that are actually defined class MemContents { public: class range; class iterator; using addr_t = uint32_t; private: // we ban _addr_width == sizeof(addr_t) * 8 because it adds too many cornercases int _addr_width; int _data_width; RTLIL::Const _default_value; // for each range, store the concatenation of the words at the start address // invariants: // - no overlapping or adjacent ranges // - no empty ranges // - all Consts are a multiple of the word size std::map _values; // returns an iterator to the range containing addr, if it exists, or the first range past addr std::map::iterator _range_at(addr_t addr) const; addr_t _range_size(std::map::iterator it) const { return it->second.size() / _data_width; } addr_t _range_begin(std::map::iterator it) const { return it->first; } addr_t _range_end(std::map::iterator it) const { return _range_begin(it) + _range_size(it); } // check if the iterator points to a range containing addr bool _range_contains(std::map::iterator it, addr_t addr) const; // check if the iterator points to a range containing [begin_addr, end_addr). assumes end_addr >= begin_addr. bool _range_contains(std::map::iterator it, addr_t begin_addr, addr_t end_addr) const; // check if the iterator points to a range overlapping with [begin_addr, end_addr) bool _range_overlaps(std::map::iterator it, addr_t begin_addr, addr_t end_addr) const; // return the offset the addr would have in the range at `it` size_t _range_offset(std::map::iterator it, addr_t addr) const { return (addr - it->first) * _data_width; } // assuming _range_contains(it, addr), return an iterator pointing to the data at addr std::vector::iterator _range_data(std::map::iterator it, addr_t addr) { return it->second.bits.begin() + _range_offset(it, addr); } // internal version of reserve_range that returns an iterator to the range std::map::iterator _reserve_range(addr_t begin_addr, addr_t end_addr); // write a single word at addr, return iterator to next word std::vector::iterator _range_write(std::vector::iterator it, RTLIL::Const const &data); public: class range { int _data_width; addr_t _base; RTLIL::Const const &_values; friend class iterator; range(int data_width, addr_t base, RTLIL::Const const &values) : _data_width(data_width), _base(base), _values(values) {} public: addr_t base() const { return _base; } addr_t size() const { return ((addr_t) _values.size()) / _data_width; } addr_t limit() const { return _base + size(); } RTLIL::Const const &concatenated() const { return _values; } RTLIL::Const operator[](addr_t addr) const { log_assert(addr - _base < size()); return _values.extract((addr - _base) * _data_width, _data_width); } RTLIL::Const at_offset(addr_t offset) const { return (*this)[_base + offset]; } }; class iterator { MemContents const *_memory; // storing addr instead of an iterator gives more well-defined behaviour under insertions/deletions // use ~0 for end so that all end iterators compare the same addr_t _addr; friend class MemContents; iterator(MemContents const *memory, addr_t addr) : _memory(memory), _addr(addr) {} public: using iterator_category = std::input_iterator_tag; using value_type = range; using pointer = arrow_proxy; using reference = range; using difference_type = addr_t; reference operator *() const { return range(_memory->_data_width, _addr, _memory->_values.at(_addr)); } pointer operator->() const { return arrow_proxy(**this); } bool operator !=(iterator const &other) const { return _memory != other._memory || _addr != other._addr; } bool operator ==(iterator const &other) const { return !(*this != other); } iterator &operator++(); }; MemContents(int addr_width, int data_width, RTLIL::Const default_value) : _addr_width(addr_width), _data_width(data_width) , _default_value((default_value.extu(data_width), std::move(default_value))) { log_assert(_addr_width > 0 && _addr_width < (int)sizeof(addr_t) * 8); log_assert(_data_width > 0); } MemContents(int addr_width, int data_width) : MemContents(addr_width, data_width, RTLIL::Const(State::Sx, data_width)) {} explicit MemContents(Mem *mem); int addr_width() const { return _addr_width; } int data_width() const { return _data_width; } RTLIL::Const const &default_value() const { return _default_value; } // return the value at the address if it exists, the default_value of the memory otherwise. address must not exceed 2**addr_width. RTLIL::Const operator [](addr_t addr) const; // return the number of defined words in the range [begin_addr, end_addr) addr_t count_range(addr_t begin_addr, addr_t end_addr) const; // allocate memory for the range [begin_addr, end_addr), but leave the contents undefined. void reserve_range(addr_t begin_addr, addr_t end_addr) { _reserve_range(begin_addr, end_addr); } // insert multiple words (provided as a single concatenated RTLIL::Const) at the given address, overriding any previous assignment. void insert_concatenated(addr_t addr, RTLIL::Const const &values); // insert multiple words at the given address, overriding any previous assignment. template void insert_range(addr_t addr, Iterator begin, Iterator end) { auto words = end - begin; log_assert(addr < (addr_t)(1<<_addr_width)); log_assert(words <= (addr_t)(1<<_addr_width) - addr); auto range = _reserve_range(addr, addr + words); auto it = _range_data(range, addr); for(; begin != end; ++begin) it = _range_write(it, *begin); } // undefine all words in the range [begin_addr, end_addr) void clear_range(addr_t begin_addr, addr_t end_addr); // check invariants, abort if invariants failed void check(); iterator end() const { return iterator(nullptr, ~(addr_t) 0); } iterator begin() const { return _values.empty() ? end() : iterator(this, _values.begin()->first); } bool empty() const { return _values.empty(); } }; YOSYS_NAMESPACE_END #endif