/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * Copyright (C) 2014 Ahmed Irfan * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ // [[CITE]] BTOR: Bit-Precise Modelling of Word-Level Problems for Model Checking // Johannes Kepler University, Linz, Austria // http://fmv.jku.at/papers/BrummayerBiereLonsing-BPR08.pdf #include "kernel/rtlil.h" #include "kernel/register.h" #include "kernel/sigtools.h" #include "kernel/celltypes.h" #include "kernel/log.h" #include #include #include #include #include struct BtorDumperConfig { bool subckt_mode; bool conn_mode; bool impltf_mode; std::string buf_type, buf_in, buf_out; std::string true_type, true_out, false_type, false_out; BtorDumperConfig() : subckt_mode(false), conn_mode(false), impltf_mode(false) { } }; struct WireInfo { RTLIL::IdString cell_name; RTLIL::SigChunk *chunk; WireInfo(RTLIL::IdString c, RTLIL::SigChunk* ch) : cell_name(c), chunk(ch) { } }; struct WireInfoOrder { bool operator() (const WireInfo& x, const WireInfo& y) { return x.chunk < y.chunk; } }; struct BtorDumper { FILE *f; RTLIL::Module *module; RTLIL::Design *design; BtorDumperConfig *config; CellTypes ct; SigMap sigmap; std::map> inter_wire_map;// for maping the intermediate wires that are output of some cell std::map line_ref;//mapping of ids to line_num of the btor file std::map sig_ref;//mapping of sigspec to the line_num of the btor file int line_num;//last line number of btor file std::string str;//temp string for writing file std::map basic_wires;//input wires and registers RTLIL::IdString curr_cell; //current cell being dumped std::map cell_type_translation, s_cell_type_translation; //RTLIL to BTOR translation BtorDumper(FILE *f, RTLIL::Module *module, RTLIL::Design *design, BtorDumperConfig *config) : f(f), module(module), design(design), config(config), ct(design), sigmap(module) { line_num=0; str.clear(); for(auto it=module->wires.begin(); it!=module->wires.end(); ++it) { if(it->second->port_input) { basic_wires[it->first]=true; } else { basic_wires[it->first]=false; } inter_wire_map[it->first].clear(); } curr_cell.clear(); cell_type_translation = { //unary {"$not","not"},{"$neg","neg"},{"$reduce_and","redand"}, {"$reduce_or","redor"},{"$reduce_xor","redxor"},{"$reduce_bool","redor"}, //binary {"$and","and"},{"$or","or"},{"$xor","xor"},{"$xnor","xnor"}, {"$shr","srl"},{"$shl","sll"},{"$sshr","sra"},{"$sshl","sll"}, {"$lt","ult"},{"$le","ulte"},{"$eq","eq"},{"$ne","ne"},{"$gt","ugt"},{"$ge","ugte"}, {"$add","add"},{"$sub","sub"},{"$mul","mul"},{"$mod","urem"},{"$div","udiv"}, //mux {"$mux","cond"}, //reg {"$dff","next"},{"$adff","next"},{"$dffsr","next"} //memories }; s_cell_type_translation = { //binary {"$modx","srem"},{"$mody","smod"},{"$div","sdiv"}, {"$lt","slt"},{"$le","slte"},{"$gt","sgt"},{"$ge","sgte"} }; } std::vector cstr_buf; const char *cstr(const RTLIL::IdString id) { str = RTLIL::unescape_id(id); for (size_t i = 0; i < str.size(); ++i) if (str[i] == '#' || str[i] == '=') str[i] = '?'; cstr_buf.push_back(str); return cstr_buf.back().c_str(); } int dump_wire(RTLIL::Wire* wire) { if(basic_wires[wire->name]) { log("writing wire %s\n", cstr(wire->name)); auto it = line_ref.find(wire->name); if(it==std::end(line_ref)) { ++line_num; line_ref[wire->name]=line_num; str = stringf("%d var %d %s", line_num, wire->width, cstr(wire->name)); fprintf(f, "%s\n", str.c_str()); return line_num; } else return it->second; } else // case when the wire is not basic wire { log("case of non-basic wire - %s\n", cstr(wire->name)); auto it = line_ref.find(wire->name); if(it==std::end(line_ref)) { std::set& dep_set = inter_wire_map.at(wire->name); int wire_line = 0; int wire_width = 0; for(auto dep_set_it=dep_set.begin(); dep_set_it!=dep_set.end(); ++dep_set_it) { RTLIL::IdString cell_id = dep_set_it->cell_name; if(cell_id == curr_cell) break; log(" -- found cell %s\n", cstr(cell_id)); RTLIL::Cell* cell = module->cells.at(cell_id); RTLIL::SigSpec* cell_output = get_cell_output(cell); int cell_line = dump_cell(cell); if(dep_set.size()==1 && wire->width == cell_output->width) { wire_line = cell_line; break; } else { int prev_wire_line=0; //previously dumped wire line int start_bit=cell_output->width-1; for(unsigned j=0; jchunks.size(); ++j) { if(cell_output->chunks[j].wire->name == wire->name) { prev_wire_line = wire_line; wire_line = ++line_num; str = stringf("%d slice %d %d %d %d", line_num, cell_output->chunks[j].width, cell_line, start_bit, start_bit-cell_output->chunks[j].width+1); fprintf(f, "%s\n", str.c_str()); wire_width += cell_output->chunks[j].width; if(prev_wire_line!=0) { ++line_num; str = stringf("%d concat %d %d %d", line_num, wire_width, prev_wire_line, wire_line); fprintf(f, "%s\n", str.c_str()); wire_line = line_num; } } start_bit-=cell_output->chunks[j].width; } } } if(dep_set.size()==0) { log(" - checking sigmap\n"); RTLIL::SigSpec s = RTLIL::SigSpec(wire); wire_line = dump_sigspec(&s, s.width); line_ref[wire->name]=wire_line; } line_ref[wire->name]=wire_line; return wire_line; } else { log(" -- already processed wire\n"); return it->second; } } assert(false); return -1; } int dump_memory(const RTLIL::Memory* memory) { log("writing memory %s\n", cstr(memory->name)); auto it = line_ref.find(memory->name); if(it==std::end(line_ref)) { ++line_num; int address_bits = ceil(log(memory->size)/log(2)); str = stringf("%d array %d %d", line_num, memory->width, address_bits); line_ref[memory->name]=line_num; fprintf(f, "%s\n", str.c_str()); return line_num; } else return it->second; } int dump_const(const RTLIL::Const* data, int width, int offset) { log("writing const \n"); if((data->flags & RTLIL::CONST_FLAG_STRING) == 0) { if(width<0) width = data->bits.size() - offset; std::string data_str = data->as_string(); if(offset > 0) data_str = data_str.substr(offset, width); ++line_num; str = stringf("%d const %d %s", line_num, width, data_str.c_str()); fprintf(f, "%s\n", str.c_str()); return line_num; } else log("writing const error\n"); assert(false); return -1; } int dump_sigchunk(const RTLIL::SigChunk* chunk) { log("writing sigchunk\n"); int l=-1; if(chunk->wire == NULL) { l=dump_const(&chunk->data, chunk->width, chunk->offset); } else { if (chunk->width == chunk->wire->width && chunk->offset == 0) l = dump_wire(chunk->wire); else { str = stringf("%s[%d:%d]", chunk->wire->name.c_str(), chunk->offset + chunk->width - 1, chunk->offset); auto it = line_ref.find(RTLIL::IdString(str)); if(it==std::end(line_ref)) { int wire_line_num = dump_wire(chunk->wire); if(wire_line_num<=0) return -1; ++line_num; line_ref[RTLIL::IdString(str)] = line_num; str = stringf("%d slice %d %d %d %d", line_num, chunk->width, wire_line_num, chunk->offset + chunk->width - 1, chunk->offset); fprintf(f, "%s\n", str.c_str()); l = line_num; } else l=it->second; } } return l; } int dump_sigspec(const RTLIL::SigSpec* sig, int expected_width) { log("writing sigspec\n"); RTLIL::SigSpec s = sigmap(*sig); int l = -1; auto it = sig_ref.find(s); if(it == std::end(sig_ref)) { if (s.chunks.size() == 1) { l = dump_sigchunk(&s.chunks[0]); } else { int l1, l2, w1, w2; l1 = dump_sigchunk(&s.chunks[0]); assert(l1>0); w1 = s.chunks[0].width; for (unsigned i=1; i < s.chunks.size(); ++i) { l2 = dump_sigchunk(&s.chunks[i]); assert(l2>0); w2 = s.chunks[i].width; ++line_num; str = stringf("%d concat %d %d %d", line_num, w1+w2, l2, l1); fprintf(f, "%s\n", str.c_str()); l1=line_num; w1+=w2; } l = line_num; } sig_ref[s] = l; } else { l = it->second; } if (expected_width != s.width) { log(" - changing width of sigspec\n"); //TODO: save the new signal in map /*if(expected_width > s.width) s.extend_u0(expected_width); else if (expected_width < s.width) s = s.extract(0, expected_width); it = sig_ref.find(s); if(it == std::end(sig_ref)) {*/ if(expected_width > s.width) { //TODO: case the signal is signed ++line_num; str = stringf ("%d zero %d", line_num, expected_width - s.width); fprintf(f, "%s\n", str.c_str()); ++line_num; str = stringf ("%d concat %d %d %d", line_num, expected_width, line_num-1, l); fprintf(f, "%s\n", str.c_str()); l = line_num; } else if(expected_width < s.width) { ++line_num; str = stringf ("%d slice %d %d %d %d", line_num, expected_width, l, s.width-1, expected_width); fprintf(f, "%s\n", str.c_str()); l = line_num; } /*sig_ref[s] = l; } else { l = it->second; }*/ } assert(l>0); return l; } int dump_cell(const RTLIL::Cell* cell) { auto it = line_ref.find(cell->name); if(it==std::end(line_ref)) { curr_cell = cell->name; //unary cells if(cell->type == "$not" || cell->type == "$neg" || cell->type == "$pos" || cell->type == "$reduce_and" || cell->type == "$reduce_or" || cell->type == "$reduce_xor" || cell->type == "$reduce_bool") { log("writing unary cell - %s\n", cstr(cell->type)); int w = cell->parameters.at(RTLIL::IdString("\\A_WIDTH")).as_int(); int output_width = cell->parameters.at(RTLIL::IdString("\\Y_WIDTH")).as_int(); w = w>output_width ? w:output_width; int l = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\A")), w); int cell_line = l; if(cell->type != "$pos") { cell_line = ++line_num; bool reduced = (cell->type == "$not" || cell->type == "$neg") ? false : true; str = stringf ("%d %s %d %d", cell_line, cell_type_translation.at(cell->type).c_str(), reduced?output_width:w, l); fprintf(f, "%s\n", str.c_str()); } if(output_width < w && (cell->type == "$not" || cell->type == "$neg" || cell->type == "$pos")) { ++line_num; str = stringf ("%d slice %d %d %d %d", line_num, output_width, cell_line, output_width-1, 0); fprintf(f, "%s\n", str.c_str()); cell_line = line_num; } line_ref[cell->name]=cell_line; } else if(cell->type == "$reduce_xnor" || cell->type == "$logic_not")//no direct translation in btor { log("writing unary cell - %s\n", cstr(cell->type)); int w = cell->parameters.at(RTLIL::IdString("\\A_WIDTH")).as_int(); int output_width = cell->parameters.at(RTLIL::IdString("\\Y_WIDTH")).as_int(); int l = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\A")), w); if(cell->type == "$logic_not" && w > 1) { ++line_num; str = stringf ("%d %s %d %d", line_num, cell_type_translation.at("$reduce_or").c_str(), output_width, l); fprintf(f, "%s\n", str.c_str()); } else if(cell->type == "$reduce_xnor") { ++line_num; str = stringf ("%d %s %d %d", line_num, cell_type_translation.at("$reduce_xor").c_str(), output_width, l); fprintf(f, "%s\n", str.c_str()); } ++line_num; str = stringf ("%d %s %d %d", line_num, cell_type_translation.at("$not").c_str(), output_width, line_num-1); fprintf(f, "%s\n", str.c_str()); line_ref[cell->name]=line_num; } //binary cells else if(cell->type == "$and" || cell->type == "$or" || cell->type == "$xor" || cell->type == "$xnor" || cell->type == "$add" || cell->type == "$sub" || cell->type == "$mul" || cell->type == "$div" || cell->type == "$mod" || cell->type == "$lt" || cell->type == "$le" || cell->type == "$eq" || cell->type == "$ne" || cell->type == "$ge" || cell->type == "$gt" || cell->type == "$shr" || cell->type == "$shl" || cell->type == "$sshr" || cell->type == "$sshl") { //TODO: division by zero case log("writing binary cell - %s\n", cstr(cell->type)); int output_width = cell->parameters.at(RTLIL::IdString("\\Y_WIDTH")).as_int(); bool l1_signed = cell->parameters.at(RTLIL::IdString("\\A_SIGNED")).as_bool(); bool l2_signed = cell->parameters.at(RTLIL::IdString("\\B_SIGNED")).as_bool(); int l1_width = cell->parameters.at(RTLIL::IdString("\\A_WIDTH")).as_int(); int l2_width = cell->parameters.at(RTLIL::IdString("\\B_WIDTH")).as_int(); if(cell->type == "$and" || cell->type == "$or" || cell->type == "$xor" || cell->type == "$xnor" || cell->type == "$add" || cell->type == "$sub" || cell->type == "$mul" || cell->type == "$div" || cell->type == "$mod" || cell->type == "$lt" || cell->type == "$le" || cell->type == "$eq" || cell->type == "$ne" || cell->type == "$ge" || cell->type == "$gt") { l1_width = l1_width > output_width ? l1_width : output_width; l1_width = l1_width > l2_width ? l1_width : l2_width; l2_width = l2_width > l1_width ? l2_width : l1_width; } else if(cell->type == "$shr" || cell->type == "$shl" || cell->type == "$sshr" || cell->type == "$sshl") { assert(l2_width <= ceil(log(l1_width)/log(2)) ); l2_width = ceil(log(l1_width)/log(2)); } int l1 = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\A")), l1_width); int l2 = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\B")), l2_width); ++line_num; std::string op = cell_type_translation.at(cell->type); if(cell->type == "$div" || cell->type == "$lt" || cell->type == "$le" || cell->type == "$eq" || cell->type == "$ne" || cell->type == "$ge" || cell->type == "$gt") { assert(l1_signed == l2_signed); if(l1_signed) op = s_cell_type_translation.at(cell->type); } if(cell->type == "$mod") { if(l1_signed) op = s_cell_type_translation.at("$modx"); else if(l2_signed) op = s_cell_type_translation.at("$mody"); } str = stringf ("%d %s %d %d %d", line_num, op.c_str(), output_width, l1, l2); fprintf(f, "%s\n", str.c_str()); if(output_width < l1_width) { ++line_num; str = stringf ("%d slice %d %d %d %d", line_num, output_width, line_num-1, output_width-1, 0); fprintf(f, "%s\n", str.c_str()); } line_ref[cell->name]=line_num; } else if(cell->type == "$logic_and" || cell->type == "$logic_or")//no direct translation in btor { log("writing binary cell - %s\n", cstr(cell->type)); int output_width = cell->parameters.at(RTLIL::IdString("\\Y_WIDTH")).as_int(); int l1 = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\A")), output_width); int l2 = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\B")), output_width); ++line_num; str = stringf ("%d %s %d %d", line_num, cell_type_translation.at("$reduce_or").c_str(), output_width, l1); fprintf(f, "%s\n", str.c_str()); ++line_num; str = stringf ("%d %s %d %d", line_num, cell_type_translation.at("$reduce_or").c_str(), output_width, l2); fprintf(f, "%s\n", str.c_str()); if(cell->type == "$logic_and") { ++line_num; str = stringf ("%d %s %d %d %d", line_num, cell_type_translation.at("$and").c_str(), output_width, line_num-2, line_num-1); } else if(cell->type == "$logic_or") { ++line_num; str = stringf ("%d %s %d %d %d", line_num, cell_type_translation.at("$or").c_str(), output_width, line_num-2, line_num-1); } fprintf(f, "%s\n", str.c_str()); line_ref[cell->name]=line_num; } //multiplexers else if(cell->type == "$mux") { log("writing mux cell\n"); int output_width = cell->parameters.at(RTLIL::IdString("\\WIDTH")).as_int(); int l1 = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\A")), output_width); int l2 = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\B")), output_width); int s = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\S")), 1); ++line_num; str = stringf ("%d %s %d %d %d %d", line_num, cell_type_translation.at(cell->type).c_str(), output_width, s, l2, l1);//if s is 0 then l1, if s is 1 then l2 //according to the implementation of mux cell fprintf(f, "%s\n", str.c_str()); line_ref[cell->name]=line_num; } //registers else if(cell->type == "$dff" || cell->type == "$adff" || cell->type == "$dffsr") { log("writing cell - %s\n", cstr(cell->type)); int output_width = cell->parameters.at(RTLIL::IdString("\\WIDTH")).as_int(); log(" - width is %d\n", output_width); int reg = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\Q")), output_width);//register int cond = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\CLK")), 1); bool polarity = cell->parameters.at(RTLIL::IdString("\\CLK_POLARITY")).as_bool(); int value = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\D")), output_width); if(cell->type == "$dffsr") { int sync_reset = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\CLR")), 1); bool sync_reset_pol = cell->parameters.at(RTLIL::IdString("\\CLR_POLARITY")).as_bool(); int sync_reset_value = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\SET")), output_width); bool sync_reset_value_pol = cell->parameters.at(RTLIL::IdString("\\SET_POLARITY")).as_bool(); ++line_num; str = stringf ("%d %s %d %s%d %s%d %d", line_num, cell_type_translation.at("$mux").c_str(), output_width, sync_reset_pol ? "":"-", sync_reset, sync_reset_value_pol? "":"-", sync_reset_value, value); fprintf(f, "%s\n", str.c_str()); value = line_num; } ++line_num; str = stringf ("%d %s %d %s%d %d %d", line_num, cell_type_translation.at("$mux").c_str(), output_width, polarity?"":"-", cond, value, reg); fprintf(f, "%s\n", str.c_str()); int next = line_num; if(cell->type == "$adff") { int async_reset = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\ARST")), 1); bool async_reset_pol = cell->parameters.at(RTLIL::IdString("\\ARST_POLARITY")).as_bool(); int async_reset_value = dump_const(&cell->parameters.at(RTLIL::IdString("\\ARST_VALUE")), output_width, 0); ++line_num; str = stringf ("%d %s %d %s%d %d %d", line_num, cell_type_translation.at("$mux").c_str(), output_width, async_reset_pol ? "":"-", async_reset, async_reset_value, next); fprintf(f, "%s\n", str.c_str()); } ++line_num; str = stringf ("%d %s %d %d %d", line_num, cell_type_translation.at(cell->type).c_str(), output_width, reg, next); fprintf(f, "%s\n", str.c_str()); line_ref[cell->name]=line_num; } //memories else if(cell->type == "$memrd") { log("writing memrd cell\n"); str = cell->parameters.at(RTLIL::IdString("\\MEMID")).decode_string(); int mem = dump_memory(module->memories.at(RTLIL::IdString(str.c_str()))); int address_width = cell->parameters.at(RTLIL::IdString("\\ABITS")).as_int(); int address = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\ADDR")), address_width); int data_width = cell->parameters.at(RTLIL::IdString("\\WIDTH")).as_int(); ++line_num; str = stringf("%d read %d %d %d", line_num, data_width, mem, address); fprintf(f, "%s\n", str.c_str()); line_ref[cell->name]=line_num; } else if(cell->type == "$memwr") { log("writing memwr cell\n"); int clk = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\CLK")), 1); bool polarity = cell->parameters.at(RTLIL::IdString("\\CLK_POLARITY")).as_bool(); int enable = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\EN")), 1); int address_width = cell->parameters.at(RTLIL::IdString("\\ABITS")).as_int(); int address = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\ADDR")), address_width); int data_width = cell->parameters.at(RTLIL::IdString("\\WIDTH")).as_int(); int data = dump_sigspec(&cell->connections.at(RTLIL::IdString("\\DATA")), data_width); str = cell->parameters.at(RTLIL::IdString("\\MEMID")).decode_string(); int mem = dump_memory(module->memories.at(RTLIL::IdString(str.c_str()))); ++line_num; if(polarity) str = stringf("%d one 1", line_num); else str = stringf("%d zero 1", line_num); fprintf(f, "%s\n", str.c_str()); ++line_num; str = stringf("%d eq 1 %d %d", line_num, clk, line_num-1); fprintf(f, "%s\n", str.c_str()); ++line_num; str = stringf("%d and 1 %d %d", line_num, line_num-1, enable); fprintf(f, "%s\n", str.c_str()); ++line_num; str = stringf("%d write %d %d %d %d %d", line_num, data_width, address_width, mem, address, data); fprintf(f, "%s\n", str.c_str()); ++line_num; str = stringf("%d acond %d %d %d %d %d", line_num, data_width, address_width, line_num-2/*enable*/, line_num-1, mem); fprintf(f, "%s\n", str.c_str()); ++line_num; str = stringf("%d anext %d %d %d %d", line_num, data_width, address_width, mem, line_num-1); fprintf(f, "%s\n", str.c_str()); line_ref[cell->name]=line_num; } curr_cell.clear(); return line_num; } else { return it->second; } } RTLIL::SigSpec* get_cell_output(RTLIL::Cell* cell) { RTLIL::SigSpec *output_sig = nullptr; if (cell->type == "$memrd") { output_sig = &cell->connections.at(RTLIL::IdString("\\DATA")); } else if(cell->type == "$memwr") { //no output } else if(cell->type == "$dff" || cell->type == "$adff" || cell->type == "$dffsr") { output_sig = &cell->connections.at(RTLIL::IdString("\\Q")); } else { output_sig = &cell->connections.at(RTLIL::IdString("\\Y")); } return output_sig; } void dump_property(RTLIL::Wire *wire) { int l = dump_wire(wire); ++line_num; str = stringf("%d root 1 %d", line_num, l); fprintf(f, "%s\n", str.c_str()); } void dump() { fprintf(f, ";module %s\n", cstr(module->name)); log("creating intermediate wires map\n"); //creating map of intermediate wires as output of some cell for (auto it = module->cells.begin(); it != module->cells.end(); ++it) { RTLIL::Cell *cell = it->second; RTLIL::SigSpec* output_sig = get_cell_output(cell); if(output_sig==nullptr) continue; RTLIL::SigSpec s = sigmap(*output_sig); output_sig = &s; log(" - %s\n", cstr(it->second->type)); if (cell->type == "$memrd") { for(unsigned i=0; ichunks.size(); ++i) { RTLIL::Wire *w = output_sig->chunks[i].wire; RTLIL::IdString wire_id = w->name; inter_wire_map[wire_id].insert(WireInfo(cell->name,&output_sig->chunks[i])); } } else if(cell->type == "$memwr") { continue;//nothing to do } else if(cell->type == "$dff" || cell->type == "$adff" || cell->type == "$dffsr") { RTLIL::IdString wire_id = output_sig->chunks[0].wire->name; inter_wire_map[wire_id].insert(WireInfo(cell->name,&output_sig->chunks[0])); basic_wires[wire_id] = true; } else { for(unsigned i=0; ichunks.size(); ++i) { RTLIL::Wire *w = output_sig->chunks[i].wire; RTLIL::IdString wire_id = w->name; inter_wire_map[wire_id].insert(WireInfo(cell->name,&output_sig->chunks[i])); } } } log("writing input\n"); std::map inputs, outputs; std::vector safety; std::regex safety_regex("(safety)(.*)"); for (auto &wire_it : module->wires) { RTLIL::Wire *wire = wire_it.second; if (wire->port_input) inputs[wire->port_id] = wire; if (wire->port_output) { outputs[wire->port_id] = wire; if (std::regex_match(cstr(wire->name), safety_regex ) ) safety.push_back(wire); } } fprintf(f, ";inputs\n"); for (auto &it : inputs) { RTLIL::Wire *wire = it.second; dump_wire(wire); } fprintf(f, "\n"); log("writing memories\n"); for(auto mem_it = module->memories.begin(); mem_it != module->memories.end(); ++mem_it) { dump_memory(mem_it->second); } log("writing output wires\n"); for (auto &it : outputs) { RTLIL::Wire *wire = it.second; dump_wire(wire); } log("writing cells\n"); for(auto cell_it = module->cells.begin(); cell_it != module->cells.end(); ++cell_it) { dump_cell(cell_it->second); } for(auto it: safety) dump_property(it); fprintf(f, "\n"); log("writing outputs info\n"); fprintf(f, ";outputs\n"); for (auto &it : outputs) { RTLIL::Wire *wire = it.second; int l = dump_wire(wire); fprintf(f, ";%d %s", l, cstr(wire->name)); } fprintf(f, "\n"); } static void dump(FILE *f, RTLIL::Module *module, RTLIL::Design *design, BtorDumperConfig &config) { BtorDumper dumper(f, module, design, &config); dumper.dump(); } }; struct BtorBackend : public Backend { BtorBackend() : Backend("btor", "write design to BTOR file") { } virtual void help() { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" write_btor [filename]\n"); log("\n"); log("Write the current design to an BTOR file.\n"); } virtual void execute(FILE *&f, std::string filename, std::vector args, RTLIL::Design *design) { std::string top_module_name; std::string buf_type, buf_in, buf_out; std::string true_type, true_out; std::string false_type, false_out; BtorDumperConfig config; log_header("Executing BTOR backend.\n"); size_t argidx=1; extra_args(f, filename, args, argidx); if (top_module_name.empty()) for (auto & mod_it:design->modules) if (mod_it.second->get_bool_attribute("\\top")) top_module_name = mod_it.first; fprintf(f, "; Generated by %s\n", yosys_version_str); std::vector mod_list; for (auto module_it : design->modules) { RTLIL::Module *module = module_it.second; if (module->get_bool_attribute("\\blackbox")) continue; if (module->processes.size() != 0) log_error("Found unmapped processes in module %s: unmapped processes are not supported in BLIF backend!\n", RTLIL::id2cstr(module->name)); if (module->name == RTLIL::escape_id(top_module_name)) { BtorDumper::dump(f, module, design, config); top_module_name.clear(); continue; } mod_list.push_back(module); } if (!top_module_name.empty()) log_error("Can't find top module `%s'!\n", top_module_name.c_str()); for (auto module : mod_list) BtorDumper::dump(f, module, design, config); } } BtorBackend;