// This is free and unencumbered software released into the public domain. // // Anyone is free to copy, modify, publish, use, compile, sell, or // distribute this software, either in source code form or as a compiled // binary, for any purpose, commercial or non-commercial, and by any // means. // ------------------------------------------------------- // Written by Claire Xenia Wolf in 2014 // ------------------------------------------------------- #ifndef HASHLIB_H #define HASHLIB_H #include #include #include #include #include namespace hashlib { const int hashtable_size_trigger = 2; const int hashtable_size_factor = 3; // The XOR version of DJB2 inline unsigned int mkhash(unsigned int a, unsigned int b) { return ((a << 5) + a) ^ b; } // traditionally 5381 is used as starting value for the djb2 hash const unsigned int mkhash_init = 5381; // The ADD version of DJB2 // (use this version for cache locality in b) inline unsigned int mkhash_add(unsigned int a, unsigned int b) { return ((a << 5) + a) + b; } inline unsigned int mkhash_xorshift(unsigned int a) { if (sizeof(a) == 4) { a ^= a << 13; a ^= a >> 17; a ^= a << 5; } else if (sizeof(a) == 8) { a ^= a << 13; a ^= a >> 7; a ^= a << 17; } else throw std::runtime_error("mkhash_xorshift() only implemented for 32 bit and 64 bit ints"); return a; } template struct hash_ops { static inline bool cmp(const T &a, const T &b) { return a == b; } static inline unsigned int hash(const T &a) { return a.hash(); } }; struct hash_int_ops { template static inline bool cmp(T a, T b) { return a == b; } }; template<> struct hash_ops : hash_int_ops { static inline unsigned int hash(bool a) { return a ? 1 : 0; } }; template<> struct hash_ops : hash_int_ops { static inline unsigned int hash(int32_t a) { return a; } }; template<> struct hash_ops : hash_int_ops { static inline unsigned int hash(int64_t a) { return mkhash((unsigned int)(a), (unsigned int)(a >> 32)); } }; template<> struct hash_ops : hash_int_ops { static inline unsigned int hash(uint32_t a) { return a; } }; template<> struct hash_ops : hash_int_ops { static inline unsigned int hash(uint64_t a) { return mkhash((unsigned int)(a), (unsigned int)(a >> 32)); } }; template<> struct hash_ops { static inline bool cmp(const std::string &a, const std::string &b) { return a == b; } static inline unsigned int hash(const std::string &a) { unsigned int v = 0; for (auto c : a) v = mkhash(v, c); return v; } }; template struct hash_ops> { static inline bool cmp(std::pair a, std::pair b) { return a == b; } static inline unsigned int hash(std::pair a) { return mkhash(hash_ops

::hash(a.first), hash_ops::hash(a.second)); } }; template struct hash_ops> { static inline bool cmp(std::tuple a, std::tuple b) { return a == b; } template static inline typename std::enable_if::type hash(std::tuple) { return mkhash_init; } template static inline typename std::enable_if::type hash(std::tuple a) { typedef hash_ops>::type> element_ops_t; return mkhash(hash(a), element_ops_t::hash(std::get(a))); } }; template struct hash_ops> { static inline bool cmp(std::vector a, std::vector b) { return a == b; } static inline unsigned int hash(std::vector a) { unsigned int h = mkhash_init; for (auto k : a) h = mkhash(h, hash_ops::hash(k)); return h; } }; struct hash_cstr_ops { static inline bool cmp(const char *a, const char *b) { for (int i = 0; a[i] || b[i]; i++) if (a[i] != b[i]) return false; return true; } static inline unsigned int hash(const char *a) { unsigned int hash = mkhash_init; while (*a) hash = mkhash(hash, *(a++)); return hash; } }; struct hash_ptr_ops { static inline bool cmp(const void *a, const void *b) { return a == b; } static inline unsigned int hash(const void *a) { return (uintptr_t)a; } }; struct hash_obj_ops { static inline bool cmp(const void *a, const void *b) { return a == b; } template static inline unsigned int hash(const T *a) { return a ? a->hash() : 0; } }; template inline unsigned int mkhash(const T &v) { return hash_ops().hash(v); } template<> struct hash_ops { static inline bool cmp(std::monostate a, std::monostate b) { return a == b; } static inline unsigned int hash(std::monostate) { return mkhash_init; } }; template struct hash_ops> { static inline bool cmp(std::variant a, std::variant b) { return a == b; } static inline unsigned int hash(std::variant a) { unsigned int h = std::visit([](const auto &v) { return mkhash(v); }, a); return mkhash(a.index(), h); } }; inline int hashtable_size(int min_size) { // Primes as generated by https://oeis.org/A175953 static std::vector zero_and_some_primes = { 0, 23, 29, 37, 47, 59, 79, 101, 127, 163, 211, 269, 337, 431, 541, 677, 853, 1069, 1361, 1709, 2137, 2677, 3347, 4201, 5261, 6577, 8231, 10289, 12889, 16127, 20161, 25219, 31531, 39419, 49277, 61603, 77017, 96281, 120371, 150473, 188107, 235159, 293957, 367453, 459317, 574157, 717697, 897133, 1121423, 1401791, 1752239, 2190299, 2737937, 3422429, 4278037, 5347553, 6684443, 8355563, 10444457, 13055587, 16319519, 20399411, 25499291, 31874149, 39842687, 49803361, 62254207, 77817767, 97272239, 121590311, 151987889, 189984863, 237481091, 296851369, 371064217, 463830313, 579787991, 724735009, 905918777, 1132398479, 1415498113, 1769372713 }; for (auto p : zero_and_some_primes) if (p >= min_size) return p; if (sizeof(int) == 4) throw std::length_error("hash table exceeded maximum size.\nDesign is likely too large for yosys to handle, if possible try not to flatten the design."); for (auto p : zero_and_some_primes) if (100129 * p > min_size) return 100129 * p; throw std::length_error("hash table exceeded maximum size."); } template> class dict; template> class idict; template> class pool; template> class mfp; template class dict { struct entry_t { std::pair udata; int next; entry_t() { } entry_t(const std::pair &udata, int next) : udata(udata), next(next) { } entry_t(std::pair &&udata, int next) : udata(std::move(udata)), next(next) { } bool operator<(const entry_t &other) const { return udata.first < other.udata.first; } }; std::vector hashtable; std::vector entries; OPS ops; #ifdef NDEBUG static inline void do_assert(bool) { } #else static inline void do_assert(bool cond) { if (!cond) throw std::runtime_error("dict<> assert failed."); } #endif int do_hash(const K &key) const { unsigned int hash = 0; if (!hashtable.empty()) hash = ops.hash(key) % (unsigned int)(hashtable.size()); return hash; } void do_rehash() { hashtable.clear(); hashtable.resize(hashtable_size(entries.capacity() * hashtable_size_factor), -1); for (int i = 0; i < int(entries.size()); i++) { do_assert(-1 <= entries[i].next && entries[i].next < int(entries.size())); int hash = do_hash(entries[i].udata.first); entries[i].next = hashtable[hash]; hashtable[hash] = i; } } int do_erase(int index, int hash) { do_assert(index < int(entries.size())); if (hashtable.empty() || index < 0) return 0; int k = hashtable[hash]; do_assert(0 <= k && k < int(entries.size())); if (k == index) { hashtable[hash] = entries[index].next; } else { while (entries[k].next != index) { k = entries[k].next; do_assert(0 <= k && k < int(entries.size())); } entries[k].next = entries[index].next; } int back_idx = entries.size()-1; if (index != back_idx) { int back_hash = do_hash(entries[back_idx].udata.first); k = hashtable[back_hash]; do_assert(0 <= k && k < int(entries.size())); if (k == back_idx) { hashtable[back_hash] = index; } else { while (entries[k].next != back_idx) { k = entries[k].next; do_assert(0 <= k && k < int(entries.size())); } entries[k].next = index; } entries[index] = std::move(entries[back_idx]); } entries.pop_back(); if (entries.empty()) hashtable.clear(); return 1; } int do_lookup(const K &key, int &hash) const { if (hashtable.empty()) return -1; if (entries.size() * hashtable_size_trigger > hashtable.size()) { ((dict*)this)->do_rehash(); hash = do_hash(key); } int index = hashtable[hash]; while (index >= 0 && !ops.cmp(entries[index].udata.first, key)) { index = entries[index].next; do_assert(-1 <= index && index < int(entries.size())); } return index; } int do_insert(const K &key, int &hash) { if (hashtable.empty()) { entries.emplace_back(std::pair(key, T()), -1); do_rehash(); hash = do_hash(key); } else { entries.emplace_back(std::pair(key, T()), hashtable[hash]); hashtable[hash] = entries.size() - 1; } return entries.size() - 1; } int do_insert(const std::pair &value, int &hash) { if (hashtable.empty()) { entries.emplace_back(value, -1); do_rehash(); hash = do_hash(value.first); } else { entries.emplace_back(value, hashtable[hash]); hashtable[hash] = entries.size() - 1; } return entries.size() - 1; } int do_insert(std::pair &&rvalue, int &hash) { if (hashtable.empty()) { auto key = rvalue.first; entries.emplace_back(std::forward>(rvalue), -1); do_rehash(); hash = do_hash(key); } else { entries.emplace_back(std::forward>(rvalue), hashtable[hash]); hashtable[hash] = entries.size() - 1; } return entries.size() - 1; } public: class const_iterator { friend class dict; protected: const dict *ptr; int index; const_iterator(const dict *ptr, int index) : ptr(ptr), index(index) { } public: typedef std::forward_iterator_tag iterator_category; typedef std::pair value_type; typedef ptrdiff_t difference_type; typedef std::pair* pointer; typedef std::pair& reference; const_iterator() { } const_iterator operator++() { index--; return *this; } const_iterator operator+=(int amt) { index -= amt; return *this; } bool operator<(const const_iterator &other) const { return index > other.index; } bool operator==(const const_iterator &other) const { return index == other.index; } bool operator!=(const const_iterator &other) const { return index != other.index; } const std::pair &operator*() const { return ptr->entries[index].udata; } const std::pair *operator->() const { return &ptr->entries[index].udata; } }; class iterator { friend class dict; protected: dict *ptr; int index; iterator(dict *ptr, int index) : ptr(ptr), index(index) { } public: typedef std::forward_iterator_tag iterator_category; typedef std::pair value_type; typedef ptrdiff_t difference_type; typedef std::pair* pointer; typedef std::pair& reference; iterator() { } iterator operator++() { index--; return *this; } iterator operator+=(int amt) { index -= amt; return *this; } bool operator<(const iterator &other) const { return index > other.index; } bool operator==(const iterator &other) const { return index == other.index; } bool operator!=(const iterator &other) const { return index != other.index; } std::pair &operator*() { return ptr->entries[index].udata; } std::pair *operator->() { return &ptr->entries[index].udata; } const std::pair &operator*() const { return ptr->entries[index].udata; } const std::pair *operator->() const { return &ptr->entries[index].udata; } operator const_iterator() const { return const_iterator(ptr, index); } }; constexpr dict() { } dict(const dict &other) { entries = other.entries; do_rehash(); } dict(dict &&other) { swap(other); } dict &operator=(const dict &other) { entries = other.entries; do_rehash(); return *this; } dict &operator=(dict &&other) { clear(); swap(other); return *this; } dict(const std::initializer_list> &list) { for (auto &it : list) insert(it); } template dict(InputIterator first, InputIterator last) { insert(first, last); } template void insert(InputIterator first, InputIterator last) { for (; first != last; ++first) insert(*first); } std::pair insert(const K &key) { int hash = do_hash(key); int i = do_lookup(key, hash); if (i >= 0) return std::pair(iterator(this, i), false); i = do_insert(key, hash); return std::pair(iterator(this, i), true); } std::pair insert(const std::pair &value) { int hash = do_hash(value.first); int i = do_lookup(value.first, hash); if (i >= 0) return std::pair(iterator(this, i), false); i = do_insert(value, hash); return std::pair(iterator(this, i), true); } std::pair insert(std::pair &&rvalue) { int hash = do_hash(rvalue.first); int i = do_lookup(rvalue.first, hash); if (i >= 0) return std::pair(iterator(this, i), false); i = do_insert(std::forward>(rvalue), hash); return std::pair(iterator(this, i), true); } std::pair emplace(K const &key, T const &value) { int hash = do_hash(key); int i = do_lookup(key, hash); if (i >= 0) return std::pair(iterator(this, i), false); i = do_insert(std::make_pair(key, value), hash); return std::pair(iterator(this, i), true); } std::pair emplace(K const &key, T &&rvalue) { int hash = do_hash(key); int i = do_lookup(key, hash); if (i >= 0) return std::pair(iterator(this, i), false); i = do_insert(std::make_pair(key, std::forward(rvalue)), hash); return std::pair(iterator(this, i), true); } std::pair emplace(K &&rkey, T const &value) { int hash = do_hash(rkey); int i = do_lookup(rkey, hash); if (i >= 0) return std::pair(iterator(this, i), false); i = do_insert(std::make_pair(std::forward(rkey), value), hash); return std::pair(iterator(this, i), true); } std::pair emplace(K &&rkey, T &&rvalue) { int hash = do_hash(rkey); int i = do_lookup(rkey, hash); if (i >= 0) return std::pair(iterator(this, i), false); i = do_insert(std::make_pair(std::forward(rkey), std::forward(rvalue)), hash); return std::pair(iterator(this, i), true); } int erase(const K &key) { int hash = do_hash(key); int index = do_lookup(key, hash); return do_erase(index, hash); } iterator erase(iterator it) { int hash = do_hash(it->first); do_erase(it.index, hash); return ++it; } int count(const K &key) const { int hash = do_hash(key); int i = do_lookup(key, hash); return i < 0 ? 0 : 1; } int count(const K &key, const_iterator it) const { int hash = do_hash(key); int i = do_lookup(key, hash); return i < 0 || i > it.index ? 0 : 1; } iterator find(const K &key) { int hash = do_hash(key); int i = do_lookup(key, hash); if (i < 0) return end(); return iterator(this, i); } const_iterator find(const K &key) const { int hash = do_hash(key); int i = do_lookup(key, hash); if (i < 0) return end(); return const_iterator(this, i); } T& at(const K &key) { int hash = do_hash(key); int i = do_lookup(key, hash); if (i < 0) throw std::out_of_range("dict::at()"); return entries[i].udata.second; } const T& at(const K &key) const { int hash = do_hash(key); int i = do_lookup(key, hash); if (i < 0) throw std::out_of_range("dict::at()"); return entries[i].udata.second; } const T& at(const K &key, const T &defval) const { int hash = do_hash(key); int i = do_lookup(key, hash); if (i < 0) return defval; return entries[i].udata.second; } T& operator[](const K &key) { int hash = do_hash(key); int i = do_lookup(key, hash); if (i < 0) i = do_insert(std::pair(key, T()), hash); return entries[i].udata.second; } template> void sort(Compare comp = Compare()) { std::sort(entries.begin(), entries.end(), [comp](const entry_t &a, const entry_t &b){ return comp(b.udata.first, a.udata.first); }); do_rehash(); } void swap(dict &other) { hashtable.swap(other.hashtable); entries.swap(other.entries); } bool operator==(const dict &other) const { if (size() != other.size()) return false; for (auto &it : entries) { auto oit = other.find(it.udata.first); if (oit == other.end() || !(oit->second == it.udata.second)) return false; } return true; } bool operator!=(const dict &other) const { return !operator==(other); } unsigned int hash() const { unsigned int h = mkhash_init; for (auto &entry : entries) { h ^= hash_ops::hash(entry.udata.first); h ^= hash_ops::hash(entry.udata.second); } return h; } void reserve(size_t n) { entries.reserve(n); } size_t size() const { return entries.size(); } bool empty() const { return entries.empty(); } void clear() { hashtable.clear(); entries.clear(); } iterator begin() { return iterator(this, int(entries.size())-1); } iterator element(int n) { return iterator(this, int(entries.size())-1-n); } iterator end() { return iterator(nullptr, -1); } const_iterator begin() const { return const_iterator(this, int(entries.size())-1); } const_iterator element(int n) const { return const_iterator(this, int(entries.size())-1-n); } const_iterator end() const { return const_iterator(nullptr, -1); } }; template class pool { template friend class idict; protected: struct entry_t { K udata; int next; entry_t() { } entry_t(const K &udata, int next) : udata(udata), next(next) { } entry_t(K &&udata, int next) : udata(std::move(udata)), next(next) { } }; std::vector hashtable; std::vector entries; OPS ops; #ifdef NDEBUG static inline void do_assert(bool) { } #else static inline void do_assert(bool cond) { if (!cond) throw std::runtime_error("pool<> assert failed."); } #endif int do_hash(const K &key) const { unsigned int hash = 0; if (!hashtable.empty()) hash = ops.hash(key) % (unsigned int)(hashtable.size()); return hash; } void do_rehash() { hashtable.clear(); hashtable.resize(hashtable_size(entries.capacity() * hashtable_size_factor), -1); for (int i = 0; i < int(entries.size()); i++) { do_assert(-1 <= entries[i].next && entries[i].next < int(entries.size())); int hash = do_hash(entries[i].udata); entries[i].next = hashtable[hash]; hashtable[hash] = i; } } int do_erase(int index, int hash) { do_assert(index < int(entries.size())); if (hashtable.empty() || index < 0) return 0; int k = hashtable[hash]; if (k == index) { hashtable[hash] = entries[index].next; } else { while (entries[k].next != index) { k = entries[k].next; do_assert(0 <= k && k < int(entries.size())); } entries[k].next = entries[index].next; } int back_idx = entries.size()-1; if (index != back_idx) { int back_hash = do_hash(entries[back_idx].udata); k = hashtable[back_hash]; if (k == back_idx) { hashtable[back_hash] = index; } else { while (entries[k].next != back_idx) { k = entries[k].next; do_assert(0 <= k && k < int(entries.size())); } entries[k].next = index; } entries[index] = std::move(entries[back_idx]); } entries.pop_back(); if (entries.empty()) hashtable.clear(); return 1; } int do_lookup(const K &key, int &hash) const { if (hashtable.empty()) return -1; if (entries.size() * hashtable_size_trigger > hashtable.size()) { ((pool*)this)->do_rehash(); hash = do_hash(key); } int index = hashtable[hash]; while (index >= 0 && !ops.cmp(entries[index].udata, key)) { index = entries[index].next; do_assert(-1 <= index && index < int(entries.size())); } return index; } int do_insert(const K &value, int &hash) { if (hashtable.empty()) { entries.emplace_back(value, -1); do_rehash(); hash = do_hash(value); } else { entries.emplace_back(value, hashtable[hash]); hashtable[hash] = entries.size() - 1; } return entries.size() - 1; } int do_insert(K &&rvalue, int &hash) { if (hashtable.empty()) { entries.emplace_back(std::forward(rvalue), -1); do_rehash(); hash = do_hash(rvalue); } else { entries.emplace_back(std::forward(rvalue), hashtable[hash]); hashtable[hash] = entries.size() - 1; } return entries.size() - 1; } public: class const_iterator { friend class pool; protected: const pool *ptr; int index; const_iterator(const pool *ptr, int index) : ptr(ptr), index(index) { } public: typedef std::forward_iterator_tag iterator_category; typedef K value_type; typedef ptrdiff_t difference_type; typedef K* pointer; typedef K& reference; const_iterator() { } const_iterator operator++() { index--; return *this; } bool operator==(const const_iterator &other) const { return index == other.index; } bool operator!=(const const_iterator &other) const { return index != other.index; } const K &operator*() const { return ptr->entries[index].udata; } const K *operator->() const { return &ptr->entries[index].udata; } }; class iterator { friend class pool; protected: pool *ptr; int index; iterator(pool *ptr, int index) : ptr(ptr), index(index) { } public: typedef std::forward_iterator_tag iterator_category; typedef K value_type; typedef ptrdiff_t difference_type; typedef K* pointer; typedef K& reference; iterator() { } iterator operator++() { index--; return *this; } bool operator==(const iterator &other) const { return index == other.index; } bool operator!=(const iterator &other) const { return index != other.index; } K &operator*() { return ptr->entries[index].udata; } K *operator->() { return &ptr->entries[index].udata; } const K &operator*() const { return ptr->entries[index].udata; } const K *operator->() const { return &ptr->entries[index].udata; } operator const_iterator() const { return const_iterator(ptr, index); } }; constexpr pool() { } pool(const pool &other) { entries = other.entries; do_rehash(); } pool(pool &&other) { swap(other); } pool &operator=(const pool &other) { entries = other.entries; do_rehash(); return *this; } pool &operator=(pool &&other) { clear(); swap(other); return *this; } pool(const std::initializer_list &list) { for (auto &it : list) insert(it); } template pool(InputIterator first, InputIterator last) { insert(first, last); } template void insert(InputIterator first, InputIterator last) { for (; first != last; ++first) insert(*first); } std::pair insert(const K &value) { int hash = do_hash(value); int i = do_lookup(value, hash); if (i >= 0) return std::pair(iterator(this, i), false); i = do_insert(value, hash); return std::pair(iterator(this, i), true); } std::pair insert(K &&rvalue) { int hash = do_hash(rvalue); int i = do_lookup(rvalue, hash); if (i >= 0) return std::pair(iterator(this, i), false); i = do_insert(std::forward(rvalue), hash); return std::pair(iterator(this, i), true); } template std::pair emplace(Args&&... args) { return insert(K(std::forward(args)...)); } int erase(const K &key) { int hash = do_hash(key); int index = do_lookup(key, hash); return do_erase(index, hash); } iterator erase(iterator it) { int hash = do_hash(*it); do_erase(it.index, hash); return ++it; } int count(const K &key) const { int hash = do_hash(key); int i = do_lookup(key, hash); return i < 0 ? 0 : 1; } int count(const K &key, const_iterator it) const { int hash = do_hash(key); int i = do_lookup(key, hash); return i < 0 || i > it.index ? 0 : 1; } iterator find(const K &key) { int hash = do_hash(key); int i = do_lookup(key, hash); if (i < 0) return end(); return iterator(this, i); } const_iterator find(const K &key) const { int hash = do_hash(key); int i = do_lookup(key, hash); if (i < 0) return end(); return const_iterator(this, i); } bool operator[](const K &key) { int hash = do_hash(key); int i = do_lookup(key, hash); return i >= 0; } template> void sort(Compare comp = Compare()) { std::sort(entries.begin(), entries.end(), [comp](const entry_t &a, const entry_t &b){ return comp(b.udata, a.udata); }); do_rehash(); } K pop() { iterator it = begin(); K ret = *it; erase(it); return ret; } void swap(pool &other) { hashtable.swap(other.hashtable); entries.swap(other.entries); } bool operator==(const pool &other) const { if (size() != other.size()) return false; for (auto &it : entries) if (!other.count(it.udata)) return false; return true; } bool operator!=(const pool &other) const { return !operator==(other); } unsigned int hash() const { unsigned int hashval = mkhash_init; for (auto &it : entries) hashval ^= ops.hash(it.udata); return hashval; } void reserve(size_t n) { entries.reserve(n); } size_t size() const { return entries.size(); } bool empty() const { return entries.empty(); } void clear() { hashtable.clear(); entries.clear(); } iterator begin() { return iterator(this, int(entries.size())-1); } iterator element(int n) { return iterator(this, int(entries.size())-1-n); } iterator end() { return iterator(nullptr, -1); } const_iterator begin() const { return const_iterator(this, int(entries.size())-1); } const_iterator element(int n) const { return const_iterator(this, int(entries.size())-1-n); } const_iterator end() const { return const_iterator(nullptr, -1); } }; template class idict { pool database; public: class const_iterator { friend class idict; protected: const idict &container; int index; const_iterator(const idict &container, int index) : container(container), index(index) { } public: typedef std::forward_iterator_tag iterator_category; typedef K value_type; typedef ptrdiff_t difference_type; typedef K* pointer; typedef K& reference; const_iterator() { } const_iterator operator++() { index++; return *this; } bool operator==(const const_iterator &other) const { return index == other.index; } bool operator!=(const const_iterator &other) const { return index != other.index; } const K &operator*() const { return container[index]; } const K *operator->() const { return &container[index]; } }; constexpr idict() { } int operator()(const K &key) { int hash = database.do_hash(key); int i = database.do_lookup(key, hash); if (i < 0) i = database.do_insert(key, hash); return i + offset; } int at(const K &key) const { int hash = database.do_hash(key); int i = database.do_lookup(key, hash); if (i < 0) throw std::out_of_range("idict::at()"); return i + offset; } int at(const K &key, int defval) const { int hash = database.do_hash(key); int i = database.do_lookup(key, hash); if (i < 0) return defval; return i + offset; } int count(const K &key) const { int hash = database.do_hash(key); int i = database.do_lookup(key, hash); return i < 0 ? 0 : 1; } void expect(const K &key, int i) { int j = (*this)(key); if (i != j) throw std::out_of_range("idict::expect()"); } const K &operator[](int index) const { return database.entries.at(index - offset).udata; } void swap(idict &other) { database.swap(other.database); } void reserve(size_t n) { database.reserve(n); } size_t size() const { return database.size(); } bool empty() const { return database.empty(); } void clear() { database.clear(); } const_iterator begin() const { return const_iterator(*this, offset); } const_iterator element(int n) const { return const_iterator(*this, n); } const_iterator end() const { return const_iterator(*this, offset + size()); } }; /** * Union-find data structure with a promotion method * mfp stands for "merge, find, promote" * i-prefixed methods operate on indices in parents */ template class mfp { mutable idict database; mutable std::vector parents; public: typedef typename idict::const_iterator const_iterator; constexpr mfp() { } // Finds a given element's index. If it isn't in the data structure, // it is added as its own set int operator()(const K &key) const { int i = database(key); // If the lookup caused the database to grow, // also add a corresponding entry in parents initialized to -1 (no parent) parents.resize(database.size(), -1); return i; } // Finds an element at given index const K &operator[](int index) const { return database[index]; } int ifind(int i) const { int p = i, k = i; while (parents[p] != -1) p = parents[p]; // p is now the representative of i // Now we traverse from i up to the representative again // and make p the parent of all the nodes along the way. // This is a side effect and doesn't affect the return value. // It speeds up future find operations while (k != p) { int next_k = parents[k]; parents[k] = p; k = next_k; } return p; } // Merge sets if the given indices belong to different sets void imerge(int i, int j) { i = ifind(i); j = ifind(j); if (i != j) parents[i] = j; } void ipromote(int i) { int k = i; while (k != -1) { int next_k = parents[k]; parents[k] = i; k = next_k; } parents[i] = -1; } int lookup(const K &a) const { return ifind((*this)(a)); } const K &find(const K &a) const { int i = database.at(a, -1); if (i < 0) return a; return (*this)[ifind(i)]; } void merge(const K &a, const K &b) { imerge((*this)(a), (*this)(b)); } void promote(const K &a) { int i = database.at(a, -1); if (i >= 0) ipromote(i); } void swap(mfp &other) { database.swap(other.database); parents.swap(other.parents); } void reserve(size_t n) { database.reserve(n); } size_t size() const { return database.size(); } bool empty() const { return database.empty(); } void clear() { database.clear(); parents.clear(); } const_iterator begin() const { return database.begin(); } const_iterator element(int n) const { return database.element(n); } const_iterator end() const { return database.end(); } }; } /* namespace hashlib */ #endif