/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #ifndef SATGEN_H #define SATGEN_H #include "kernel/rtlil.h" #include "kernel/sigtools.h" #include "kernel/celltypes.h" #ifdef YOSYS_ENABLE_MINISAT # include "libs/ezsat/ezminisat.h" typedef ezMiniSAT ezDefaultSAT; #else # include "libs/ezsat/ezsat.h" typedef ezSAT ezDefaultSAT; #endif struct SatGen { ezSAT *ez; SigMap *sigmap; std::string prefix; SigPool initial_state; std::map asserts_a, asserts_en; bool ignore_div_by_zero; bool model_undef; SatGen(ezSAT *ez, SigMap *sigmap, std::string prefix = std::string()) : ez(ez), sigmap(sigmap), prefix(prefix), ignore_div_by_zero(false), model_undef(false) { } void setContext(SigMap *sigmap, std::string prefix = std::string()) { this->sigmap = sigmap; this->prefix = prefix; } std::vector importSigSpecWorker(RTLIL::SigSpec &sig, std::string &pf, bool undef_mode, bool dup_undef) { log_assert(!undef_mode || model_undef); sigmap->apply(sig); sig.expand(); std::vector vec; vec.reserve(sig.chunks.size()); for (auto &c : sig.chunks) if (c.wire == NULL) { RTLIL::State bit = c.data.bits.at(0); if (model_undef && dup_undef && bit == RTLIL::State::Sx) vec.push_back(ez->literal()); else vec.push_back(bit == (undef_mode ? RTLIL::State::Sx : RTLIL::State::S1) ? ez->TRUE : ez->FALSE); } else { std::string name = pf + stringf(c.wire->width == 1 ? "%s" : "%s [%d]", RTLIL::id2cstr(c.wire->name), c.offset); vec.push_back(ez->literal(name)); ez->freeze(vec.back()); } return vec; } std::vector importSigSpec(RTLIL::SigSpec sig, int timestep = -1) { log_assert(timestep != 0); std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); return importSigSpecWorker(sig, pf, false, false); } std::vector importDefSigSpec(RTLIL::SigSpec sig, int timestep = -1) { log_assert(timestep != 0); std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); return importSigSpecWorker(sig, pf, false, true); } std::vector importUndefSigSpec(RTLIL::SigSpec sig, int timestep = -1) { log_assert(timestep != 0); std::string pf = "undef:" + prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); return importSigSpecWorker(sig, pf, true, false); } void getAsserts(RTLIL::SigSpec &sig_a, RTLIL::SigSpec &sig_en, int timestep = -1) { std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); sig_a = asserts_a[pf]; sig_en = asserts_en[pf]; } int importAsserts(int timestep = -1) { std::vector check_bits, enable_bits; std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); if (model_undef) { check_bits = ez->vec_and(ez->vec_not(importUndefSigSpec(asserts_a[pf], timestep)), importDefSigSpec(asserts_a[pf], timestep)); enable_bits = ez->vec_and(ez->vec_not(importUndefSigSpec(asserts_en[pf], timestep)), importDefSigSpec(asserts_en[pf], timestep)); } else { check_bits = importDefSigSpec(asserts_a[pf], timestep); enable_bits = importDefSigSpec(asserts_en[pf], timestep); } return ez->vec_reduce_and(ez->vec_or(check_bits, ez->vec_not(enable_bits))); } int signals_eq(RTLIL::SigSpec lhs, RTLIL::SigSpec rhs, int timestep_lhs = -1, int timestep_rhs = -1) { if (timestep_rhs < 0) timestep_rhs = timestep_lhs; assert(lhs.width == rhs.width); std::vector vec_lhs = importSigSpec(lhs, timestep_lhs); std::vector vec_rhs = importSigSpec(rhs, timestep_rhs); if (!model_undef) return ez->vec_eq(vec_lhs, vec_rhs); std::vector undef_lhs = importUndefSigSpec(lhs, timestep_lhs); std::vector undef_rhs = importUndefSigSpec(rhs, timestep_rhs); std::vector eq_bits; for (int i = 0; i < lhs.width; i++) eq_bits.push_back(ez->AND(ez->IFF(undef_lhs.at(i), undef_rhs.at(i)), ez->IFF(ez->OR(vec_lhs.at(i), undef_lhs.at(i)), ez->OR(vec_rhs.at(i), undef_rhs.at(i))))); return ez->expression(ezSAT::OpAnd, eq_bits); } void extendSignalWidth(std::vector &vec_a, std::vector &vec_b, RTLIL::Cell *cell, size_t y_width = 0, bool forced_signed = false) { bool is_signed = forced_signed; if (!forced_signed && cell->parameters.count("\\A_SIGNED") > 0 && cell->parameters.count("\\B_SIGNED") > 0) is_signed = cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool(); while (vec_a.size() < vec_b.size() || vec_a.size() < y_width) vec_a.push_back(is_signed && vec_a.size() > 0 ? vec_a.back() : ez->FALSE); while (vec_b.size() < vec_a.size() || vec_b.size() < y_width) vec_b.push_back(is_signed && vec_b.size() > 0 ? vec_b.back() : ez->FALSE); } void extendSignalWidth(std::vector &vec_a, std::vector &vec_b, std::vector &vec_y, RTLIL::Cell *cell, bool forced_signed = false) { extendSignalWidth(vec_a, vec_b, cell, vec_y.size(), forced_signed); while (vec_y.size() < vec_a.size()) vec_y.push_back(ez->literal()); } void extendSignalWidthUnary(std::vector &vec_a, std::vector &vec_y, RTLIL::Cell *cell, bool forced_signed = false) { bool is_signed = forced_signed || (cell->parameters.count("\\A_SIGNED") > 0 && cell->parameters["\\A_SIGNED"].as_bool()); while (vec_a.size() < vec_y.size()) vec_a.push_back(is_signed && vec_a.size() > 0 ? vec_a.back() : ez->FALSE); while (vec_y.size() < vec_a.size()) vec_y.push_back(ez->literal()); } void undefGating(std::vector &vec_y, std::vector &vec_yy, std::vector &vec_undef) { assert(model_undef); ez->assume(ez->expression(ezSAT::OpAnd, ez->vec_or(vec_undef, ez->vec_iff(vec_y, vec_yy)))); } bool importCell(RTLIL::Cell *cell, int timestep = -1) { bool arith_undef_handled = false; bool is_arith_compare = cell->type == "$lt" || cell->type == "$le" || cell->type == "$ge" || cell->type == "$gt"; if (model_undef && (cell->type == "$add" || cell->type == "$sub" || cell->type == "$mul" || cell->type == "$div" || cell->type == "$mod" || is_arith_compare)) { std::vector undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep); std::vector undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep); std::vector undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep); if (is_arith_compare) extendSignalWidth(undef_a, undef_b, cell, true); else extendSignalWidth(undef_a, undef_b, undef_y, cell, true); int undef_any_a = ez->expression(ezSAT::OpOr, undef_a); int undef_any_b = ez->expression(ezSAT::OpOr, undef_b); int undef_y_bit = ez->OR(undef_any_a, undef_any_b); if (cell->type == "$div" || cell->type == "$mod") { std::vector b = importSigSpec(cell->connections.at("\\B"), timestep); undef_y_bit = ez->OR(undef_y_bit, ez->NOT(ez->expression(ezSAT::OpOr, b))); } if (is_arith_compare) { for (size_t i = 1; i < undef_y.size(); i++) ez->SET(ez->FALSE, undef_y.at(i)); ez->SET(undef_y_bit, undef_y.at(0)); } else { std::vector undef_y_bits(undef_y.size(), undef_y_bit); ez->assume(ez->vec_eq(undef_y_bits, undef_y)); } arith_undef_handled = true; } if (cell->type == "$_AND_" || cell->type == "$_OR_" || cell->type == "$_XOR_" || cell->type == "$and" || cell->type == "$or" || cell->type == "$xor" || cell->type == "$xnor" || cell->type == "$add" || cell->type == "$sub") { std::vector a = importDefSigSpec(cell->connections.at("\\A"), timestep); std::vector b = importDefSigSpec(cell->connections.at("\\B"), timestep); std::vector y = importDefSigSpec(cell->connections.at("\\Y"), timestep); extendSignalWidth(a, b, y, cell); std::vector yy = model_undef ? ez->vec_var(y.size()) : y; if (cell->type == "$and" || cell->type == "$_AND_") ez->assume(ez->vec_eq(ez->vec_and(a, b), yy)); if (cell->type == "$or" || cell->type == "$_OR_") ez->assume(ez->vec_eq(ez->vec_or(a, b), yy)); if (cell->type == "$xor" || cell->type == "$_XOR_") ez->assume(ez->vec_eq(ez->vec_xor(a, b), yy)); if (cell->type == "$xnor") ez->assume(ez->vec_eq(ez->vec_not(ez->vec_xor(a, b)), yy)); if (cell->type == "$add") ez->assume(ez->vec_eq(ez->vec_add(a, b), yy)); if (cell->type == "$sub") ez->assume(ez->vec_eq(ez->vec_sub(a, b), yy)); if (model_undef && !arith_undef_handled) { std::vector undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep); std::vector undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep); std::vector undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep); extendSignalWidth(undef_a, undef_b, undef_y, cell, false); if (cell->type == "$and" || cell->type == "$_AND_") { std::vector a0 = ez->vec_and(ez->vec_not(a), ez->vec_not(undef_a)); std::vector b0 = ez->vec_and(ez->vec_not(b), ez->vec_not(undef_b)); std::vector yX = ez->vec_and(ez->vec_or(undef_a, undef_b), ez->vec_not(ez->vec_or(a0, b0))); ez->assume(ez->vec_eq(yX, undef_y)); } else if (cell->type == "$or" || cell->type == "$_OR_") { std::vector a1 = ez->vec_and(a, ez->vec_not(undef_a)); std::vector b1 = ez->vec_and(b, ez->vec_not(undef_b)); std::vector yX = ez->vec_and(ez->vec_or(undef_a, undef_b), ez->vec_not(ez->vec_or(a1, b1))); ez->assume(ez->vec_eq(yX, undef_y)); } else if (cell->type == "$xor" || cell->type == "$_XOR_" || cell->type == "$xnor") { std::vector yX = ez->vec_or(undef_a, undef_b); ez->assume(ez->vec_eq(yX, undef_y)); } else log_abort(); undefGating(y, yy, undef_y); } else if (model_undef) { std::vector undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep); undefGating(y, yy, undef_y); } return true; } if (cell->type == "$_INV_" || cell->type == "$not") { std::vector a = importDefSigSpec(cell->connections.at("\\A"), timestep); std::vector y = importDefSigSpec(cell->connections.at("\\Y"), timestep); extendSignalWidthUnary(a, y, cell); std::vector yy = model_undef ? ez->vec_var(y.size()) : y; ez->assume(ez->vec_eq(ez->vec_not(a), yy)); if (model_undef) { std::vector undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep); std::vector undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep); extendSignalWidthUnary(undef_a, undef_y, cell, true); ez->assume(ez->vec_eq(undef_a, undef_y)); undefGating(y, yy, undef_y); } return true; } if (cell->type == "$_MUX_" || cell->type == "$mux") { std::vector a = importDefSigSpec(cell->connections.at("\\A"), timestep); std::vector b = importDefSigSpec(cell->connections.at("\\B"), timestep); std::vector s = importDefSigSpec(cell->connections.at("\\S"), timestep); std::vector y = importDefSigSpec(cell->connections.at("\\Y"), timestep); std::vector yy = model_undef ? ez->vec_var(y.size()) : y; ez->assume(ez->vec_eq(ez->vec_ite(s.at(0), b, a), yy)); if (model_undef) { std::vector undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep); std::vector undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep); std::vector undef_s = importUndefSigSpec(cell->connections.at("\\S"), timestep); std::vector undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep); std::vector unequal_ab = ez->vec_not(ez->vec_iff(a, b)); std::vector undef_ab = ez->vec_or(unequal_ab, ez->vec_or(undef_a, undef_b)); std::vector yX = ez->vec_ite(undef_s.at(0), undef_ab, ez->vec_ite(s.at(0), undef_b, undef_a)); ez->assume(ez->vec_eq(yX, undef_y)); undefGating(y, yy, undef_y); } return true; } if (cell->type == "$pmux" || cell->type == "$safe_pmux") { std::vector a = importDefSigSpec(cell->connections.at("\\A"), timestep); std::vector b = importDefSigSpec(cell->connections.at("\\B"), timestep); std::vector s = importDefSigSpec(cell->connections.at("\\S"), timestep); std::vector y = importDefSigSpec(cell->connections.at("\\Y"), timestep); std::vector yy = model_undef ? ez->vec_var(y.size()) : y; std::vector tmp = a; for (size_t i = 0; i < s.size(); i++) { std::vector part_of_b(b.begin()+i*a.size(), b.begin()+(i+1)*a.size()); tmp = ez->vec_ite(s.at(i), part_of_b, tmp); } if (cell->type == "$safe_pmux") tmp = ez->vec_ite(ez->onehot(s, true), tmp, a); ez->assume(ez->vec_eq(tmp, yy)); if (model_undef) { std::vector undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep); std::vector undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep); std::vector undef_s = importUndefSigSpec(cell->connections.at("\\S"), timestep); std::vector undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep); int maybe_one_hot = ez->FALSE; int maybe_many_hot = ez->FALSE; int sure_one_hot = ez->FALSE; int sure_many_hot = ez->FALSE; std::vector bits_set = std::vector(undef_y.size(), ez->FALSE); std::vector bits_clr = std::vector(undef_y.size(), ez->FALSE); for (size_t i = 0; i < s.size(); i++) { std::vector part_of_b(b.begin()+i*a.size(), b.begin()+(i+1)*a.size()); std::vector part_of_undef_b(undef_b.begin()+i*a.size(), undef_b.begin()+(i+1)*a.size()); int maybe_s = ez->OR(s.at(i), undef_s.at(i)); int sure_s = ez->AND(s.at(i), ez->NOT(undef_s.at(i))); maybe_one_hot = ez->OR(maybe_one_hot, maybe_s); maybe_many_hot = ez->OR(maybe_many_hot, ez->AND(maybe_one_hot, maybe_s)); sure_one_hot = ez->OR(sure_one_hot, sure_s); sure_many_hot = ez->OR(sure_many_hot, ez->AND(sure_one_hot, sure_s)); bits_set = ez->vec_ite(maybe_s, ez->vec_or(bits_set, ez->vec_or(bits_set, ez->vec_or(part_of_b, part_of_undef_b))), bits_set); bits_clr = ez->vec_ite(maybe_s, ez->vec_or(bits_clr, ez->vec_or(bits_clr, ez->vec_or(ez->vec_not(part_of_b), part_of_undef_b))), bits_clr); } int maybe_a = ez->NOT(maybe_one_hot); if (cell->type == "$safe_pmux") { maybe_a = ez->OR(maybe_a, maybe_many_hot); bits_set = ez->vec_ite(sure_many_hot, ez->vec_or(a, undef_a), bits_set); bits_clr = ez->vec_ite(sure_many_hot, ez->vec_or(ez->vec_not(a), undef_a), bits_clr); } bits_set = ez->vec_ite(maybe_a, ez->vec_or(bits_set, ez->vec_or(bits_set, ez->vec_or(a, undef_a))), bits_set); bits_clr = ez->vec_ite(maybe_a, ez->vec_or(bits_clr, ez->vec_or(bits_clr, ez->vec_or(ez->vec_not(a), undef_a))), bits_clr); ez->assume(ez->vec_eq(ez->vec_not(ez->vec_xor(bits_set, bits_clr)), undef_y)); undefGating(y, yy, undef_y); } return true; } if (cell->type == "$pos" || cell->type == "$bu0" || cell->type == "$neg") { std::vector a = importDefSigSpec(cell->connections.at("\\A"), timestep); std::vector y = importDefSigSpec(cell->connections.at("\\Y"), timestep); extendSignalWidthUnary(a, y, cell); std::vector yy = model_undef ? ez->vec_var(y.size()) : y; if (cell->type == "$pos" || cell->type == "$bu0") { ez->assume(ez->vec_eq(a, yy)); } else { std::vector zero(a.size(), ez->FALSE); ez->assume(ez->vec_eq(ez->vec_sub(zero, a), yy)); } if (model_undef) { std::vector undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep); std::vector undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep); extendSignalWidthUnary(undef_a, undef_y, cell, cell->type != "$bu0"); if (cell->type == "$pos" || cell->type == "$bu0") { ez->assume(ez->vec_eq(undef_a, undef_y)); } else { int undef_any_a = ez->expression(ezSAT::OpOr, undef_a); std::vector undef_y_bits(undef_y.size(), undef_any_a); ez->assume(ez->vec_eq(undef_y_bits, undef_y)); } undefGating(y, yy, undef_y); } return true; } if (cell->type == "$reduce_and" || cell->type == "$reduce_or" || cell->type == "$reduce_xor" || cell->type == "$reduce_xnor" || cell->type == "$reduce_bool" || cell->type == "$logic_not") { std::vector a = importDefSigSpec(cell->connections.at("\\A"), timestep); std::vector y = importDefSigSpec(cell->connections.at("\\Y"), timestep); std::vector yy = model_undef ? ez->vec_var(y.size()) : y; if (cell->type == "$reduce_and") ez->SET(ez->expression(ez->OpAnd, a), yy.at(0)); if (cell->type == "$reduce_or" || cell->type == "$reduce_bool") ez->SET(ez->expression(ez->OpOr, a), yy.at(0)); if (cell->type == "$reduce_xor") ez->SET(ez->expression(ez->OpXor, a), yy.at(0)); if (cell->type == "$reduce_xnor") ez->SET(ez->NOT(ez->expression(ez->OpXor, a)), yy.at(0)); if (cell->type == "$logic_not") ez->SET(ez->NOT(ez->expression(ez->OpOr, a)), yy.at(0)); for (size_t i = 1; i < y.size(); i++) ez->SET(ez->FALSE, yy.at(i)); if (model_undef) { std::vector undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep); std::vector undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep); int aX = ez->expression(ezSAT::OpOr, undef_a); if (cell->type == "$reduce_and") { int a0 = ez->expression(ezSAT::OpOr, ez->vec_and(ez->vec_not(a), ez->vec_not(undef_a))); ez->assume(ez->IFF(ez->AND(ez->NOT(a0), aX), undef_y.at(0))); } else if (cell->type == "$reduce_or" || cell->type == "$reduce_bool" || cell->type == "$logic_not") { int a1 = ez->expression(ezSAT::OpOr, ez->vec_and(a, ez->vec_not(undef_a))); ez->assume(ez->IFF(ez->AND(ez->NOT(a1), aX), undef_y.at(0))); } else if (cell->type == "$reduce_xor" || cell->type == "$reduce_xnor") { ez->assume(ez->IFF(aX, undef_y.at(0))); } else log_abort(); for (size_t i = 1; i < undef_y.size(); i++) ez->SET(ez->FALSE, undef_y.at(i)); undefGating(y, yy, undef_y); } return true; } if (cell->type == "$logic_and" || cell->type == "$logic_or") { std::vector vec_a = importDefSigSpec(cell->connections.at("\\A"), timestep); std::vector vec_b = importDefSigSpec(cell->connections.at("\\B"), timestep); int a = ez->expression(ez->OpOr, vec_a); int b = ez->expression(ez->OpOr, vec_b); std::vector y = importDefSigSpec(cell->connections.at("\\Y"), timestep); std::vector yy = model_undef ? ez->vec_var(y.size()) : y; if (cell->type == "$logic_and") ez->SET(ez->expression(ez->OpAnd, a, b), yy.at(0)); else ez->SET(ez->expression(ez->OpOr, a, b), yy.at(0)); for (size_t i = 1; i < y.size(); i++) ez->SET(ez->FALSE, yy.at(i)); if (model_undef) { std::vector undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep); std::vector undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep); std::vector undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep); int a0 = ez->NOT(ez->OR(ez->expression(ezSAT::OpOr, vec_a), ez->expression(ezSAT::OpOr, undef_a))); int b0 = ez->NOT(ez->OR(ez->expression(ezSAT::OpOr, vec_b), ez->expression(ezSAT::OpOr, undef_b))); int a1 = ez->expression(ezSAT::OpOr, ez->vec_and(vec_a, ez->vec_not(undef_a))); int b1 = ez->expression(ezSAT::OpOr, ez->vec_and(vec_b, ez->vec_not(undef_b))); int aX = ez->expression(ezSAT::OpOr, undef_a); int bX = ez->expression(ezSAT::OpOr, undef_b); if (cell->type == "$logic_and") ez->SET(ez->AND(ez->OR(aX, bX), ez->NOT(ez->AND(a1, b1)), ez->NOT(a0), ez->NOT(b0)), undef_y.at(0)); else if (cell->type == "$logic_or") ez->SET(ez->AND(ez->OR(aX, bX), ez->NOT(ez->AND(a0, b0)), ez->NOT(a1), ez->NOT(b1)), undef_y.at(0)); else log_abort(); for (size_t i = 1; i < undef_y.size(); i++) ez->SET(ez->FALSE, undef_y.at(i)); undefGating(y, yy, undef_y); } return true; } if (cell->type == "$lt" || cell->type == "$le" || cell->type == "$eq" || cell->type == "$ne" || cell->type == "$eqx" || cell->type == "$nex" || cell->type == "$ge" || cell->type == "$gt") { bool is_signed = cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool(); std::vector a = importDefSigSpec(cell->connections.at("\\A"), timestep); std::vector b = importDefSigSpec(cell->connections.at("\\B"), timestep); std::vector y = importDefSigSpec(cell->connections.at("\\Y"), timestep); extendSignalWidth(a, b, cell); std::vector yy = model_undef ? ez->vec_var(y.size()) : y; if (model_undef && (cell->type == "$eqx" || cell->type == "$nex")) { std::vector undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep); std::vector undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep); extendSignalWidth(undef_a, undef_b, cell, true); a = ez->vec_or(a, undef_a); b = ez->vec_or(b, undef_b); } if (cell->type == "$lt") ez->SET(is_signed ? ez->vec_lt_signed(a, b) : ez->vec_lt_unsigned(a, b), yy.at(0)); if (cell->type == "$le") ez->SET(is_signed ? ez->vec_le_signed(a, b) : ez->vec_le_unsigned(a, b), yy.at(0)); if (cell->type == "$eq" || cell->type == "$eqx") ez->SET(ez->vec_eq(a, b), yy.at(0)); if (cell->type == "$ne" || cell->type == "$nex") ez->SET(ez->vec_ne(a, b), yy.at(0)); if (cell->type == "$ge") ez->SET(is_signed ? ez->vec_ge_signed(a, b) : ez->vec_ge_unsigned(a, b), yy.at(0)); if (cell->type == "$gt") ez->SET(is_signed ? ez->vec_gt_signed(a, b) : ez->vec_gt_unsigned(a, b), yy.at(0)); for (size_t i = 1; i < y.size(); i++) ez->SET(ez->FALSE, yy.at(i)); if (model_undef && (cell->type == "$eqx" || cell->type == "$nex")) { std::vector undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep); std::vector undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep); std::vector undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep); extendSignalWidth(undef_a, undef_b, cell, true); if (cell->type == "$eqx") yy.at(0) = ez->AND(yy.at(0), ez->vec_eq(undef_a, undef_b)); else yy.at(0) = ez->OR(yy.at(0), ez->vec_ne(undef_a, undef_b)); for (size_t i = 0; i < y.size(); i++) ez->SET(ez->FALSE, undef_y.at(i)); ez->assume(ez->vec_eq(y, yy)); } else if (model_undef && (cell->type == "$eq" || cell->type == "$ne")) { std::vector undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep); std::vector undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep); std::vector undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep); extendSignalWidth(undef_a, undef_b, cell, true); int undef_any_a = ez->expression(ezSAT::OpOr, undef_a); int undef_any_b = ez->expression(ezSAT::OpOr, undef_b); int undef_any = ez->OR(undef_any_a, undef_any_b); std::vector masked_a_bits = ez->vec_or(a, ez->vec_or(undef_a, undef_b)); std::vector masked_b_bits = ez->vec_or(b, ez->vec_or(undef_a, undef_b)); int masked_ne = ez->vec_ne(masked_a_bits, masked_b_bits); int undef_y_bit = ez->AND(undef_any, ez->NOT(masked_ne)); for (size_t i = 1; i < undef_y.size(); i++) ez->SET(ez->FALSE, undef_y.at(i)); ez->SET(undef_y_bit, undef_y.at(0)); undefGating(y, yy, undef_y); } else { if (model_undef) { std::vector undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep); undefGating(y, yy, undef_y); } log_assert(!model_undef || arith_undef_handled); } return true; } if (cell->type == "$shl" || cell->type == "$shr" || cell->type == "$sshl" || cell->type == "$sshr") { std::vector a = importDefSigSpec(cell->connections.at("\\A"), timestep); std::vector b = importDefSigSpec(cell->connections.at("\\B"), timestep); std::vector y = importDefSigSpec(cell->connections.at("\\Y"), timestep); char shift_left = cell->type == "$shl" || cell->type == "$sshl"; bool sign_extend = cell->type == "$sshr" && cell->parameters["\\A_SIGNED"].as_bool(); while (y.size() < a.size()) y.push_back(ez->literal()); while (y.size() > a.size()) a.push_back(cell->parameters["\\A_SIGNED"].as_bool() ? a.back() : ez->FALSE); std::vector yy = model_undef ? ez->vec_var(y.size()) : y; std::vector tmp = a; for (size_t i = 0; i < b.size(); i++) { std::vector tmp_shifted(tmp.size()); for (size_t j = 0; j < tmp.size(); j++) { int idx = j + (1 << (i > 30 ? 30 : i)) * (shift_left ? -1 : +1); tmp_shifted.at(j) = (0 <= idx && idx < int(tmp.size())) ? tmp.at(idx) : sign_extend ? tmp.back() : ez->FALSE; } tmp = ez->vec_ite(b.at(i), tmp_shifted, tmp); } ez->assume(ez->vec_eq(tmp, yy)); if (model_undef) { std::vector undef_a = importUndefSigSpec(cell->connections.at("\\A"), timestep); std::vector undef_b = importUndefSigSpec(cell->connections.at("\\B"), timestep); std::vector undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep); while (undef_y.size() < undef_a.size()) undef_y.push_back(ez->literal()); while (undef_y.size() > undef_a.size()) undef_a.push_back(cell->parameters["\\A_SIGNED"].as_bool() ? undef_a.back() : ez->FALSE); tmp = undef_a; for (size_t i = 0; i < b.size(); i++) { std::vector tmp_shifted(tmp.size()); for (size_t j = 0; j < tmp.size(); j++) { int idx = j + (1 << (i > 30 ? 30 : i)) * (shift_left ? -1 : +1); tmp_shifted.at(j) = (0 <= idx && idx < int(tmp.size())) ? tmp.at(idx) : sign_extend ? tmp.back() : ez->FALSE; } tmp = ez->vec_ite(b.at(i), tmp_shifted, tmp); } int undef_any_b = ez->expression(ezSAT::OpOr, undef_b); std::vector undef_all_y_bits(undef_y.size(), undef_any_b); ez->assume(ez->vec_eq(ez->vec_or(tmp, undef_all_y_bits), undef_y)); undefGating(y, yy, undef_y); } return true; } if (cell->type == "$mul") { std::vector a = importDefSigSpec(cell->connections.at("\\A"), timestep); std::vector b = importDefSigSpec(cell->connections.at("\\B"), timestep); std::vector y = importDefSigSpec(cell->connections.at("\\Y"), timestep); extendSignalWidth(a, b, y, cell); std::vector yy = model_undef ? ez->vec_var(y.size()) : y; std::vector tmp(a.size(), ez->FALSE); for (int i = 0; i < int(a.size()); i++) { std::vector shifted_a(a.size(), ez->FALSE); for (int j = i; j < int(a.size()); j++) shifted_a.at(j) = a.at(j-i); tmp = ez->vec_ite(b.at(i), ez->vec_add(tmp, shifted_a), tmp); } ez->assume(ez->vec_eq(tmp, yy)); if (model_undef) { log_assert(arith_undef_handled); std::vector undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep); undefGating(y, yy, undef_y); } return true; } if (cell->type == "$div" || cell->type == "$mod") { std::vector a = importDefSigSpec(cell->connections.at("\\A"), timestep); std::vector b = importDefSigSpec(cell->connections.at("\\B"), timestep); std::vector y = importDefSigSpec(cell->connections.at("\\Y"), timestep); extendSignalWidth(a, b, y, cell); std::vector yy = model_undef ? ez->vec_var(y.size()) : y; std::vector a_u, b_u; if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool()) { a_u = ez->vec_ite(a.back(), ez->vec_neg(a), a); b_u = ez->vec_ite(b.back(), ez->vec_neg(b), b); } else { a_u = a; b_u = b; } std::vector chain_buf = a_u; std::vector y_u(a_u.size(), ez->FALSE); for (int i = int(a.size())-1; i >= 0; i--) { chain_buf.insert(chain_buf.end(), chain_buf.size(), ez->FALSE); std::vector b_shl(i, ez->FALSE); b_shl.insert(b_shl.end(), b_u.begin(), b_u.end()); b_shl.insert(b_shl.end(), chain_buf.size()-b_shl.size(), ez->FALSE); y_u.at(i) = ez->vec_ge_unsigned(chain_buf, b_shl); chain_buf = ez->vec_ite(y_u.at(i), ez->vec_sub(chain_buf, b_shl), chain_buf); chain_buf.erase(chain_buf.begin() + a_u.size(), chain_buf.end()); } std::vector y_tmp = ignore_div_by_zero ? yy : ez->vec_var(y.size()); if (cell->type == "$div") { if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool()) ez->assume(ez->vec_eq(y_tmp, ez->vec_ite(ez->XOR(a.back(), b.back()), ez->vec_neg(y_u), y_u))); else ez->assume(ez->vec_eq(y_tmp, y_u)); } else { if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool()) ez->assume(ez->vec_eq(y_tmp, ez->vec_ite(a.back(), ez->vec_neg(chain_buf), chain_buf))); else ez->assume(ez->vec_eq(y_tmp, chain_buf)); } if (ignore_div_by_zero) { ez->assume(ez->expression(ezSAT::OpOr, b)); } else { std::vector div_zero_result; if (cell->type == "$div") { if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool()) { std::vector all_ones(y.size(), ez->TRUE); std::vector only_first_one(y.size(), ez->FALSE); only_first_one.at(0) = ez->TRUE; div_zero_result = ez->vec_ite(a.back(), only_first_one, all_ones); } else { div_zero_result.insert(div_zero_result.end(), cell->connections.at("\\A").width, ez->TRUE); div_zero_result.insert(div_zero_result.end(), y.size() - div_zero_result.size(), ez->FALSE); } } else { int copy_a_bits = std::min(cell->connections.at("\\A").width, cell->connections.at("\\B").width); div_zero_result.insert(div_zero_result.end(), a.begin(), a.begin() + copy_a_bits); if (cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool()) div_zero_result.insert(div_zero_result.end(), y.size() - div_zero_result.size(), div_zero_result.back()); else div_zero_result.insert(div_zero_result.end(), y.size() - div_zero_result.size(), ez->FALSE); } ez->assume(ez->vec_eq(yy, ez->vec_ite(ez->expression(ezSAT::OpOr, b), y_tmp, div_zero_result))); } if (model_undef) { log_assert(arith_undef_handled); std::vector undef_y = importUndefSigSpec(cell->connections.at("\\Y"), timestep); undefGating(y, yy, undef_y); } return true; } if (cell->type == "$slice") { RTLIL::SigSpec a = cell->connections.at("\\A"); RTLIL::SigSpec y = cell->connections.at("\\Y"); ez->assume(signals_eq(a.extract(cell->parameters.at("\\OFFSET").as_int(), y.width), y, timestep)); return true; } if (cell->type == "$concat") { RTLIL::SigSpec a = cell->connections.at("\\A"); RTLIL::SigSpec b = cell->connections.at("\\B"); RTLIL::SigSpec y = cell->connections.at("\\Y"); RTLIL::SigSpec ab = a; ab.append(b); ez->assume(signals_eq(ab, y, timestep)); return true; } if (timestep > 0 && (cell->type == "$dff" || cell->type == "$_DFF_N_" || cell->type == "$_DFF_P_")) { if (timestep == 1) { initial_state.add((*sigmap)(cell->connections.at("\\Q"))); } else { std::vector d = importDefSigSpec(cell->connections.at("\\D"), timestep-1); std::vector q = importDefSigSpec(cell->connections.at("\\Q"), timestep); std::vector qq = model_undef ? ez->vec_var(q.size()) : q; ez->assume(ez->vec_eq(d, qq)); if (model_undef) { std::vector undef_d = importUndefSigSpec(cell->connections.at("\\D"), timestep-1); std::vector undef_q = importUndefSigSpec(cell->connections.at("\\Q"), timestep); ez->assume(ez->vec_eq(undef_d, undef_q)); undefGating(q, qq, undef_q); } } return true; } if (cell->type == "$assert") { std::string pf = prefix + (timestep == -1 ? "" : stringf("@%d:", timestep)); asserts_a[pf].append((*sigmap)(cell->connections.at("\\A"))); asserts_en[pf].append((*sigmap)(cell->connections.at("\\EN"))); return true; } // Unsupported internal cell types: $pow $lut // .. and all sequential cells except $dff and $_DFF_[NP]_ return false; } }; #endif