module memtest00(clk, setA, setB, y);

input clk, setA, setB;
output y;
reg mem [1:0];

always @(posedge clk) begin
	if (setA) mem[0] <= 0;  // this is line 9
	if (setB) mem[0] <= 1;  // this is line 10
end

assign y = mem[0];

endmodule

// ----------------------------------------------------------

module memtest01(clk, wr_en, wr_addr, wr_value, rd_addr, rd_value);

input clk, wr_en;
input [3:0] wr_addr, rd_addr;
input [7:0] wr_value;
output reg [7:0] rd_value;

reg [7:0] data [15:0];

always @(posedge clk)
	if (wr_en)
		data[wr_addr] <= wr_value;

always @(posedge clk)
	rd_value <= data[rd_addr];

endmodule

// ----------------------------------------------------------

module memtest02(clk, setA, setB, addr, bit, y1, y2, y3, y4);

input clk, setA, setB;
input [1:0] addr;
input [2:0] bit;
output reg y1, y2;
output y3, y4;

(* nomem2reg *)
reg [7:0] mem1 [3:0];

(* mem2reg *)
reg [7:0] mem2 [3:0];

always @(posedge clk) begin
	if (setA) begin
		mem1[0] <= 10;
		mem1[1] <= 20;
		mem1[2] <= 30;
		mem2[0] <= 17;
		mem2[1] <= 27;
		mem2[2] <= 37;
	end
	if (setB) begin
		mem1[0] <=  1;
		mem1[1] <=  2;
		mem1[2] <=  3;
		mem2[0] <= 71;
		mem2[1] <= 72;
		mem2[2] <= 73;
	end
	y1 <= mem1[addr][bit];
	y2 <= mem2[addr][bit];
end

assign y3 = mem1[addr][bit];
assign y4 = mem2[addr][bit];

endmodule

// ----------------------------------------------------------

module memtest03(clk, wr_addr, wr_data, wr_enable, rd_addr, rd_data);

input clk, wr_enable;
input [3:0] wr_addr, wr_data, rd_addr;
output reg [3:0] rd_data;

reg [3:0] memory [0:15];

always @(posedge clk) begin
	if (wr_enable)
		memory[wr_addr] <= wr_data;
	rd_data <= memory[rd_addr];
end

endmodule

// ----------------------------------------------------------

module memtest04(clk, wr_addr, wr_data, wr_enable, rd_addr, rd_data);

input clk, wr_enable;
input [3:0] wr_addr, wr_data, rd_addr;
output [3:0] rd_data;

reg rd_addr_buf;
reg [3:0] memory [0:15];

always @(posedge clk) begin
	if (wr_enable)
		memory[wr_addr] <= wr_data;
	rd_addr_buf <= rd_addr;
end

assign rd_data = memory[rd_addr_buf];

endmodule

// ----------------------------------------------------------

module memtest05(clk, addr, wdata, rdata, wen);

input clk;
input [1:0] addr;
input [7:0] wdata;
output reg [7:0] rdata;
input [3:0] wen;

reg [7:0] mem [0:3];

integer i;
always @(posedge clk) begin
	for (i = 0; i < 4; i = i+1)
		if (wen[i]) mem[addr][i*2 +: 2] <= wdata[i*2 +: 2];
	rdata <= mem[addr];
end

endmodule

// ----------------------------------------------------------

module memtest06_sync(clk, rst, idx, din, dout);
    input clk;
    input rst;
    (* gentb_constant=0 *) wire rst;
    input [2:0] idx;
    input [7:0] din;
    output [7:0] dout;
    reg [7:0] test [0:7];
    integer i;
    always @(posedge clk) begin
        if (rst) begin
            for (i=0; i<8; i=i+1)
                test[i] <= 0;
        end else begin
            test[0][2] <= din[1];
            test[0][5] <= test[0][2];
            test[idx][3] <= din[idx];
            test[idx][6] <= test[idx][2];
            test[idx][idx] <= !test[idx][idx];
        end
    end
    assign dout = test[idx];
endmodule

module memtest06_async(clk, rst, idx, din, dout);
    input clk;
    input rst;
    (* gentb_constant=0 *) wire rst;
    input [2:0] idx;
    input [7:0] din;
    output [7:0] dout;
    reg [7:0] test [0:7];
    integer i;
    always @(posedge clk or posedge rst) begin
        if (rst) begin
            for (i=0; i<8; i=i+1)
                test[i] <= 0;
        end else begin
            test[0][2] <= din[1];
            test[0][5] <= test[0][2];
            test[idx][3] <= din[idx];
            test[idx][6] <= test[idx][2];
            test[idx][idx] <= !test[idx][idx];
        end
    end
    assign dout = test[idx];
endmodule

// ----------------------------------------------------------

module memtest07(clk, addr, woffset, wdata, rdata);

input clk;
input [1:0] addr;
input [3:0] wdata;
input [1:0] woffset;
output reg [7:0] rdata;

reg [7:0] mem [0:3];

integer i;
always @(posedge clk) begin
	mem[addr][woffset +: 4] <= wdata;
	rdata <= mem[addr];
end

endmodule

// ----------------------------------------------------------

module memtest08(input clk, input [3:0] a, b, c, output reg [3:0] y);
	reg [3:0] mem [0:15] [0:15];
	always @(posedge clk) begin
		y <= mem[a][b];
		mem[a][b] <= c;
	end
endmodule

// ----------------------------------------------------------

module memtest09 (
    input clk,
    input [3:0] a_addr, a_din, b_addr, b_din,
    input a_wen, b_wen,
    output reg [3:0] a_dout, b_dout
);
    reg [3:0] memory [10:35];

    always @(posedge clk) begin
        if (a_wen)
            memory[10 + a_addr] <= a_din;
        a_dout <= memory[10 + a_addr];
    end

    always @(posedge clk) begin
        if (b_wen && (10 + a_addr != 20 + b_addr || !a_wen))
            memory[20 + b_addr] <= b_din;
        b_dout <= memory[20 + b_addr];
    end
endmodule

// ----------------------------------------------------------

module memtest10(input clk, input [5:0] din, output [5:0] dout);
        reg [5:0] queue [0:3];
        integer i;

        always @(posedge clk) begin
                queue[0] <= din;
                for (i = 1; i < 4; i=i+1) begin
                        queue[i] <= queue[i-1];
                end
        end

	assign dout = queue[3];
endmodule

// ----------------------------------------------------------

module memtest11(clk, wen, waddr, raddr, wdata, rdata);
	input clk, wen;
	input [1:0] waddr, raddr;
	input [7:0] wdata;
	output [7:0] rdata;

	reg [7:0] mem [3:0];

	assign rdata = mem[raddr];

	always @(posedge clk) begin
		if (wen)
			mem[waddr] <= wdata;
		else
			mem[waddr] <= mem[waddr];
	end
endmodule

// ----------------------------------------------------------

module memtest12 (
   input clk,
   input [1:0] adr,
   input [1:0] din,
   output reg [1:0] q
);
   reg [1:0] ram [3:0];
   always@(posedge clk)
     {ram[adr], q} <= {din, ram[adr]};
endmodule

// ----------------------------------------------------------

module memtest13 (
	input clk, rst,
	input [1:0] a1, a2, a3, a4, a5, a6,
	input [3:0] off1, off2,
	input [31:5] din1,
	input [3:0] din2, din3,
	output reg [3:0] dout1, dout2,
	output reg [31:5] dout3
);
	reg [31:5] mem [0:3];

	always @(posedge clk) begin
		if (rst) begin
			mem[0] <= 0;
			mem[1] <= 0;
			mem[2] <= 0;
			mem[3] <= 0;
		end else begin
			mem[a1] <= din1;
			mem[a2][14:11] <= din2;
			mem[a3][5 + off1 +: 4] <= din3;
			dout1 <= mem[a4][12:9];
			dout2 <= mem[a5][5 + off2 +: 4];
			dout3 <= mem[a6];
		end
	end
endmodule