/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2017 Robert Ou * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/yosys.h" #include "kernel/sigtools.h" #include USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN struct ExtractReducePass : public Pass { enum GateType { And, Or, Xor }; ExtractReducePass() : Pass("extract_reduce", "converts gate chains into $reduce_* cells") { } virtual void help() { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" extract_reduce [options] [selection]\n"); log("\n"); log("converts gate chains into $reduce_* cells\n"); log("\n"); log("This command finds chains of $_AND_, $_OR_, and $_XOR_ cells and replaces them\n"); log("with their corresponding $reduce_* cells. Because this command only operates on\n"); log("these cell types, it is recommended to map the design to only these cell types\n"); log("using the `abc -g` command. Note that, in some cases, it may be more effective\n"); log("to map the design to only $_AND_ cells, run extract_reduce, map the remaining\n"); log("parts of the design to AND/OR/XOR cells, and run extract_reduce a second time.\n"); log("\n"); log(" -allow-off-chain\n"); log(" Allows matching of cells that have loads outside the chain. These cells\n"); log(" will be replicated and folded into the $reduce_* cell, but the original\n"); log(" cell will remain, driving its original loads.\n"); log("\n"); } inline bool IsRightType(Cell* cell, GateType gt) { return (cell->type == "$_AND_" && gt == GateType::And) || (cell->type == "$_OR_" && gt == GateType::Or) || (cell->type == "$_XOR_" && gt == GateType::Xor); } virtual void execute(std::vector args, RTLIL::Design *design) { log_header(design, "Executing EXTRACT_REDUCE pass.\n"); log_push(); size_t argidx; bool allow_off_chain = false; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-allow-off-chain") { allow_off_chain = true; continue; } break; } extra_args(args, argidx, design); for (auto module : design->selected_modules()) { SigMap sigmap(module); // Index all of the nets in the module dict sig_to_driver; dict> sig_to_sink; for (auto cell : module->selected_cells()) { for (auto &conn : cell->connections()) { if (cell->output(conn.first)) for (auto bit : sigmap(conn.second)) sig_to_driver[bit] = cell; if (cell->input(conn.first)) { for (auto bit : sigmap(conn.second)) { if (sig_to_sink.count(bit) == 0) sig_to_sink[bit] = pool(); sig_to_sink[bit].insert(cell); } } } } // Need to check if any wires connect to module ports pool port_sigs; for (auto wire : module->selected_wires()) if (wire->port_input || wire->port_output) for (auto bit : sigmap(wire)) port_sigs.insert(bit); // Actual logic starts here pool consumed_cells; for (auto cell : module->selected_cells()) { if (consumed_cells.count(cell)) continue; GateType gt; if (cell->type == "$_AND_") gt = GateType::And; else if (cell->type == "$_OR_") gt = GateType::Or; else if (cell->type == "$_XOR_") gt = GateType::Xor; else continue; log("Working on cell %s...\n", cell->name.c_str()); // If looking for a single chain, follow linearly to the sink pool sinks; if(!allow_off_chain) { Cell* head_cell = cell; Cell* x = cell; while (true) { if(!IsRightType(x, gt)) break; head_cell = x; auto y = sigmap(x->getPort("\\Y")); log_assert(y.size() == 1); // Should only continue if there is one fanout back into a cell (not to a port) if (sig_to_sink[y[0]].size() != 1) break; x = *sig_to_sink[y[0]].begin(); } sinks.insert(head_cell); } //If off-chain loads are allowed, we have to do a wider traversal to see what the longest chain is else { //BFS, following all chains until they hit a cell of a different type //Pick the longest one auto y = sigmap(cell->getPort("\\Y")); pool current_loads = sig_to_sink[y]; pool next_loads; while(!current_loads.empty()) { //Find each sink and see what they are for(auto x : current_loads) { //Not one of our gates? Don't follow any further //(but add the originating cell to the list of sinks) if(!IsRightType(x, gt)) { sinks.insert(cell); continue; } //If this signal drives a port, add it to the sinks //(even though it may not be the end of a chain) if(port_sigs.count(x) && !consumed_cells.count(x)) sinks.insert(x); //It's a match, search everything out from it auto& next = sig_to_sink[x]; for(auto z : next) next_loads.insert(z); } //If we couldn't find any downstream loads, stop. //Create a reduction for each of the max-length chains we found if(next_loads.empty()) { for(auto s : current_loads) { //Not one of our gates? Don't follow any further if(!IsRightType(s, gt)) continue; sinks.insert(s); } break; } //Otherwise, continue down the chain current_loads = next_loads; next_loads.clear(); } } //We have our list, go act on it for(auto head_cell : sinks) { log(" Head cell is %s\n", head_cell->name.c_str()); //Avoid duplication if we already were covered if(consumed_cells.count(head_cell)) continue; pool cur_supercell; std::deque bfs_queue = {head_cell}; while (bfs_queue.size()) { Cell* x = bfs_queue.front(); bfs_queue.pop_front(); cur_supercell.insert(x); auto a = sigmap(x->getPort("\\A")); log_assert(a.size() == 1); // Must have only one sink unless we're going off chain // XXX: Check that it is indeed this node? if( allow_off_chain || (sig_to_sink[a[0]].size() + port_sigs.count(a[0]) == 1) ) { Cell* cell_a = sig_to_driver[a[0]]; if(cell_a && IsRightType(cell_a, gt)) { // The cell here is the correct type, and it's definitely driving // this current cell. bfs_queue.push_back(cell_a); } } auto b = sigmap(x->getPort("\\B")); log_assert(b.size() == 1); // Must have only one sink // XXX: Check that it is indeed this node? if( allow_off_chain || (sig_to_sink[b[0]].size() + port_sigs.count(b[0]) == 1) ) { Cell* cell_b = sig_to_driver[b[0]]; if(cell_b && IsRightType(cell_b, gt)) { // The cell here is the correct type, and it's definitely driving only // this current cell. bfs_queue.push_back(cell_b); } } } log(" Cells:\n"); for (auto x : cur_supercell) log(" %s\n", x->name.c_str()); if (cur_supercell.size() > 1) { // Worth it to create reduce cell log(" Creating $reduce_* cell!\n"); pool input_pool; pool input_pool_intermed; for (auto x : cur_supercell) { input_pool.insert(sigmap(x->getPort("\\A"))[0]); input_pool.insert(sigmap(x->getPort("\\B"))[0]); input_pool_intermed.insert(sigmap(x->getPort("\\Y"))[0]); } SigSpec input; for (auto b : input_pool) if (input_pool_intermed.count(b) == 0) input.append_bit(b); SigBit output = sigmap(head_cell->getPort("\\Y")[0]); auto new_reduce_cell = module->addCell(NEW_ID, gt == GateType::And ? "$reduce_and" : gt == GateType::Or ? "$reduce_or" : gt == GateType::Xor ? "$reduce_xor" : ""); new_reduce_cell->setParam("\\A_SIGNED", 0); new_reduce_cell->setParam("\\A_WIDTH", input.size()); new_reduce_cell->setParam("\\Y_WIDTH", 1); new_reduce_cell->setPort("\\A", input); new_reduce_cell->setPort("\\Y", output); if(allow_off_chain) consumed_cells.insert(head_cell); else { for (auto x : cur_supercell) consumed_cells.insert(x); } } } } // Remove all of the head cells, since we supplant them. // Do not remove the upstream cells since some might still be in use ("clean" will get rid of unused ones) for (auto cell : consumed_cells) module->remove(cell); } log_pop(); } } ExtractReducePass; PRIVATE_NAMESPACE_END