/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Claire Xenia Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * --- * * This is the AST frontend library. * * The AST frontend library is not a frontend on it's own but provides a * generic abstract syntax tree (AST) abstraction for HDL code and can be * used by HDL frontends. See "ast.h" for an overview of the API and the * Verilog frontend for an usage example. * */ #include "kernel/log.h" #include "libs/sha1/sha1.h" #include "frontends/verilog/verilog_frontend.h" #include "ast.h" #include #include #include #include // For std::gcd in C++17 // #include YOSYS_NAMESPACE_BEGIN using namespace AST; using namespace AST_INTERNAL; // gcd computed by Euclidian division. // To be replaced by C++17 std::gcd template I gcd(I a, I b) { while (b != 0) { I tmp = b; b = a%b; a = tmp; } return std::abs(a); } void AstNode::set_in_lvalue_flag(bool flag, bool no_descend) { if (flag != in_lvalue_from_above) { in_lvalue_from_above = flag; if (!no_descend) fixup_hierarchy_flags(); } } void AstNode::set_in_param_flag(bool flag, bool no_descend) { if (flag != in_param_from_above) { in_param_from_above = flag; if (!no_descend) fixup_hierarchy_flags(); } } void AstNode::fixup_hierarchy_flags(bool force_descend) { // With forced descend, we disable the implicit // descend from within the set_* functions, instead // we do an explicit descend at the end of this function in_param = in_param_from_above; switch (type) { case AST_PARAMETER: case AST_LOCALPARAM: case AST_DEFPARAM: case AST_PARASET: case AST_PREFIX: in_param = true; for (auto child : children) child->set_in_param_flag(true, force_descend); break; case AST_REPLICATE: case AST_WIRE: case AST_GENIF: case AST_GENCASE: for (auto child : children) child->set_in_param_flag(in_param, force_descend); if (children.size() >= 1) children[0]->set_in_param_flag(true, force_descend); break; case AST_GENFOR: case AST_FOR: for (auto child : children) child->set_in_param_flag(in_param, force_descend); if (children.size() >= 2) children[1]->set_in_param_flag(true, force_descend); break; default: in_param = in_param_from_above; for (auto child : children) child->set_in_param_flag(in_param, force_descend); } for (auto attr : attributes) attr.second->set_in_param_flag(true, force_descend); in_lvalue = in_lvalue_from_above; switch (type) { case AST_ASSIGN: case AST_ASSIGN_EQ: case AST_ASSIGN_LE: if (children.size() >= 1) children[0]->set_in_lvalue_flag(true, force_descend); if (children.size() >= 2) children[1]->set_in_lvalue_flag(in_lvalue, force_descend); break; default: for (auto child : children) child->set_in_lvalue_flag(in_lvalue, force_descend); } if (force_descend) { for (auto child : children) child->fixup_hierarchy_flags(true); for (auto attr : attributes) attr.second->fixup_hierarchy_flags(true); } } // Process a format string and arguments for $display, $write, $sprintf, etc Fmt AstNode::processFormat(int stage, bool sformat_like, int default_base, size_t first_arg_at, bool may_fail) { std::vector args; for (size_t index = first_arg_at; index < children.size(); index++) { AstNode *node_arg = children[index]; while (node_arg->simplify(true, stage, -1, false)) { } VerilogFmtArg arg = {}; arg.filename = filename; arg.first_line = location.first_line; if (node_arg->type == AST_CONSTANT && node_arg->is_string) { arg.type = VerilogFmtArg::STRING; arg.str = node_arg->bitsAsConst().decode_string(); // and in case this will be used as an argument... arg.sig = node_arg->bitsAsConst(); arg.signed_ = false; } else if (node_arg->type == AST_IDENTIFIER && node_arg->str == "$time") { arg.type = VerilogFmtArg::TIME; } else if (node_arg->type == AST_IDENTIFIER && node_arg->str == "$realtime") { arg.type = VerilogFmtArg::TIME; arg.realtime = true; } else if (node_arg->type == AST_CONSTANT) { arg.type = VerilogFmtArg::INTEGER; arg.sig = node_arg->bitsAsConst(); arg.signed_ = node_arg->is_signed; } else if (may_fail) { log_file_info(filename, location.first_line, "Skipping system task `%s' with non-constant argument at position %zu.\n", str.c_str(), index + 1); return Fmt(); } else { log_file_error(filename, location.first_line, "Failed to evaluate system task `%s' with non-constant argument at position %zu.\n", str.c_str(), index + 1); } args.push_back(arg); } Fmt fmt; fmt.parse_verilog(args, sformat_like, default_base, /*task_name=*/str, current_module->name); return fmt; } void AstNode::annotateTypedEnums(AstNode *template_node) { //check if enum if (template_node->attributes.count(ID::enum_type)) { //get reference to enum node: std::string enum_type = template_node->attributes[ID::enum_type]->str.c_str(); // log("enum_type=%s (count=%lu)\n", enum_type.c_str(), current_scope.count(enum_type)); // log("current scope:\n"); // for (auto &it : current_scope) // log(" %s\n", it.first.c_str()); log_assert(current_scope.count(enum_type) == 1); AstNode *enum_node = current_scope.at(enum_type); log_assert(enum_node->type == AST_ENUM); while (enum_node->simplify(true, 1, -1, false)) { } //get width from 1st enum item: log_assert(enum_node->children.size() >= 1); AstNode *enum_item0 = enum_node->children[0]; log_assert(enum_item0->type == AST_ENUM_ITEM); int width; if (!enum_item0->range_valid) width = 1; else if (enum_item0->range_swapped) width = enum_item0->range_right - enum_item0->range_left + 1; else width = enum_item0->range_left - enum_item0->range_right + 1; log_assert(width > 0); //add declared enum items: for (auto enum_item : enum_node->children){ log_assert(enum_item->type == AST_ENUM_ITEM); //get is_signed bool is_signed; if (enum_item->children.size() == 1){ is_signed = false; } else if (enum_item->children.size() == 2){ log_assert(enum_item->children[1]->type == AST_RANGE); is_signed = enum_item->children[1]->is_signed; } else { log_error("enum_item children size==%zu, expected 1 or 2 for %s (%s)\n", (size_t) enum_item->children.size(), enum_item->str.c_str(), enum_node->str.c_str() ); } //start building attribute string std::string enum_item_str = "\\enum_value_"; //get enum item value if(enum_item->children[0]->type != AST_CONSTANT){ log_error("expected const, got %s for %s (%s)\n", type2str(enum_item->children[0]->type).c_str(), enum_item->str.c_str(), enum_node->str.c_str() ); } RTLIL::Const val = enum_item->children[0]->bitsAsConst(width, is_signed); enum_item_str.append(val.as_string()); //set attribute for available val to enum item name mappings set_attribute(enum_item_str.c_str(), mkconst_str(enum_item->str)); } } } static AstNode *make_range(int left, int right, bool is_signed = false) { // generate a pre-validated range node for a fixed signal range. auto range = new AstNode(AST_RANGE); range->range_left = left; range->range_right = right; range->range_valid = true; range->children.push_back(AstNode::mkconst_int(left, true)); range->children.push_back(AstNode::mkconst_int(right, true)); range->is_signed = is_signed; return range; } static int range_width(AstNode *node, AstNode *rnode) { log_assert(rnode->type==AST_RANGE); if (!rnode->range_valid) { node->input_error("Non-constant range in declaration of %s\n", node->str.c_str()); } // note: range swapping has already been checked for return rnode->range_left - rnode->range_right + 1; } static int add_dimension(AstNode *node, AstNode *rnode) { int width = range_width(node, rnode); node->dimensions.push_back({ rnode->range_right, width, rnode->range_swapped }); return width; } [[noreturn]] static void struct_array_packing_error(AstNode *node) { node->input_error("Unpacked array in packed struct/union member %s\n", node->str.c_str()); } static int size_packed_struct(AstNode *snode, int base_offset) { // Struct members will be laid out in the structure contiguously from left to right. // Union members all have zero offset from the start of the union. // Determine total packed size and assign offsets. Store these in the member node. bool is_union = (snode->type == AST_UNION); int offset = 0; int packed_width = -1; // examine members from last to first for (auto it = snode->children.rbegin(); it != snode->children.rend(); ++it) { auto node = *it; int width; if (node->type == AST_STRUCT || node->type == AST_UNION) { // embedded struct or union width = size_packed_struct(node, base_offset + offset); } else { log_assert(node->type == AST_STRUCT_ITEM); if (node->children.size() > 0 && node->children[0]->type == AST_RANGE) { // member width e.g. bit [7:0] a width = range_width(node, node->children[0]); if (node->children.size() == 2) { // Unpacked array. Note that this is a Yosys extension; only packed data types // and integer data types are allowed in packed structs / unions in SystemVerilog. if (node->children[1]->type == AST_RANGE) { // Unpacked array, e.g. bit [63:0] a [0:3] // Pretend it's declared as a packed array, e.g. bit [0:3][63:0] a auto rnode = node->children[1]; if (rnode->children.size() == 1) { // C-style array size, e.g. bit [63:0] a [4] node->dimensions.push_back({ 0, rnode->range_left, true }); width *= rnode->range_left; } else { width *= add_dimension(node, rnode); } add_dimension(node, node->children[0]); } else { // The Yosys extension for unpacked arrays in packed structs / unions // only supports memories, i.e. e.g. logic [7:0] a [256] - see above. struct_array_packing_error(node); } } else { // Vector add_dimension(node, node->children[0]); } // range nodes are now redundant for (AstNode *child : node->children) delete child; node->children.clear(); } else if (node->children.size() > 0 && node->children[0]->type == AST_MULTIRANGE) { // Packed array, e.g. bit [3:0][63:0] a if (node->children.size() != 1) { // The Yosys extension for unpacked arrays in packed structs / unions // only supports memories, i.e. e.g. logic [7:0] a [256] - see above. struct_array_packing_error(node); } width = 1; for (auto rnode : node->children[0]->children) { width *= add_dimension(node, rnode); } // range nodes are now redundant for (AstNode *child : node->children) delete child; node->children.clear(); } else if (node->range_left < 0) { // 1 bit signal: bit, logic or reg width = 1; node->dimensions.push_back({ 0, width, false }); } else { // already resolved and compacted width = node->range_left - node->range_right + 1; } if (is_union) { node->range_right = base_offset; node->range_left = base_offset + width - 1; } else { node->range_right = base_offset + offset; node->range_left = base_offset + offset + width - 1; } node->range_valid = true; } if (is_union) { // check that all members have the same size if (packed_width == -1) { // first member packed_width = width; } else { if (packed_width != width) node->input_error("member %s of a packed union has %d bits, expecting %d\n", node->str.c_str(), width, packed_width); } } else { offset += width; } } int width = is_union ? packed_width : offset; snode->range_right = base_offset; snode->range_left = base_offset + width - 1; snode->range_valid = true; snode->dimensions.push_back({ 0, width, false }); return width; } static AstNode *node_int(int ival) { return AstNode::mkconst_int(ival, true); } static AstNode *multiply_by_const(AstNode *expr_node, int stride) { return new AstNode(AST_MUL, expr_node, node_int(stride)); } static AstNode *normalize_index(AstNode *expr, AstNode *decl_node, int dimension) { expr = expr->clone(); int offset = decl_node->dimensions[dimension].range_right; if (offset) { expr = new AstNode(AST_SUB, expr, node_int(offset)); } // Packed dimensions are normally indexed by lsb, while unpacked dimensions are normally indexed by msb. if ((dimension < decl_node->unpacked_dimensions) ^ decl_node->dimensions[dimension].range_swapped) { // Swap the index if the dimension is declared the "wrong" way. int left = decl_node->dimensions[dimension].range_width - 1; expr = new AstNode(AST_SUB, node_int(left), expr); } return expr; } static AstNode *index_offset(AstNode *offset, AstNode *rnode, AstNode *decl_node, int dimension, int &stride) { stride /= decl_node->dimensions[dimension].range_width; auto right = normalize_index(rnode->children.back(), decl_node, dimension); auto add_offset = stride > 1 ? multiply_by_const(right, stride) : right; return offset ? new AstNode(AST_ADD, offset, add_offset) : add_offset; } static AstNode *index_msb_offset(AstNode *lsb_offset, AstNode *rnode, AstNode *decl_node, int dimension, int stride) { log_assert(rnode->children.size() <= 2); // Offset to add to LSB AstNode *add_offset; if (rnode->children.size() == 1) { // Index, e.g. s.a[i] add_offset = node_int(stride - 1); } else { // rnode->children.size() == 2 // Slice, e.g. s.a[i:j] auto left = normalize_index(rnode->children[0], decl_node, dimension); auto right = normalize_index(rnode->children[1], decl_node, dimension); add_offset = new AstNode(AST_SUB, left, right); if (stride > 1) { // offset = (msb - lsb + 1)*stride - 1 auto slice_width = new AstNode(AST_ADD, add_offset, node_int(1)); add_offset = new AstNode(AST_SUB, multiply_by_const(slice_width, stride), node_int(1)); } } return new AstNode(AST_ADD, lsb_offset, add_offset); } AstNode *AstNode::make_index_range(AstNode *decl_node, bool unpacked_range) { // Work out the range in the packed array that corresponds to a struct member // taking into account any range operations applicable to the current node // such as array indexing or slicing if (children.empty()) { // no range operations apply, return the whole width return make_range(decl_node->range_left - decl_node->range_right, 0); } log_assert(children.size() == 1); // Range operations AstNode *rnode = children[0]; AstNode *offset = NULL; int dim = unpacked_range ? 0 : decl_node->unpacked_dimensions; int max_dim = unpacked_range ? decl_node->unpacked_dimensions : GetSize(decl_node->dimensions); int stride = 1; for (int i = dim; i < max_dim; i++) { stride *= decl_node->dimensions[i].range_width; } // Calculate LSB offset for the final index / slice if (rnode->type == AST_RANGE) { offset = index_offset(offset, rnode, decl_node, dim, stride); } else if (rnode->type == AST_MULTIRANGE) { // Add offset for each dimension AstNode *mrnode = rnode; int stop_dim = std::min(GetSize(mrnode->children), max_dim); for (; dim < stop_dim; dim++) { rnode = mrnode->children[dim]; offset = index_offset(offset, rnode, decl_node, dim, stride); } dim--; // Step back to the final index / slice } else { input_error("Unsupported range operation for %s\n", str.c_str()); } AstNode *index_range = new AstNode(AST_RANGE); if (!unpacked_range && (stride > 1 || GetSize(rnode->children) == 2)) { // Calculate MSB offset for the final index / slice of packed dimensions. AstNode *msb_offset = index_msb_offset(offset->clone(), rnode, decl_node, dim, stride); index_range->children.push_back(msb_offset); } index_range->children.push_back(offset); return index_range; } AstNode *AstNode::get_struct_member() const { AstNode *member_node; if (attributes.count(ID::wiretype) && (member_node = attributes.at(ID::wiretype)) && (member_node->type == AST_STRUCT_ITEM || member_node->type == AST_STRUCT || member_node->type == AST_UNION)) { return member_node; } return nullptr; } static void add_members_to_scope(AstNode *snode, std::string name) { // add all the members in a struct or union to local scope // in case later referenced in assignments log_assert(snode->type==AST_STRUCT || snode->type==AST_UNION); for (auto *node : snode->children) { auto member_name = name + "." + node->str; current_scope[member_name] = node; if (node->type != AST_STRUCT_ITEM) { // embedded struct or union add_members_to_scope(node, name + "." + node->str); } } } static AstNode *make_packed_struct(AstNode *template_node, std::string &name, decltype(AstNode::attributes) &attributes) { // create a wire for the packed struct auto wnode = new AstNode(AST_WIRE, make_range(template_node->range_left, 0)); wnode->str = name; wnode->is_logic = true; wnode->range_valid = true; wnode->is_signed = template_node->is_signed; for (auto &pair : attributes) { wnode->set_attribute(pair.first, pair.second->clone()); } // resolve packed dimension while (wnode->simplify(true, 1, -1, false)) {} // make sure this node is the one in scope for this name current_scope[name] = wnode; // add all the struct members to scope under the wire's name add_members_to_scope(template_node, name); return wnode; } static void prepend_ranges(AstNode *&range, AstNode *range_add) { // Convert range to multirange. if (range->type == AST_RANGE) range = new AstNode(AST_MULTIRANGE, range); // Add range or ranges. if (range_add->type == AST_RANGE) range->children.insert(range->children.begin(), range_add->clone()); else { int i = 0; for (auto child : range_add->children) range->children.insert(range->children.begin() + i++, child->clone()); } } // check if a node or its children contains an assignment to the given variable static bool node_contains_assignment_to(const AstNode* node, const AstNode* var) { if (node->type == AST_ASSIGN_EQ || node->type == AST_ASSIGN_LE) { // current node is iteslf an assignment log_assert(node->children.size() >= 2); const AstNode* lhs = node->children[0]; if (lhs->type == AST_IDENTIFIER && lhs->str == var->str) return false; } for (const AstNode* child : node->children) { // if this child shadows the given variable if (child != var && child->str == var->str && child->type == AST_WIRE) break; // skip the remainder of this block/scope // depth-first short circuit if (!node_contains_assignment_to(child, var)) return false; } return true; } static std::string prefix_id(const std::string &prefix, const std::string &str) { log_assert(!prefix.empty() && (prefix.front() == '$' || prefix.front() == '\\')); log_assert(!str.empty() && (str.front() == '$' || str.front() == '\\')); log_assert(prefix.back() == '.'); if (str.front() == '\\') return prefix + str.substr(1); return prefix + str; } // direct access to this global should be limited to the following two functions static const RTLIL::Design *simplify_design_context = nullptr; void AST::set_simplify_design_context(const RTLIL::Design *design) { log_assert(!simplify_design_context || !design); simplify_design_context = design; } // lookup the module with the given name in the current design context static const RTLIL::Module* lookup_module(const std::string &name) { return simplify_design_context->module(name); } const RTLIL::Module* AstNode::lookup_cell_module() { log_assert(type == AST_CELL); auto reprocess_after = [this] (const std::string &modname) { if (!attributes.count(ID::reprocess_after)) set_attribute(ID::reprocess_after, AstNode::mkconst_str(modname)); }; const AstNode *celltype = nullptr; for (const AstNode *child : children) if (child->type == AST_CELLTYPE) { celltype = child; break; } log_assert(celltype != nullptr); const RTLIL::Module *module = lookup_module(celltype->str); if (!module) module = lookup_module("$abstract" + celltype->str); if (!module) { if (celltype->str.at(0) != '$') reprocess_after(celltype->str); return nullptr; } // build a mapping from true param name to param value size_t para_counter = 0; dict cell_params_map; for (AstNode *child : children) { if (child->type != AST_PARASET) continue; if (child->str.empty() && para_counter >= module->avail_parameters.size()) return nullptr; // let hierarchy handle this error IdString paraname = child->str.empty() ? module->avail_parameters[para_counter++] : child->str; const AstNode *value = child->children[0]; if (value->type != AST_REALVALUE && value->type != AST_CONSTANT) return nullptr; // let genrtlil handle this error cell_params_map[paraname] = value->asParaConst(); } // put the parameters in order and generate the derived module name std::vector> named_parameters; for (RTLIL::IdString param : module->avail_parameters) { auto it = cell_params_map.find(param); if (it != cell_params_map.end()) named_parameters.emplace_back(it->first, it->second); } std::string modname = celltype->str; if (cell_params_map.size()) // not named_parameters to cover hierarchical defparams modname = derived_module_name(celltype->str, named_parameters); // try to find the resolved module module = lookup_module(modname); if (!module) { reprocess_after(modname); return nullptr; } return module; } // returns whether an expression contains an unbased unsized literal; does not // check the literal exists in a self-determined context static bool contains_unbased_unsized(const AstNode *node) { if (node->type == AST_CONSTANT) return node->is_unsized; for (const AstNode *child : node->children) if (contains_unbased_unsized(child)) return true; return false; } // adds a wire to the current module with the given name that matches the // dimensions of the given wire reference void add_wire_for_ref(const RTLIL::Wire *ref, const std::string &str) { AstNode *left = AstNode::mkconst_int(ref->width - 1 + ref->start_offset, true); AstNode *right = AstNode::mkconst_int(ref->start_offset, true); if (ref->upto) std::swap(left, right); AstNode *range = new AstNode(AST_RANGE, left, right); AstNode *wire = new AstNode(AST_WIRE, range); wire->is_signed = ref->is_signed; wire->is_logic = true; wire->str = str; current_ast_mod->children.push_back(wire); current_scope[str] = wire; } enum class IdentUsage { NotReferenced, // target variable is neither read or written in the block Assigned, // target variable is always assigned before use SyncRequired, // target variable may be used before it has been assigned }; // determines whether a local variable a block is always assigned before it is // used, meaning the nosync attribute can automatically be added to that // variable static IdentUsage always_asgn_before_use(const AstNode *node, const std::string &target) { // This variable has been referenced before it has necessarily been assigned // a value in this procedure. if (node->type == AST_IDENTIFIER && node->str == target) return IdentUsage::SyncRequired; // For case statements (which are also used for if/else), we check each // possible branch. If the variable is assigned in all branches, then it is // assigned, and a sync isn't required. If it used before assignment in any // branch, then a sync is required. if (node->type == AST_CASE) { bool all_defined = true; bool any_used = false; bool has_default = false; for (const AstNode *child : node->children) { if (child->type == AST_COND && child->children.at(0)->type == AST_DEFAULT) has_default = true; IdentUsage nested = always_asgn_before_use(child, target); if (nested != IdentUsage::Assigned && child->type == AST_COND) all_defined = false; if (nested == IdentUsage::SyncRequired) any_used = true; } if (any_used) return IdentUsage::SyncRequired; else if (all_defined && has_default) return IdentUsage::Assigned; else return IdentUsage::NotReferenced; } // Check if this is an assignment to the target variable. For simplicity, we // don't analyze sub-ranges of the variable. if (node->type == AST_ASSIGN_EQ) { const AstNode *ident = node->children.at(0); if (ident->type == AST_IDENTIFIER && ident->str == target) return IdentUsage::Assigned; } for (const AstNode *child : node->children) { IdentUsage nested = always_asgn_before_use(child, target); if (nested != IdentUsage::NotReferenced) return nested; } return IdentUsage::NotReferenced; } AstNode *AstNode::clone_at_zero() { int width_hint; bool sign_hint; AstNode *pointee; switch (type) { case AST_IDENTIFIER: if (id2ast) pointee = id2ast; else if (current_scope.count(str)) pointee = current_scope[str]; else break; if (pointee->type != AST_WIRE && pointee->type != AST_AUTOWIRE && pointee->type != AST_MEMORY) break; YS_FALLTHROUGH case AST_MEMRD: detectSignWidth(width_hint, sign_hint); return mkconst_int(0, sign_hint, width_hint); default: break; } AstNode *that = new AstNode; *that = *this; for (auto &it : that->children) it = it->clone_at_zero(); for (auto &it : that->attributes) it.second = it.second->clone(); that->set_in_lvalue_flag(false); that->set_in_param_flag(false); that->fixup_hierarchy_flags(); return that; } static bool try_determine_range_width(AstNode *range, int &result_width) { log_assert(range->type == AST_RANGE); if (range->children.size() == 1) { result_width = 1; return true; } AstNode *left_at_zero_ast = range->children[0]->clone_at_zero(); AstNode *right_at_zero_ast = range->children[1]->clone_at_zero(); while (left_at_zero_ast->simplify(true, 1, -1, false)) {} while (right_at_zero_ast->simplify(true, 1, -1, false)) {} bool ok = false; if (left_at_zero_ast->type == AST_CONSTANT && right_at_zero_ast->type == AST_CONSTANT) { ok = true; result_width = abs(int(left_at_zero_ast->integer - right_at_zero_ast->integer)) + 1; } delete left_at_zero_ast; delete right_at_zero_ast; return ok; } static const std::string auto_nosync_prefix = "\\AutoNosync"; // mark a local variable in an always_comb block for automatic nosync // consideration static void mark_auto_nosync(AstNode *block, const AstNode *wire) { log_assert(block->type == AST_BLOCK); log_assert(wire->type == AST_WIRE); block->set_attribute(auto_nosync_prefix + wire->str, AstNode::mkconst_int(1, false)); } // block names can be prefixed with an explicit scope during elaboration static bool is_autonamed_block(const std::string &str) { size_t last_dot = str.rfind('.'); // unprefixed names: autonamed if the first char is a dollar sign if (last_dot == std::string::npos) return str.at(0) == '$'; // e.g., `$fordecl_block$1` // prefixed names: autonamed if the final chunk begins with a dollar sign return str.rfind(".$") == last_dot; // e.g., `\foo.bar.$fordecl_block$1` } // check a procedural block for auto-nosync markings, remove them, and add // nosync to local variables as necessary static void check_auto_nosync(AstNode *node) { std::vector attrs_to_drop; for (const auto& elem : node->attributes) { // skip attributes that don't begin with the prefix if (elem.first.compare(0, auto_nosync_prefix.size(), auto_nosync_prefix.c_str())) continue; // delete and remove the attribute once we're done iterating attrs_to_drop.push_back(elem.first); // find the wire based on the attribute std::string wire_name = elem.first.substr(auto_nosync_prefix.size()); auto it = current_scope.find(wire_name); if (it == current_scope.end()) continue; // analyze the usage of the local variable in this block IdentUsage ident_usage = always_asgn_before_use(node, wire_name); if (ident_usage != IdentUsage::Assigned) continue; // mark the wire with `nosync` AstNode *wire = it->second; log_assert(wire->type == AST_WIRE); wire->set_attribute(ID::nosync, AstNode::mkconst_int(1, false)); } // remove the attributes we've "consumed" for (const RTLIL::IdString &str : attrs_to_drop) { auto it = node->attributes.find(str); delete it->second; node->attributes.erase(it); } // check local variables in any nested blocks for (AstNode *child : node->children) check_auto_nosync(child); } // convert the AST into a simpler AST that has all parameters substituted by their // values, unrolled for-loops, expanded generate blocks, etc. when this function // is done with an AST it can be converted into RTLIL using genRTLIL(). // // this function also does all name resolving and sets the id2ast member of all // nodes that link to a different node using names and lexical scoping. bool AstNode::simplify(bool const_fold, int stage, int width_hint, bool sign_hint) { static int recursion_counter = 0; static bool deep_recursion_warning = false; if (recursion_counter++ == 1000 && deep_recursion_warning) { log_warning("Deep recursion in AST simplifier.\nDoes this design contain overly long or deeply nested expressions, or excessive recursion?\n"); deep_recursion_warning = false; } static bool unevaluated_tern_branch = false; AstNode *newNode = NULL; bool did_something = false; #if 0 log("-------------\n"); log("AST simplify[%d] depth %d at %s:%d on %s %p:\n", stage, recursion_counter, filename.c_str(), location.first_line, type2str(type).c_str(), this); log("const_fold=%d, stage=%d, width_hint=%d, sign_hint=%d\n", int(const_fold), int(stage), int(width_hint), int(sign_hint)); // dumpAst(NULL, "> "); #endif if (stage == 0) { log_assert(type == AST_MODULE || type == AST_INTERFACE); deep_recursion_warning = true; while (simplify(const_fold, 1, width_hint, sign_hint)) { } if (!flag_nomem2reg && !get_bool_attribute(ID::nomem2reg)) { dict> mem2reg_places; dict mem2reg_candidates, dummy_proc_flags; uint32_t flags = flag_mem2reg ? AstNode::MEM2REG_FL_ALL : 0; mem2reg_as_needed_pass1(mem2reg_places, mem2reg_candidates, dummy_proc_flags, flags); pool mem2reg_set; for (auto &it : mem2reg_candidates) { AstNode *mem = it.first; uint32_t memflags = it.second; bool this_nomeminit = flag_nomeminit; log_assert((memflags & ~0x00ffff00) == 0); if (mem->get_bool_attribute(ID::nomem2reg)) continue; if (mem->get_bool_attribute(ID::nomeminit) || get_bool_attribute(ID::nomeminit)) this_nomeminit = true; if (memflags & AstNode::MEM2REG_FL_FORCED) goto silent_activate; if (memflags & AstNode::MEM2REG_FL_EQ2) goto verbose_activate; if (memflags & AstNode::MEM2REG_FL_SET_ASYNC) goto verbose_activate; if ((memflags & AstNode::MEM2REG_FL_SET_INIT) && (memflags & AstNode::MEM2REG_FL_SET_ELSE) && this_nomeminit) goto verbose_activate; if (memflags & AstNode::MEM2REG_FL_CMPLX_LHS) goto verbose_activate; if ((memflags & AstNode::MEM2REG_FL_CONST_LHS) && !(memflags & AstNode::MEM2REG_FL_VAR_LHS)) goto verbose_activate; // log("Note: Not replacing memory %s with list of registers (flags=0x%08lx).\n", mem->str.c_str(), long(memflags)); continue; verbose_activate: if (mem2reg_set.count(mem) == 0) { std::string message = stringf("Replacing memory %s with list of registers.", mem->str.c_str()); bool first_element = true; for (auto &place : mem2reg_places[it.first]) { message += stringf("%s%s", first_element ? " See " : ", ", place.c_str()); first_element = false; } log_warning("%s\n", message.c_str()); } silent_activate: // log("Note: Replacing memory %s with list of registers (flags=0x%08lx).\n", mem->str.c_str(), long(memflags)); mem2reg_set.insert(mem); } for (auto node : mem2reg_set) { int mem_width, mem_size, addr_bits; node->meminfo(mem_width, mem_size, addr_bits); int data_range_left = node->children[0]->range_left; int data_range_right = node->children[0]->range_right; if (node->children[0]->range_swapped) std::swap(data_range_left, data_range_right); for (int i = 0; i < mem_size; i++) { AstNode *reg = new AstNode(AST_WIRE, new AstNode(AST_RANGE, mkconst_int(data_range_left, true), mkconst_int(data_range_right, true))); reg->str = stringf("%s[%d]", node->str.c_str(), i); reg->is_reg = true; reg->is_signed = node->is_signed; for (auto &it : node->attributes) if (it.first != ID::mem2reg) reg->set_attribute(it.first, it.second->clone()); reg->filename = node->filename; reg->location = node->location; children.push_back(reg); while (reg->simplify(true, 1, -1, false)) { } } } AstNode *async_block = NULL; while (mem2reg_as_needed_pass2(mem2reg_set, this, NULL, async_block)) { } vector delnodes; mem2reg_remove(mem2reg_set, delnodes); for (auto node : delnodes) delete node; } while (simplify(const_fold, 2, width_hint, sign_hint)) { } recursion_counter--; return false; } current_filename = filename; // we do not look inside a task or function // (but as soon as a task or function is instantiated we process the generated AST as usual) if (type == AST_FUNCTION || type == AST_TASK) { recursion_counter--; return false; } // deactivate all calls to non-synthesis system tasks // note that $display, $finish, and $stop are used for synthesis-time DRC so they're not in this list if ((type == AST_FCALL || type == AST_TCALL) && (str == "$strobe" || str == "$monitor" || str == "$time" || str == "$dumpfile" || str == "$dumpvars" || str == "$dumpon" || str == "$dumpoff" || str == "$dumpall")) { log_file_warning(filename, location.first_line, "Ignoring call to system %s %s.\n", type == AST_FCALL ? "function" : "task", str.c_str()); delete_children(); str = std::string(); } if ((type == AST_TCALL) && (str == "$display" || str == "$displayb" || str == "$displayh" || str == "$displayo" || str == "$write" || str == "$writeb" || str == "$writeh" || str == "$writeo")) { if (!current_always) { log_file_warning(filename, location.first_line, "System task `%s' outside initial or always block is unsupported.\n", str.c_str()); delete_children(); str = std::string(); } else { // simplify the expressions and convert them to a special cell later in genrtlil for (auto node : children) while (node->simplify(true, stage, -1, false)) {} if (current_always->type == AST_INITIAL && !flag_nodisplay && stage == 2) { int default_base = 10; if (str.back() == 'b') default_base = 2; else if (str.back() == 'o') default_base = 8; else if (str.back() == 'h') default_base = 16; // when $display()/$write() functions are used in an initial block, print them during synthesis Fmt fmt = processFormat(stage, /*sformat_like=*/false, default_base, /*first_arg_at=*/0, /*may_fail=*/true); if (str.substr(0, 8) == "$display") fmt.append_literal("\n"); log("%s", fmt.render().c_str()); } return false; } } // activate const folding if this is anything that must be evaluated statically (ranges, parameters, attributes, etc.) if (type == AST_WIRE || type == AST_PARAMETER || type == AST_LOCALPARAM || type == AST_ENUM_ITEM || type == AST_DEFPARAM || type == AST_PARASET || type == AST_RANGE || type == AST_PREFIX || type == AST_TYPEDEF) const_fold = true; if (type == AST_IDENTIFIER && current_scope.count(str) > 0 && (current_scope[str]->type == AST_PARAMETER || current_scope[str]->type == AST_LOCALPARAM || current_scope[str]->type == AST_ENUM_ITEM)) const_fold = true; std::map backup_scope; // create name resolution entries for all objects with names // also merge multiple declarations for the same wire (e.g. "output foobar; reg foobar;") if (type == AST_MODULE || type == AST_INTERFACE) { current_scope.clear(); std::set existing; int counter = 0; label_genblks(existing, counter); std::map this_wire_scope; for (size_t i = 0; i < children.size(); i++) { AstNode *node = children[i]; if (node->type == AST_WIRE) { if (node->children.size() == 1 && node->children[0]->type == AST_RANGE) { for (auto c : node->children[0]->children) { if (!c->is_simple_const_expr()) { if (attributes.count(ID::dynports)) delete attributes.at(ID::dynports); set_attribute(ID::dynports, AstNode::mkconst_int(1, true)); } } } if (this_wire_scope.count(node->str) > 0) { AstNode *first_node = this_wire_scope[node->str]; if (first_node->is_input && node->is_reg) goto wires_are_incompatible; if (!node->is_input && !node->is_output && node->is_reg && node->children.size() == 0) goto wires_are_compatible; if (first_node->children.size() == 0 && node->children.size() == 1 && node->children[0]->type == AST_RANGE) { AstNode *r = node->children[0]; if (r->range_valid && r->range_left == 0 && r->range_right == 0) { delete r; node->children.pop_back(); } } if (first_node->children.size() != node->children.size()) goto wires_are_incompatible; for (size_t j = 0; j < node->children.size(); j++) { AstNode *n1 = first_node->children[j], *n2 = node->children[j]; if (n1->type == AST_RANGE && n2->type == AST_RANGE && n1->range_valid && n2->range_valid) { if (n1->range_left != n2->range_left) goto wires_are_incompatible; if (n1->range_right != n2->range_right) goto wires_are_incompatible; } else if (*n1 != *n2) goto wires_are_incompatible; } if (first_node->range_left != node->range_left) goto wires_are_incompatible; if (first_node->range_right != node->range_right) goto wires_are_incompatible; if (first_node->port_id == 0 && (node->is_input || node->is_output)) goto wires_are_incompatible; wires_are_compatible: if (node->is_input) first_node->is_input = true; if (node->is_output) first_node->is_output = true; if (node->is_reg) first_node->is_reg = true; if (node->is_logic) first_node->is_logic = true; if (node->is_signed) first_node->is_signed = true; for (auto &it : node->attributes) { if (first_node->attributes.count(it.first) > 0) delete first_node->attributes[it.first]; first_node->set_attribute(it.first, it.second->clone()); } children.erase(children.begin()+(i--)); did_something = true; delete node; continue; wires_are_incompatible: if (stage > 1) input_error("Incompatible re-declaration of wire %s.\n", node->str.c_str()); continue; } this_wire_scope[node->str] = node; } // these nodes appear at the top level in a module and can define names if (node->type == AST_PARAMETER || node->type == AST_LOCALPARAM || node->type == AST_WIRE || node->type == AST_AUTOWIRE || node->type == AST_GENVAR || node->type == AST_MEMORY || node->type == AST_FUNCTION || node->type == AST_TASK || node->type == AST_DPI_FUNCTION || node->type == AST_CELL || node->type == AST_TYPEDEF) { backup_scope[node->str] = current_scope[node->str]; current_scope[node->str] = node; } if (node->type == AST_ENUM) { current_scope[node->str] = node; for (auto enode : node->children) { log_assert(enode->type==AST_ENUM_ITEM); if (current_scope.count(enode->str) == 0) current_scope[enode->str] = enode; else input_error("enum item %s already exists\n", enode->str.c_str()); } } } for (size_t i = 0; i < children.size(); i++) { AstNode *node = children[i]; if (node->type == AST_PARAMETER || node->type == AST_LOCALPARAM || node->type == AST_WIRE || node->type == AST_AUTOWIRE || node->type == AST_MEMORY || node->type == AST_TYPEDEF) while (node->simplify(true, 1, -1, false)) did_something = true; if (node->type == AST_ENUM) { for (auto enode : node->children){ log_assert(enode->type==AST_ENUM_ITEM); while (node->simplify(true, 1, -1, false)) did_something = true; } } } for (AstNode *child : children) if (child->type == AST_ALWAYS && child->attributes.count(ID::always_comb)) check_auto_nosync(child); } // create name resolution entries for all objects with names if (type == AST_PACKAGE) { //add names to package scope for (size_t i = 0; i < children.size(); i++) { AstNode *node = children[i]; // these nodes appear at the top level in a package and can define names if (node->type == AST_PARAMETER || node->type == AST_LOCALPARAM || node->type == AST_TYPEDEF || node->type == AST_FUNCTION || node->type == AST_TASK) { current_scope[node->str] = node; } if (node->type == AST_ENUM) { current_scope[node->str] = node; for (auto enode : node->children) { log_assert(enode->type==AST_ENUM_ITEM); if (current_scope.count(enode->str) == 0) current_scope[enode->str] = enode; else input_error("enum item %s already exists in package\n", enode->str.c_str()); } } } } auto backup_current_block = current_block; auto backup_current_block_child = current_block_child; auto backup_current_top_block = current_top_block; auto backup_current_always = current_always; auto backup_current_always_clocked = current_always_clocked; if (type == AST_ALWAYS || type == AST_INITIAL) { if (current_always != nullptr) input_error("Invalid nesting of always blocks and/or initializations.\n"); current_always = this; current_always_clocked = false; if (type == AST_ALWAYS) for (auto child : children) { if (child->type == AST_POSEDGE || child->type == AST_NEGEDGE) current_always_clocked = true; if (child->type == AST_EDGE && GetSize(child->children) == 1 && child->children[0]->type == AST_IDENTIFIER && child->children[0]->str == "\\$global_clock") current_always_clocked = true; } } if (type == AST_CELL) { bool lookup_suggested = false; for (AstNode *child : children) { // simplify any parameters to constants if (child->type == AST_PARASET) while (child->simplify(true, 1, -1, false)) { } // look for patterns which _may_ indicate ambiguity requiring // resolution of the underlying module if (child->type == AST_ARGUMENT) { if (child->children.size() != 1) continue; const AstNode *value = child->children[0]; if (value->type == AST_IDENTIFIER) { const AstNode *elem = value->id2ast; if (elem == nullptr) { if (current_scope.count(value->str)) elem = current_scope.at(value->str); else continue; } if (elem->type == AST_MEMORY) // need to determine is the is a read or wire lookup_suggested = true; else if (elem->type == AST_WIRE && elem->is_signed && !value->children.empty()) // this may be a fully sliced signed wire which needs // to be indirected to produce an unsigned connection lookup_suggested = true; } else if (contains_unbased_unsized(value)) // unbased unsized literals extend to width of the context lookup_suggested = true; } } const RTLIL::Module *module = nullptr; if (lookup_suggested) module = lookup_cell_module(); if (module) { size_t port_counter = 0; for (AstNode *child : children) { if (child->type != AST_ARGUMENT) continue; // determine the full name of port this argument is connected to RTLIL::IdString port_name; if (child->str.size()) port_name = child->str; else { if (port_counter >= module->ports.size()) input_error("Cell instance has more ports than the module!\n"); port_name = module->ports[port_counter++]; } // find the port's wire in the underlying module const RTLIL::Wire *ref = module->wire(port_name); if (ref == nullptr) input_error("Cell instance refers to port %s which does not exist in module %s!.\n", log_id(port_name), log_id(module->name)); // select the argument, if present log_assert(child->children.size() <= 1); if (child->children.empty()) continue; AstNode *arg = child->children[0]; // plain identifiers never need indirection; this also prevents // adding infinite levels of indirection if (arg->type == AST_IDENTIFIER && arg->children.empty()) continue; // only add indirection for standard inputs or outputs if (ref->port_input == ref->port_output) continue; did_something = true; // create the indirection wire std::stringstream sstr; sstr << "$indirect$" << ref->name.c_str() << "$" << RTLIL::encode_filename(filename) << ":" << location.first_line << "$" << (autoidx++); std::string tmp_str = sstr.str(); add_wire_for_ref(ref, tmp_str); AstNode *asgn = new AstNode(AST_ASSIGN); current_ast_mod->children.push_back(asgn); AstNode *ident = new AstNode(AST_IDENTIFIER); ident->str = tmp_str; child->children[0] = ident->clone(); if (ref->port_input && !ref->port_output) { asgn->children.push_back(ident); asgn->children.push_back(arg); } else { log_assert(!ref->port_input && ref->port_output); asgn->children.push_back(arg); asgn->children.push_back(ident); } asgn->fixup_hierarchy_flags(); } } } int backup_width_hint = width_hint; bool backup_sign_hint = sign_hint; bool detect_width_simple = false; bool child_0_is_self_determined = false; bool child_1_is_self_determined = false; bool child_2_is_self_determined = false; bool children_are_self_determined = false; bool reset_width_after_children = false; switch (type) { case AST_ASSIGN_EQ: case AST_ASSIGN_LE: case AST_ASSIGN: while (!children[0]->basic_prep && children[0]->simplify(false, stage, -1, false) == true) did_something = true; while (!children[1]->basic_prep && children[1]->simplify(false, stage, -1, false) == true) did_something = true; children[0]->detectSignWidth(backup_width_hint, backup_sign_hint); children[1]->detectSignWidth(width_hint, sign_hint); width_hint = max(width_hint, backup_width_hint); child_0_is_self_determined = true; // test only once, before optimizations and memory mappings but after assignment LHS was mapped to an identifier if (children[0]->id2ast && !children[0]->was_checked) { if ((type == AST_ASSIGN_LE || type == AST_ASSIGN_EQ) && children[0]->id2ast->is_logic) children[0]->id2ast->is_reg = true; // if logic type is used in a block asignment if ((type == AST_ASSIGN_LE || type == AST_ASSIGN_EQ) && !children[0]->id2ast->is_reg) log_warning("wire '%s' is assigned in a block at %s.\n", children[0]->str.c_str(), loc_string().c_str()); if (type == AST_ASSIGN && children[0]->id2ast->is_reg) { bool is_rand_reg = false; if (children[1]->type == AST_FCALL) { if (children[1]->str == "\\$anyconst") is_rand_reg = true; if (children[1]->str == "\\$anyseq") is_rand_reg = true; if (children[1]->str == "\\$allconst") is_rand_reg = true; if (children[1]->str == "\\$allseq") is_rand_reg = true; } if (!is_rand_reg) log_warning("reg '%s' is assigned in a continuous assignment at %s.\n", children[0]->str.c_str(), loc_string().c_str()); } children[0]->was_checked = true; } break; case AST_STRUCT: case AST_UNION: if (!basic_prep) { for (auto *node : children) { // resolve any ranges while (!node->basic_prep && node->simplify(true, stage, -1, false)) { did_something = true; } } // determine member offsets and widths size_packed_struct(this, 0); // instance rather than just a type in a typedef or outer struct? if (!str.empty() && str[0] == '\\') { // instance so add a wire for the packed structure auto wnode = make_packed_struct(this, str, attributes); log_assert(current_ast_mod); current_ast_mod->children.push_back(wnode); } basic_prep = true; } break; case AST_STRUCT_ITEM: if (is_custom_type) { log_assert(children.size() >= 1); log_assert(children[0]->type == AST_WIRETYPE); // Pretend it's just a wire in order to resolve the type. type = AST_WIRE; while (is_custom_type && simplify(const_fold, stage, width_hint, sign_hint)) {}; if (type == AST_WIRE) type = AST_STRUCT_ITEM; did_something = true; } log_assert(!is_custom_type); break; case AST_ENUM: //log("\nENUM %s: %d child %d\n", str.c_str(), basic_prep, children[0]->basic_prep); if (!basic_prep) { for (auto item_node : children) { while (!item_node->basic_prep && item_node->simplify(false, stage, -1, false)) did_something = true; } // allocate values (called more than once) allocateDefaultEnumValues(); } break; case AST_PARAMETER: case AST_LOCALPARAM: // if parameter is implicit type which is the typename of a struct or union, // save information about struct in wiretype attribute if (children[0]->type == AST_IDENTIFIER && current_scope.count(children[0]->str) > 0) { auto item_node = current_scope[children[0]->str]; if (item_node->type == AST_STRUCT || item_node->type == AST_UNION) { set_attribute(ID::wiretype, item_node->clone()); size_packed_struct(attributes[ID::wiretype], 0); add_members_to_scope(attributes[ID::wiretype], str); } } while (!children[0]->basic_prep && children[0]->simplify(false, stage, -1, false) == true) did_something = true; children[0]->detectSignWidth(width_hint, sign_hint); if (children.size() > 1 && children[1]->type == AST_RANGE) { while (!children[1]->basic_prep && children[1]->simplify(false, stage, -1, false) == true) did_something = true; if (!children[1]->range_valid) input_error("Non-constant width range on parameter decl.\n"); width_hint = max(width_hint, children[1]->range_left - children[1]->range_right + 1); } break; case AST_ENUM_ITEM: while (!children[0]->basic_prep && children[0]->simplify(false, stage, -1, false)) did_something = true; children[0]->detectSignWidth(width_hint, sign_hint); if (children.size() > 1 && children[1]->type == AST_RANGE) { while (!children[1]->basic_prep && children[1]->simplify(false, stage, -1, false)) did_something = true; if (!children[1]->range_valid) input_error("Non-constant width range on enum item decl.\n"); width_hint = max(width_hint, children[1]->range_left - children[1]->range_right + 1); } break; case AST_CAST_SIZE: { int width = 1; AstNode *node; AstNode *child = children[0]; if (child->type == AST_WIRE) { if (child->children.size() == 0) { // Base type (e.g., int) width = child->range_left - child->range_right +1; node = mkconst_int(width, child->is_signed); } else { // User defined type log_assert(child->children[0]->type == AST_WIRETYPE); const std::string &type_name = child->children[0]->str; if (!current_scope.count(type_name)) input_error("Unknown identifier `%s' used as type name\n", type_name.c_str()); AstNode *resolved_type_node = current_scope.at(type_name); if (resolved_type_node->type != AST_TYPEDEF) input_error("`%s' does not name a type\n", type_name.c_str()); log_assert(resolved_type_node->children.size() == 1); AstNode *template_node = resolved_type_node->children[0]; // Ensure typedef itself is fully simplified while (template_node->simplify(const_fold, stage, width_hint, sign_hint)) {}; switch (template_node->type) { case AST_WIRE: { if (template_node->children.size() > 0 && template_node->children[0]->type == AST_RANGE) width = range_width(this, template_node->children[0]); child->delete_children(); node = mkconst_int(width, true); break; } case AST_STRUCT: case AST_UNION: { child->delete_children(); width = size_packed_struct(template_node, 0); node = mkconst_int(width, false); break; } default: log_error("Don't know how to translate static cast of type %s\n", type2str(template_node->type).c_str()); } } delete child; children.erase(children.begin()); children.insert(children.begin(), node); } detect_width_simple = true; children_are_self_determined = true; break; } case AST_TO_BITS: case AST_TO_SIGNED: case AST_TO_UNSIGNED: case AST_SELFSZ: case AST_CONCAT: case AST_REPLICATE: case AST_REDUCE_AND: case AST_REDUCE_OR: case AST_REDUCE_XOR: case AST_REDUCE_XNOR: case AST_REDUCE_BOOL: detect_width_simple = true; children_are_self_determined = true; break; case AST_NEG: case AST_BIT_NOT: case AST_POS: case AST_BIT_AND: case AST_BIT_OR: case AST_BIT_XOR: case AST_BIT_XNOR: case AST_ADD: case AST_SUB: case AST_MUL: case AST_DIV: case AST_MOD: detect_width_simple = true; break; case AST_SHIFT_LEFT: case AST_SHIFT_RIGHT: case AST_SHIFT_SLEFT: case AST_SHIFT_SRIGHT: case AST_POW: detect_width_simple = true; child_1_is_self_determined = true; break; case AST_LT: case AST_LE: case AST_EQ: case AST_NE: case AST_EQX: case AST_NEX: case AST_GE: case AST_GT: width_hint = -1; sign_hint = true; for (auto child : children) { while (!child->basic_prep && child->simplify(false, stage, -1, false) == true) did_something = true; child->detectSignWidthWorker(width_hint, sign_hint); } reset_width_after_children = true; break; case AST_LOGIC_AND: case AST_LOGIC_OR: case AST_LOGIC_NOT: detect_width_simple = true; children_are_self_determined = true; break; case AST_TERNARY: child_0_is_self_determined = true; break; case AST_MEMRD: detect_width_simple = true; children_are_self_determined = true; break; case AST_FCALL: case AST_TCALL: children_are_self_determined = true; break; default: width_hint = -1; sign_hint = false; } if (detect_width_simple && width_hint < 0) { if (type == AST_REPLICATE) while (children[0]->simplify(true, stage, -1, false) == true) did_something = true; for (auto child : children) while (!child->basic_prep && child->simplify(false, stage, -1, false) == true) did_something = true; detectSignWidth(width_hint, sign_hint); } if (type == AST_FCALL && str == "\\$past") detectSignWidth(width_hint, sign_hint); if (type == AST_TERNARY) { if (width_hint < 0) { while (!children[0]->basic_prep && children[0]->simplify(true, stage, -1, false)) did_something = true; bool backup_unevaluated_tern_branch = unevaluated_tern_branch; AstNode *chosen = get_tern_choice().first; unevaluated_tern_branch = backup_unevaluated_tern_branch || chosen == children[2]; while (!children[1]->basic_prep && children[1]->simplify(false, stage, -1, false)) did_something = true; unevaluated_tern_branch = backup_unevaluated_tern_branch || chosen == children[1]; while (!children[2]->basic_prep && children[2]->simplify(false, stage, -1, false)) did_something = true; unevaluated_tern_branch = backup_unevaluated_tern_branch; detectSignWidth(width_hint, sign_hint); } int width_hint_left, width_hint_right; bool sign_hint_left, sign_hint_right; bool found_real_left, found_real_right; children[1]->detectSignWidth(width_hint_left, sign_hint_left, &found_real_left); children[2]->detectSignWidth(width_hint_right, sign_hint_right, &found_real_right); if (found_real_left || found_real_right) { child_1_is_self_determined = true; child_2_is_self_determined = true; } } if (type == AST_CONDX && children.size() > 0 && children.at(0)->type == AST_CONSTANT) { for (auto &bit : children.at(0)->bits) if (bit == State::Sz || bit == State::Sx) bit = State::Sa; } if (type == AST_CONDZ && children.size() > 0 && children.at(0)->type == AST_CONSTANT) { for (auto &bit : children.at(0)->bits) if (bit == State::Sz) bit = State::Sa; } if (const_fold && type == AST_CASE) { detectSignWidth(width_hint, sign_hint); while (children[0]->simplify(const_fold, stage, width_hint, sign_hint)) { } if (children[0]->type == AST_CONSTANT && children[0]->bits_only_01()) { children[0]->is_signed = sign_hint; RTLIL::Const case_expr = children[0]->bitsAsConst(width_hint, sign_hint); std::vector new_children; new_children.push_back(children[0]); for (int i = 1; i < GetSize(children); i++) { AstNode *child = children[i]; log_assert(child->type == AST_COND || child->type == AST_CONDX || child->type == AST_CONDZ); for (auto v : child->children) { if (v->type == AST_DEFAULT) goto keep_const_cond; if (v->type == AST_BLOCK) continue; while (v->simplify(const_fold, stage, width_hint, sign_hint)) { } if (v->type == AST_CONSTANT && v->bits_only_01()) { RTLIL::Const case_item_expr = v->bitsAsConst(width_hint, sign_hint); RTLIL::Const match = const_eq(case_expr, case_item_expr, sign_hint, sign_hint, 1); log_assert(match.size() == 1); if (match.front() == RTLIL::State::S1) { while (i+1 < GetSize(children)) delete children[++i]; goto keep_const_cond; } continue; } goto keep_const_cond; } if (0) keep_const_cond: new_children.push_back(child); else delete child; } new_children.swap(children); } } dict> backup_memwr_visible; dict> final_memwr_visible; if (type == AST_CASE && stage == 2) { backup_memwr_visible = current_memwr_visible; final_memwr_visible = current_memwr_visible; } // simplify all children first // (iterate by index as e.g. auto wires can add new children in the process) for (size_t i = 0; i < children.size(); i++) { bool did_something_here = true; bool backup_flag_autowire = flag_autowire; bool backup_unevaluated_tern_branch = unevaluated_tern_branch; if ((type == AST_GENFOR || type == AST_FOR) && i >= 3) break; if ((type == AST_GENIF || type == AST_GENCASE) && i >= 1) break; if (type == AST_GENBLOCK) break; if (type == AST_CELLARRAY && children[i]->type == AST_CELL) continue; if (type == AST_BLOCK && !str.empty()) break; if (type == AST_PREFIX && i >= 1) break; if (type == AST_DEFPARAM && i == 0) flag_autowire = true; if (type == AST_TERNARY && i > 0 && !unevaluated_tern_branch) { AstNode *chosen = get_tern_choice().first; unevaluated_tern_branch = chosen && chosen != children[i]; } while (did_something_here && i < children.size()) { bool const_fold_here = const_fold; int width_hint_here = width_hint; bool sign_hint_here = sign_hint; if (i == 0 && (type == AST_REPLICATE || type == AST_WIRE)) const_fold_here = true; if (type == AST_PARAMETER || type == AST_LOCALPARAM) const_fold_here = true; if (type == AST_BLOCK) { current_block = this; current_block_child = children[i]; } if ((type == AST_ALWAYS || type == AST_INITIAL) && children[i]->type == AST_BLOCK) current_top_block = children[i]; if (i == 0 && child_0_is_self_determined) width_hint_here = -1, sign_hint_here = false; if (i == 1 && child_1_is_self_determined) width_hint_here = -1, sign_hint_here = false; if (i == 2 && child_2_is_self_determined) width_hint_here = -1, sign_hint_here = false; if (children_are_self_determined) width_hint_here = -1, sign_hint_here = false; did_something_here = children[i]->simplify(const_fold_here, stage, width_hint_here, sign_hint_here); if (did_something_here) did_something = true; } if (stage == 2 && children[i]->type == AST_INITIAL && current_ast_mod != this) { current_ast_mod->children.push_back(children[i]); children.erase(children.begin() + (i--)); did_something = true; } flag_autowire = backup_flag_autowire; unevaluated_tern_branch = backup_unevaluated_tern_branch; if (stage == 2 && type == AST_CASE) { for (auto &x : current_memwr_visible) { for (int y : x.second) final_memwr_visible[x.first].insert(y); } current_memwr_visible = backup_memwr_visible; } } for (auto &attr : attributes) { while (attr.second->simplify(true, stage, -1, false)) did_something = true; } if (type == AST_CASE && stage == 2) { current_memwr_visible = final_memwr_visible; } if (type == AST_ALWAYS && stage == 2) { current_memwr_visible.clear(); current_memwr_count.clear(); } if (reset_width_after_children) { width_hint = backup_width_hint; sign_hint = backup_sign_hint; if (width_hint < 0) detectSignWidth(width_hint, sign_hint); } current_block = backup_current_block; current_block_child = backup_current_block_child; current_top_block = backup_current_top_block; current_always = backup_current_always; current_always_clocked = backup_current_always_clocked; for (auto it = backup_scope.begin(); it != backup_scope.end(); it++) { if (it->second == NULL) current_scope.erase(it->first); else current_scope[it->first] = it->second; } current_filename = filename; if (type == AST_MODULE || type == AST_INTERFACE) current_scope.clear(); // convert defparam nodes to cell parameters if (type == AST_DEFPARAM && !children.empty()) { if (children[0]->type != AST_IDENTIFIER) input_error("Module name in defparam contains non-constant expressions!\n"); string modname, paramname = children[0]->str; size_t pos = paramname.rfind('.'); while (pos != 0 && pos != std::string::npos) { modname = paramname.substr(0, pos); if (current_scope.count(modname)) break; pos = paramname.rfind('.', pos - 1); } if (pos == std::string::npos) input_error("Can't find object for defparam `%s`!\n", RTLIL::unescape_id(paramname).c_str()); paramname = "\\" + paramname.substr(pos+1); if (current_scope.at(modname)->type != AST_CELL) input_error("Defparam argument `%s . %s` does not match a cell!\n", RTLIL::unescape_id(modname).c_str(), RTLIL::unescape_id(paramname).c_str()); AstNode *paraset = new AstNode(AST_PARASET, children[1]->clone(), GetSize(children) > 2 ? children[2]->clone() : NULL); paraset->str = paramname; AstNode *cell = current_scope.at(modname); cell->children.insert(cell->children.begin() + 1, paraset); delete_children(); } // resolve typedefs if (type == AST_TYPEDEF) { log_assert(children.size() == 1); auto type_node = children[0]; log_assert(type_node->type == AST_WIRE || type_node->type == AST_MEMORY || type_node->type == AST_STRUCT || type_node->type == AST_UNION); while (type_node->simplify(const_fold, stage, width_hint, sign_hint)) { did_something = true; } log_assert(!type_node->is_custom_type); } // resolve types of wires if (type == AST_WIRE || type == AST_MEMORY) { if (is_custom_type) { log_assert(children.size() >= 1); log_assert(children[0]->type == AST_WIRETYPE); auto type_name = children[0]->str; if (!current_scope.count(type_name)) { input_error("Unknown identifier `%s' used as type name\n", type_name.c_str()); } AstNode *resolved_type_node = current_scope.at(type_name); if (resolved_type_node->type != AST_TYPEDEF) input_error("`%s' does not name a type\n", type_name.c_str()); log_assert(resolved_type_node->children.size() == 1); AstNode *template_node = resolved_type_node->children[0]; // Resolve the typedef from the bottom up, recursing within the current // block of code. Defer further simplification until the complete type is // resolved. while (template_node->is_custom_type && template_node->simplify(const_fold, stage, width_hint, sign_hint)) {}; if (!str.empty() && str[0] == '\\' && (template_node->type == AST_STRUCT || template_node->type == AST_UNION)) { // replace instance with wire representing the packed structure newNode = make_packed_struct(template_node, str, attributes); newNode->set_attribute(ID::wiretype, mkconst_str(resolved_type_node->str)); // add original input/output attribute to resolved wire newNode->is_input = this->is_input; newNode->is_output = this->is_output; current_scope[str] = this; goto apply_newNode; } // Prepare replacement node. newNode = template_node->clone(); newNode->str = str; newNode->set_attribute(ID::wiretype, mkconst_str(resolved_type_node->str)); newNode->is_input = is_input; newNode->is_output = is_output; newNode->is_wand = is_wand; newNode->is_wor = is_wor; for (auto &pair : attributes) newNode->set_attribute(pair.first, pair.second->clone()); // if an enum then add attributes to support simulator tracing newNode->annotateTypedEnums(template_node); bool add_packed_dimensions = (type == AST_WIRE && GetSize(children) > 1) || (type == AST_MEMORY && GetSize(children) > 2); // Cannot add packed dimensions if unpacked dimensions are already specified. if (add_packed_dimensions && newNode->type == AST_MEMORY) input_error("Cannot extend unpacked type `%s' with packed dimensions\n", type_name.c_str()); // Add packed dimensions. if (add_packed_dimensions) { AstNode *packed = children[1]; if (newNode->children.empty()) newNode->children.insert(newNode->children.begin(), packed->clone()); else prepend_ranges(newNode->children[0], packed); } // Add unpacked dimensions. if (type == AST_MEMORY) { AstNode *unpacked = children.back(); if (GetSize(newNode->children) < 2) newNode->children.push_back(unpacked->clone()); else prepend_ranges(newNode->children[1], unpacked); newNode->type = type; } // Prepare to generate dimensions metadata for the resolved type. newNode->dimensions.clear(); newNode->unpacked_dimensions = 0; goto apply_newNode; } } // resolve types of parameters if (type == AST_LOCALPARAM || type == AST_PARAMETER) { if (is_custom_type) { log_assert(children.size() >= 2); log_assert(children[1]->type == AST_WIRETYPE); // Pretend it's just a wire in order to resolve the type in the code block above. AstNodeType param_type = type; type = AST_WIRE; AstNode *expr = children[0]; children.erase(children.begin()); while (is_custom_type && simplify(const_fold, stage, width_hint, sign_hint)) {}; type = param_type; children.insert(children.begin(), expr); if (children[1]->type == AST_MEMORY) input_error("unpacked array type `%s' cannot be used for a parameter\n", children[1]->str.c_str()); fixup_hierarchy_flags(); did_something = true; } log_assert(!is_custom_type); } // resolve constant prefixes if (type == AST_PREFIX) { if (children[0]->type != AST_CONSTANT) { // dumpAst(NULL, "> "); input_error("Index in generate block prefix syntax is not constant!\n"); } if (children[1]->type == AST_PREFIX) children[1]->simplify(const_fold, stage, width_hint, sign_hint); log_assert(children[1]->type == AST_IDENTIFIER); newNode = children[1]->clone(); const char *second_part = children[1]->str.c_str(); if (second_part[0] == '\\') second_part++; newNode->str = stringf("%s[%d].%s", str.c_str(), children[0]->integer, second_part); goto apply_newNode; } // evaluate TO_BITS nodes if (type == AST_TO_BITS) { if (children[0]->type != AST_CONSTANT) input_error("Left operand of to_bits expression is not constant!\n"); if (children[1]->type != AST_CONSTANT) input_error("Right operand of to_bits expression is not constant!\n"); RTLIL::Const new_value = children[1]->bitsAsConst(children[0]->bitsAsConst().as_int(), children[1]->is_signed); newNode = mkconst_bits(new_value.to_bits(), children[1]->is_signed); goto apply_newNode; } // annotate constant ranges if (type == AST_RANGE) { bool old_range_valid = range_valid; range_valid = false; range_swapped = false; range_left = -1; range_right = 0; log_assert(children.size() >= 1); if (children[0]->type == AST_CONSTANT) { range_valid = true; range_left = children[0]->integer; if (children.size() == 1) range_right = range_left; } if (children.size() >= 2) { if (children[1]->type == AST_CONSTANT) range_right = children[1]->integer; else range_valid = false; } if (old_range_valid != range_valid) did_something = true; if (range_valid && range_right > range_left) { std::swap(range_left, range_right); range_swapped = true; } } // annotate wires with their ranges if (type == AST_WIRE) { if (children.size() > 0) { if (children[0]->range_valid) { if (!range_valid) did_something = true; range_valid = true; range_swapped = children[0]->range_swapped; range_left = children[0]->range_left; range_right = children[0]->range_right; bool force_upto = false, force_downto = false; if (attributes.count(ID::force_upto)) { AstNode *val = attributes[ID::force_upto]; if (val->type != AST_CONSTANT) input_error("Attribute `force_upto' with non-constant value!\n"); force_upto = val->asAttrConst().as_bool(); } if (attributes.count(ID::force_downto)) { AstNode *val = attributes[ID::force_downto]; if (val->type != AST_CONSTANT) input_error("Attribute `force_downto' with non-constant value!\n"); force_downto = val->asAttrConst().as_bool(); } if (force_upto && force_downto) input_error("Attributes `force_downto' and `force_upto' cannot be both set!\n"); if ((force_upto && !range_swapped) || (force_downto && range_swapped)) { std::swap(range_left, range_right); range_swapped = force_upto; } } } else { if (!range_valid) did_something = true; range_valid = true; range_swapped = false; range_left = 0; range_right = 0; } } // Resolve packed and unpacked ranges in declarations. if ((type == AST_WIRE || type == AST_MEMORY) && dimensions.empty()) { if (!children.empty()) { // Unpacked ranges first, then packed ranges. for (int i = std::min(GetSize(children), 2) - 1; i >= 0; i--) { if (children[i]->type == AST_MULTIRANGE) { int width = 1; for (auto range : children[i]->children) { width *= add_dimension(this, range); if (i) unpacked_dimensions++; } delete children[i]; int left = width - 1, right = 0; if (i) std::swap(left, right); children[i] = new AstNode(AST_RANGE, mkconst_int(left, true), mkconst_int(right, true)); fixup_hierarchy_flags(); did_something = true; } else if (children[i]->type == AST_RANGE) { add_dimension(this, children[i]); if (i) unpacked_dimensions++; } } } else { // 1 bit signal: bit, logic or reg dimensions.push_back({ 0, 1, false }); } } // Resolve multidimensional array access. if (type == AST_IDENTIFIER && !basic_prep && id2ast && (id2ast->type == AST_WIRE || id2ast->type == AST_MEMORY) && children.size() > 0 && (children[0]->type == AST_RANGE || children[0]->type == AST_MULTIRANGE)) { int dims_sel = children[0]->type == AST_MULTIRANGE ? children[0]->children.size() : 1; // Save original number of dimensions for $size() etc. integer = dims_sel; // Split access into unpacked and packed parts. AstNode *unpacked_range = nullptr; AstNode *packed_range = nullptr; if (id2ast->unpacked_dimensions) { if (id2ast->unpacked_dimensions > 1) { // Flattened range for access to unpacked dimensions. unpacked_range = make_index_range(id2ast, true); } else { // Index into one-dimensional unpacked part; unlink simple range node. AstNode *&range = children[0]->type == AST_MULTIRANGE ? children[0]->children[0] : children[0]; unpacked_range = range; range = nullptr; } } if (dims_sel > id2ast->unpacked_dimensions) { if (GetSize(id2ast->dimensions) - id2ast->unpacked_dimensions > 1) { // Flattened range for access to packed dimensions. packed_range = make_index_range(id2ast, false); } else { // Index into one-dimensional packed part; unlink simple range node. AstNode *&range = children[0]->type == AST_MULTIRANGE ? children[0]->children[dims_sel - 1] : children[0]; packed_range = range; range = nullptr; } } for (auto &it : children) delete it; children.clear(); if (unpacked_range) children.push_back(unpacked_range); if (packed_range) children.push_back(packed_range); fixup_hierarchy_flags(); basic_prep = true; did_something = true; } // trim/extend parameters if (type == AST_PARAMETER || type == AST_LOCALPARAM || type == AST_ENUM_ITEM) { if (children.size() > 1 && children[1]->type == AST_RANGE) { if (!children[1]->range_valid) input_error("Non-constant width range on parameter decl.\n"); int width = std::abs(children[1]->range_left - children[1]->range_right) + 1; if (children[0]->type == AST_REALVALUE) { RTLIL::Const constvalue = children[0]->realAsConst(width); log_file_warning(filename, location.first_line, "converting real value %e to binary %s.\n", children[0]->realvalue, log_signal(constvalue)); delete children[0]; children[0] = mkconst_bits(constvalue.to_bits(), sign_hint); fixup_hierarchy_flags(); did_something = true; } if (children[0]->type == AST_CONSTANT) { if (width != int(children[0]->bits.size())) { RTLIL::SigSpec sig(children[0]->bits); sig.extend_u0(width, children[0]->is_signed); AstNode *old_child_0 = children[0]; children[0] = mkconst_bits(sig.as_const().to_bits(), is_signed); delete old_child_0; fixup_hierarchy_flags(); } children[0]->is_signed = is_signed; } range_valid = true; range_swapped = children[1]->range_swapped; range_left = children[1]->range_left; range_right = children[1]->range_right; } else if (children.size() > 1 && children[1]->type == AST_REALVALUE && children[0]->type == AST_CONSTANT) { double as_realvalue = children[0]->asReal(sign_hint); delete children[0]; children[0] = new AstNode(AST_REALVALUE); children[0]->realvalue = as_realvalue; fixup_hierarchy_flags(); did_something = true; } } if (type == AST_IDENTIFIER && !basic_prep) { // check if a plausible struct member sss.mmmm if (!str.empty() && str[0] == '\\' && current_scope.count(str)) { auto item_node = current_scope[str]; if (item_node->type == AST_STRUCT_ITEM || item_node->type == AST_STRUCT || item_node->type == AST_UNION) { // Traverse any hierarchical path until the full name for the referenced struct/union is found. std::string sname; bool found_sname = false; for (std::string::size_type pos = 0; (pos = str.find('.', pos)) != std::string::npos; pos++) { sname = str.substr(0, pos); if (current_scope.count(sname)) { auto stype = current_scope[sname]->type; if (stype == AST_WIRE || stype == AST_PARAMETER || stype == AST_LOCALPARAM) { found_sname = true; break; } } } if (found_sname) { // structure member, rewrite this node to reference the packed struct wire auto range = make_index_range(item_node); newNode = new AstNode(AST_IDENTIFIER, range); newNode->str = sname; // save type and original number of dimensions for $size() etc. newNode->set_attribute(ID::wiretype, item_node->clone()); if (!item_node->dimensions.empty() && children.size() > 0) { if (children[0]->type == AST_RANGE) newNode->integer = 1; else if (children[0]->type == AST_MULTIRANGE) newNode->integer = children[0]->children.size(); } newNode->basic_prep = true; if (item_node->is_signed) newNode = new AstNode(AST_TO_SIGNED, newNode); goto apply_newNode; } } } } // annotate identifiers using scope resolution and create auto-wires as needed if (type == AST_IDENTIFIER) { if (current_scope.count(str) == 0) { AstNode *current_scope_ast = (current_ast_mod == nullptr) ? current_ast : current_ast_mod; str = try_pop_module_prefix(); for (auto node : current_scope_ast->children) { //log("looking at mod scope child %s\n", type2str(node->type).c_str()); switch (node->type) { case AST_PARAMETER: case AST_LOCALPARAM: case AST_WIRE: case AST_AUTOWIRE: case AST_GENVAR: case AST_MEMORY: case AST_FUNCTION: case AST_TASK: case AST_DPI_FUNCTION: //log("found child %s, %s\n", type2str(node->type).c_str(), node->str.c_str()); if (str == node->str) { //log("add %s, type %s to scope\n", str.c_str(), type2str(node->type).c_str()); current_scope[node->str] = node; } break; case AST_ENUM: current_scope[node->str] = node; for (auto enum_node : node->children) { log_assert(enum_node->type==AST_ENUM_ITEM); if (str == enum_node->str) { //log("\nadding enum item %s to scope\n", str.c_str()); current_scope[str] = enum_node; } } break; default: break; } } } if (current_scope.count(str) == 0) { if (current_ast_mod == nullptr) { input_error("Identifier `%s' is implicitly declared outside of a module.\n", str.c_str()); } else if (flag_autowire || str == "\\$global_clock") { AstNode *auto_wire = new AstNode(AST_AUTOWIRE); auto_wire->str = str; current_ast_mod->children.push_back(auto_wire); current_scope[str] = auto_wire; did_something = true; } else { input_error("Identifier `%s' is implicitly declared and `default_nettype is set to none.\n", str.c_str()); } } if (id2ast != current_scope[str]) { id2ast = current_scope[str]; did_something = true; } } // split memory access with bit select to individual statements if (type == AST_IDENTIFIER && children.size() == 2 && children[0]->type == AST_RANGE && children[1]->type == AST_RANGE && !in_lvalue && stage == 2) { if (id2ast == NULL || id2ast->type != AST_MEMORY || children[0]->children.size() != 1) input_error("Invalid bit-select on memory access!\n"); int mem_width, mem_size, addr_bits; id2ast->meminfo(mem_width, mem_size, addr_bits); int data_range_left = id2ast->children[0]->range_left; int data_range_right = id2ast->children[0]->range_right; if (id2ast->children[0]->range_swapped) std::swap(data_range_left, data_range_right); std::stringstream sstr; sstr << "$mem2bits$" << str << "$" << RTLIL::encode_filename(filename) << ":" << location.first_line << "$" << (autoidx++); std::string wire_id = sstr.str(); AstNode *wire = new AstNode(AST_WIRE, new AstNode(AST_RANGE, mkconst_int(data_range_left, true), mkconst_int(data_range_right, true))); wire->str = wire_id; if (current_block) wire->set_attribute(ID::nosync, AstNode::mkconst_int(1, false)); current_ast_mod->children.push_back(wire); while (wire->simplify(true, 1, -1, false)) { } AstNode *data = clone(); delete data->children[1]; data->children.pop_back(); AstNode *assign = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER), data); assign->children[0]->str = wire_id; assign->children[0]->was_checked = true; if (current_block) { size_t assign_idx = 0; while (assign_idx < current_block->children.size() && current_block->children[assign_idx] != current_block_child) assign_idx++; log_assert(assign_idx < current_block->children.size()); current_block->children.insert(current_block->children.begin()+assign_idx, assign); wire->is_reg = true; } else { AstNode *proc = new AstNode(AST_ALWAYS, new AstNode(AST_BLOCK)); proc->children[0]->children.push_back(assign); current_ast_mod->children.push_back(proc); } newNode = new AstNode(AST_IDENTIFIER, children[1]->clone()); newNode->str = wire_id; newNode->integer = integer; // save original number of dimensions for $size() etc. newNode->id2ast = wire; goto apply_newNode; } if (type == AST_WHILE) input_error("While loops are only allowed in constant functions!\n"); if (type == AST_REPEAT) { AstNode *count = children[0]; AstNode *body = children[1]; // eval count expression while (count->simplify(true, stage, 32, true)) { } if (count->type != AST_CONSTANT) input_error("Repeat loops outside must have constant repeat counts!\n"); // convert to a block with the body repeated n times type = AST_BLOCK; children.clear(); for (int i = 0; i < count->bitsAsConst().as_int(); i++) children.insert(children.begin(), body->clone()); delete count; delete body; did_something = true; } // unroll for loops and generate-for blocks if ((type == AST_GENFOR || type == AST_FOR) && children.size() != 0) { AstNode *init_ast = children[0]; AstNode *while_ast = children[1]; AstNode *next_ast = children[2]; AstNode *body_ast = children[3]; while (body_ast->type == AST_GENBLOCK && body_ast->str.empty() && body_ast->children.size() == 1 && body_ast->children.at(0)->type == AST_GENBLOCK) body_ast = body_ast->children.at(0); const char* loop_type_str = "procedural"; const char* var_type_str = "register"; AstNodeType var_type = AST_WIRE; if (type == AST_GENFOR) { loop_type_str = "generate"; var_type_str = "genvar"; var_type = AST_GENVAR; } if (init_ast->type != AST_ASSIGN_EQ) input_error("Unsupported 1st expression of %s for-loop!\n", loop_type_str); if (next_ast->type != AST_ASSIGN_EQ) input_error("Unsupported 3rd expression of %s for-loop!\n", loop_type_str); if (init_ast->children[0]->id2ast == NULL || init_ast->children[0]->id2ast->type != var_type) input_error("Left hand side of 1st expression of %s for-loop is not a %s!\n", loop_type_str, var_type_str); if (next_ast->children[0]->id2ast == NULL || next_ast->children[0]->id2ast->type != var_type) input_error("Left hand side of 3rd expression of %s for-loop is not a %s!\n", loop_type_str, var_type_str); if (init_ast->children[0]->id2ast != next_ast->children[0]->id2ast) input_error("Incompatible left-hand sides in 1st and 3rd expression of %s for-loop!\n", loop_type_str); // eval 1st expression AstNode *varbuf = init_ast->children[1]->clone(); { int expr_width_hint = -1; bool expr_sign_hint = true; varbuf->detectSignWidth(expr_width_hint, expr_sign_hint); while (varbuf->simplify(true, stage, 32, true)) { } } if (varbuf->type != AST_CONSTANT) input_error("Right hand side of 1st expression of %s for-loop is not constant!\n", loop_type_str); auto resolved = current_scope.at(init_ast->children[0]->str); if (resolved->range_valid) { int const_size = varbuf->range_left - varbuf->range_right; int resolved_size = resolved->range_left - resolved->range_right; if (const_size < resolved_size) { for (int i = const_size; i < resolved_size; i++) varbuf->bits.push_back(resolved->is_signed ? varbuf->bits.back() : State::S0); varbuf->range_left = resolved->range_left; varbuf->range_right = resolved->range_right; varbuf->range_swapped = resolved->range_swapped; varbuf->range_valid = resolved->range_valid; } } varbuf = new AstNode(AST_LOCALPARAM, varbuf); varbuf->str = init_ast->children[0]->str; AstNode *backup_scope_varbuf = current_scope[varbuf->str]; current_scope[varbuf->str] = varbuf; size_t current_block_idx = 0; if (type == AST_FOR) { while (current_block_idx < current_block->children.size() && current_block->children[current_block_idx] != current_block_child) current_block_idx++; } while (1) { // eval 2nd expression AstNode *buf = while_ast->clone(); { int expr_width_hint = -1; bool expr_sign_hint = true; buf->detectSignWidth(expr_width_hint, expr_sign_hint); while (buf->simplify(true, stage, expr_width_hint, expr_sign_hint)) { } } if (buf->type != AST_CONSTANT) input_error("2nd expression of %s for-loop is not constant!\n", loop_type_str); if (buf->integer == 0) { delete buf; break; } delete buf; // expand body int index = varbuf->children[0]->integer; log_assert(body_ast->type == AST_GENBLOCK || body_ast->type == AST_BLOCK); log_assert(!body_ast->str.empty()); buf = body_ast->clone(); std::stringstream sstr; sstr << buf->str << "[" << index << "]."; std::string prefix = sstr.str(); // create a scoped localparam for the current value of the loop variable AstNode *local_index = varbuf->clone(); size_t pos = local_index->str.rfind('.'); if (pos != std::string::npos) // remove outer prefix local_index->str = "\\" + local_index->str.substr(pos + 1); local_index->str = prefix_id(prefix, local_index->str); current_scope[local_index->str] = local_index; current_ast_mod->children.push_back(local_index); buf->expand_genblock(prefix); if (type == AST_GENFOR) { for (size_t i = 0; i < buf->children.size(); i++) { buf->children[i]->simplify(const_fold, stage, -1, false); current_ast_mod->children.push_back(buf->children[i]); } } else { for (size_t i = 0; i < buf->children.size(); i++) current_block->children.insert(current_block->children.begin() + current_block_idx++, buf->children[i]); } buf->children.clear(); delete buf; // eval 3rd expression buf = next_ast->children[1]->clone(); buf->set_in_param_flag(true); { int expr_width_hint = -1; bool expr_sign_hint = true; buf->detectSignWidth(expr_width_hint, expr_sign_hint); while (buf->simplify(true, stage, expr_width_hint, expr_sign_hint)) { } } if (buf->type != AST_CONSTANT) input_error("Right hand side of 3rd expression of %s for-loop is not constant (%s)!\n", loop_type_str, type2str(buf->type).c_str()); delete varbuf->children[0]; varbuf->children[0] = buf; } if (type == AST_FOR) { AstNode *buf = next_ast->clone(); delete buf->children[1]; buf->children[1] = varbuf->children[0]->clone(); current_block->children.insert(current_block->children.begin() + current_block_idx++, buf); } current_scope[varbuf->str] = backup_scope_varbuf; delete varbuf; delete_children(); did_something = true; } // check for local objects in unnamed block if (type == AST_BLOCK && str.empty()) { for (size_t i = 0; i < children.size(); i++) if (children[i]->type == AST_WIRE || children[i]->type == AST_MEMORY || children[i]->type == AST_PARAMETER || children[i]->type == AST_LOCALPARAM || children[i]->type == AST_TYPEDEF) { log_assert(!VERILOG_FRONTEND::sv_mode); children[i]->input_error("Local declaration in unnamed block is only supported in SystemVerilog mode!\n"); } } // transform block with name if (type == AST_BLOCK && !str.empty()) { expand_genblock(str + "."); // if this is an autonamed block is in an always_comb if (current_always && current_always->attributes.count(ID::always_comb) && is_autonamed_block(str)) // track local variables in this block so we can consider adding // nosync once the block has been fully elaborated for (AstNode *child : children) if (child->type == AST_WIRE && !child->attributes.count(ID::nosync)) mark_auto_nosync(this, child); std::vector new_children; for (size_t i = 0; i < children.size(); i++) if (children[i]->type == AST_WIRE || children[i]->type == AST_MEMORY || children[i]->type == AST_PARAMETER || children[i]->type == AST_LOCALPARAM || children[i]->type == AST_TYPEDEF) { children[i]->simplify(false, stage, -1, false); current_ast_mod->children.push_back(children[i]); current_scope[children[i]->str] = children[i]; } else new_children.push_back(children[i]); children.swap(new_children); did_something = true; str.clear(); } // simplify unconditional generate block if (type == AST_GENBLOCK && children.size() != 0) { if (!str.empty()) { expand_genblock(str + "."); } for (size_t i = 0; i < children.size(); i++) { children[i]->simplify(const_fold, stage, -1, false); current_ast_mod->children.push_back(children[i]); } children.clear(); did_something = true; } // simplify generate-if blocks if (type == AST_GENIF && children.size() != 0) { AstNode *buf = children[0]->clone(); while (buf->simplify(true, stage, width_hint, sign_hint)) { } if (buf->type != AST_CONSTANT) { // for (auto f : log_files) // dumpAst(f, "verilog-ast> "); input_error("Condition for generate if is not constant!\n"); } if (buf->asBool() != 0) { delete buf; buf = children[1]->clone(); } else { delete buf; buf = children.size() > 2 ? children[2]->clone() : NULL; } if (buf) { if (buf->type != AST_GENBLOCK) buf = new AstNode(AST_GENBLOCK, buf); if (!buf->str.empty()) { buf->expand_genblock(buf->str + "."); } for (size_t i = 0; i < buf->children.size(); i++) { buf->children[i]->simplify(const_fold, stage, -1, false); current_ast_mod->children.push_back(buf->children[i]); } buf->children.clear(); delete buf; } delete_children(); did_something = true; } // simplify generate-case blocks if (type == AST_GENCASE && children.size() != 0) { AstNode *buf = children[0]->clone(); while (buf->simplify(true, stage, width_hint, sign_hint)) { } if (buf->type != AST_CONSTANT) { // for (auto f : log_files) // dumpAst(f, "verilog-ast> "); input_error("Condition for generate case is not constant!\n"); } bool ref_signed = buf->is_signed; RTLIL::Const ref_value = buf->bitsAsConst(); delete buf; AstNode *selected_case = NULL; for (size_t i = 1; i < children.size(); i++) { log_assert(children.at(i)->type == AST_COND || children.at(i)->type == AST_CONDX || children.at(i)->type == AST_CONDZ); AstNode *this_genblock = NULL; for (auto child : children.at(i)->children) { log_assert(this_genblock == NULL); if (child->type == AST_GENBLOCK) this_genblock = child; } for (auto child : children.at(i)->children) { if (child->type == AST_DEFAULT) { if (selected_case == NULL) selected_case = this_genblock; continue; } if (child->type == AST_GENBLOCK) continue; buf = child->clone(); buf->set_in_param_flag(true); while (buf->simplify(true, stage, width_hint, sign_hint)) { } if (buf->type != AST_CONSTANT) { // for (auto f : log_files) // dumpAst(f, "verilog-ast> "); input_error("Expression in generate case is not constant!\n"); } bool is_selected = RTLIL::const_eq(ref_value, buf->bitsAsConst(), ref_signed && buf->is_signed, ref_signed && buf->is_signed, 1).as_bool(); delete buf; if (is_selected) { selected_case = this_genblock; i = children.size(); break; } } } if (selected_case != NULL) { log_assert(selected_case->type == AST_GENBLOCK); buf = selected_case->clone(); if (!buf->str.empty()) { buf->expand_genblock(buf->str + "."); } for (size_t i = 0; i < buf->children.size(); i++) { buf->children[i]->simplify(const_fold, stage, -1, false); current_ast_mod->children.push_back(buf->children[i]); } buf->children.clear(); delete buf; } delete_children(); did_something = true; } // unroll cell arrays if (type == AST_CELLARRAY) { if (!children.at(0)->range_valid) input_error("Non-constant array range on cell array.\n"); newNode = new AstNode(AST_GENBLOCK); int num = max(children.at(0)->range_left, children.at(0)->range_right) - min(children.at(0)->range_left, children.at(0)->range_right) + 1; for (int i = 0; i < num; i++) { int idx = children.at(0)->range_left > children.at(0)->range_right ? children.at(0)->range_right + i : children.at(0)->range_right - i; AstNode *new_cell = children.at(1)->clone(); newNode->children.push_back(new_cell); new_cell->str += stringf("[%d]", idx); if (new_cell->type == AST_PRIMITIVE) { input_error("Cell arrays of primitives are currently not supported.\n"); } else { log_assert(new_cell->children.at(0)->type == AST_CELLTYPE); new_cell->children.at(0)->str = stringf("$array:%d:%d:%s", i, num, new_cell->children.at(0)->str.c_str()); } } goto apply_newNode; } // replace primitives with assignments if (type == AST_PRIMITIVE) { if (children.size() < 2) input_error("Insufficient number of arguments for primitive `%s'!\n", str.c_str()); std::vector children_list; for (auto child : children) { log_assert(child->type == AST_ARGUMENT); log_assert(child->children.size() == 1); children_list.push_back(child->children[0]); child->children.clear(); delete child; } children.clear(); if (str == "bufif0" || str == "bufif1" || str == "notif0" || str == "notif1") { if (children_list.size() != 3) input_error("Invalid number of arguments for primitive `%s'!\n", str.c_str()); std::vector z_const(1, RTLIL::State::Sz); AstNode *mux_input = children_list.at(1); if (str == "notif0" || str == "notif1") { mux_input = new AstNode(AST_BIT_NOT, mux_input); } AstNode *node = new AstNode(AST_TERNARY, children_list.at(2)); // if (str == "bufif0") { // node->children.push_back(AstNode::mkconst_bits(z_const, false)); // node->children.push_back(mux_input); // } else { // node->children.push_back(mux_input); // node->children.push_back(AstNode::mkconst_bits(z_const, false)); // } str.clear(); type = AST_ASSIGN; children.push_back(children_list.at(0)); children.back()->was_checked = true; children.push_back(node); fixup_hierarchy_flags(); did_something = true; } else if (str == "buf" || str == "not") { AstNode *input = children_list.back(); if (str == "not") input = new AstNode(AST_BIT_NOT, input); newNode = new AstNode(AST_GENBLOCK); for (auto it = children_list.begin(); it != std::prev(children_list.end()); it++) { newNode->children.push_back(new AstNode(AST_ASSIGN, *it, input->clone())); newNode->children.back()->was_checked = true; } delete input; did_something = true; } else { AstNodeType op_type = AST_NONE; bool invert_results = false; if (str == "and") op_type = AST_BIT_AND; if (str == "nand") op_type = AST_BIT_AND, invert_results = true; if (str == "or") op_type = AST_BIT_OR; if (str == "nor") op_type = AST_BIT_OR, invert_results = true; if (str == "xor") op_type = AST_BIT_XOR; if (str == "xnor") op_type = AST_BIT_XOR, invert_results = true; log_assert(op_type != AST_NONE); AstNode *node = children_list[1]; if (op_type != AST_POS) for (size_t i = 2; i < children_list.size(); i++) { node = new AstNode(op_type, node, children_list[i]); node->location = location; } if (invert_results) node = new AstNode(AST_BIT_NOT, node); str.clear(); type = AST_ASSIGN; children.push_back(children_list[0]); children.back()->was_checked = true; children.push_back(node); fixup_hierarchy_flags(); did_something = true; } } // replace dynamic ranges in left-hand side expressions (e.g. "foo[bar] <= 1'b1;") with // either a big case block that selects the correct single-bit assignment, or mask and // shift operations. if (type == AST_ASSIGN_EQ || type == AST_ASSIGN_LE) { if (children[0]->type != AST_IDENTIFIER || children[0]->children.size() == 0) goto skip_dynamic_range_lvalue_expansion; if (children[0]->children[0]->range_valid || did_something) goto skip_dynamic_range_lvalue_expansion; if (children[0]->id2ast == NULL || children[0]->id2ast->type != AST_WIRE) goto skip_dynamic_range_lvalue_expansion; if (!children[0]->id2ast->range_valid) goto skip_dynamic_range_lvalue_expansion; AST::AstNode *member_node = children[0]->get_struct_member(); int wire_width = member_node ? member_node->range_left - member_node->range_right + 1 : children[0]->id2ast->range_left - children[0]->id2ast->range_right + 1; int wire_offset = children[0]->id2ast->range_right; int result_width = 1; AstNode *shift_expr = NULL; AstNode *range = children[0]->children[0]; if (!try_determine_range_width(range, result_width)) input_error("Unsupported expression on dynamic range select on signal `%s'!\n", str.c_str()); if (range->children.size() >= 2) shift_expr = range->children[1]->clone(); else shift_expr = range->children[0]->clone(); bool use_case_method = children[0]->id2ast->get_bool_attribute(ID::nowrshmsk); if (!use_case_method && current_always->detect_latch(children[0]->str)) use_case_method = true; if (use_case_method) { // big case block int stride = 1; long long bitno_div = stride; int case_width_hint; bool case_sign_hint; shift_expr->detectSignWidth(case_width_hint, case_sign_hint); int max_width = case_width_hint; if (member_node) { // Member in packed struct/union // Clamp chunk to range of member within struct/union. log_assert(!wire_offset && !children[0]->id2ast->range_swapped); // When the (* nowrshmsk *) attribute is set, a CASE block is generated below // to select the indexed bit slice. When a multirange array is indexed, the // start of each possible slice is separated by the bit stride of the last // index dimension, and we can optimize the CASE block accordingly. // The dimension of the original array expression is saved in the 'integer' field. int dims = children[0]->integer; stride = wire_width; for (int dim = 0; dim < dims; dim++) { stride /= member_node->dimensions[dim].range_width; } bitno_div = stride; } else { // Extract (index)*(width) from non_opt_range pattern ((@selfsz@((index)*(width)))+(0)). AstNode *lsb_expr = shift_expr->type == AST_ADD && shift_expr->children[0]->type == AST_SELFSZ && shift_expr->children[1]->type == AST_CONSTANT && shift_expr->children[1]->integer == 0 ? shift_expr->children[0]->children[0] : shift_expr; // Extract stride from indexing of two-dimensional packed arrays and // variable slices on the form dst[i*stride +: width] = src. if (lsb_expr->type == AST_MUL && (lsb_expr->children[0]->type == AST_CONSTANT || lsb_expr->children[1]->type == AST_CONSTANT)) { int stride_ix = lsb_expr->children[1]->type == AST_CONSTANT; stride = (int)lsb_expr->children[stride_ix]->integer; bitno_div = stride != 0 ? stride : 1; // Check whether i*stride can overflow. int i_width; bool i_sign; lsb_expr->children[1 - stride_ix]->detectSignWidth(i_width, i_sign); int stride_width; bool stride_sign; lsb_expr->children[stride_ix]->detectSignWidth(stride_width, stride_sign); max_width = std::max(i_width, stride_width); // Stride width calculated from actual stride value. stride_width = std::ceil(std::log2(std::abs(stride))); if (i_width + stride_width > max_width) { // For (truncated) i*stride to be within the range of dst, the following must hold: // i*stride ≡ bitno (mod shift_mod), i.e. // i*stride = k*shift_mod + bitno // // The Diophantine equation on the form ax + by = c: // stride*i - shift_mod*k = bitno // has solutions iff c is a multiple of d = gcd(a, b), i.e. // bitno mod gcd(stride, shift_mod) = 0 // // long long is at least 64 bits in C++11 long long shift_mod = 1ll << (max_width - case_sign_hint); // std::gcd requires C++17 // bitno_div = std::gcd(stride, shift_mod); bitno_div = gcd((long long)stride, shift_mod); } } } // long long is at least 64 bits in C++11 long long max_offset = (1ll << (max_width - case_sign_hint)) - 1; long long min_offset = case_sign_hint ? -(1ll << (max_width - 1)) : 0; // A temporary register holds the result of the (possibly complex) rvalue expression, // avoiding repetition in each AST_COND below. int rvalue_width; bool rvalue_sign; children[1]->detectSignWidth(rvalue_width, rvalue_sign); AstNode *rvalue = mktemp_logic("$bitselwrite$rvalue$", current_ast_mod, true, rvalue_width - 1, 0, rvalue_sign); AstNode *caseNode = new AstNode(AST_CASE, shift_expr); newNode = new AstNode(AST_BLOCK, new AstNode(AST_ASSIGN_EQ, rvalue, children[1]->clone()), caseNode); did_something = true; for (int i = 1 - result_width; i < wire_width; i++) { // Out of range indexes are handled in genrtlil.cc int start_bit = wire_offset + i; int end_bit = start_bit + result_width - 1; // Check whether the current index can be generated by shift_expr. if (start_bit < min_offset || start_bit > max_offset) continue; if (start_bit%bitno_div != 0 || (stride == 0 && start_bit != 0)) continue; AstNode *cond = new AstNode(AST_COND, mkconst_int(start_bit, case_sign_hint, max_width)); AstNode *lvalue = children[0]->clone(); lvalue->delete_children(); if (member_node) lvalue->set_attribute(ID::wiretype, member_node->clone()); lvalue->children.push_back(new AstNode(AST_RANGE, mkconst_int(end_bit, true), mkconst_int(start_bit, true))); cond->children.push_back(new AstNode(AST_BLOCK, new AstNode(type, lvalue, rvalue->clone()))); caseNode->children.push_back(cond); } } else { // mask and shift operations // dst = (dst & ~(width'1 << lsb)) | unsigned'(width'(src)) << lsb) AstNode *lvalue = children[0]->clone(); lvalue->delete_children(); if (member_node) lvalue->set_attribute(ID::wiretype, member_node->clone()); AstNode *old_data = lvalue->clone(); if (type == AST_ASSIGN_LE) old_data->lookahead = true; int shift_width_hint; bool shift_sign_hint; shift_expr->detectSignWidth(shift_width_hint, shift_sign_hint); // All operations are carried out in a new block. newNode = new AstNode(AST_BLOCK); // Temporary register holding the result of the bit- or part-select position expression. AstNode *pos = mktemp_logic("$bitselwrite$pos$", current_ast_mod, true, shift_width_hint - 1, 0, shift_sign_hint); newNode->children.push_back(new AstNode(AST_ASSIGN_EQ, pos, shift_expr)); // Calculate lsb from position. AstNode *shift_val = pos->clone(); // If the expression is signed, we must add an extra bit for possible negation of the most negative number. // If the expression is unsigned, we must add an extra bit for sign. shift_val = new AstNode(AST_CAST_SIZE, mkconst_int(shift_width_hint + 1, true), shift_val); if (!shift_sign_hint) shift_val = new AstNode(AST_TO_SIGNED, shift_val); // offset the shift amount by the lower bound of the dimension if (wire_offset != 0) shift_val = new AstNode(AST_SUB, shift_val, mkconst_int(wire_offset, true)); // reflect the shift amount if the dimension is swapped if (children[0]->id2ast->range_swapped) shift_val = new AstNode(AST_SUB, mkconst_int(wire_width - result_width, true), shift_val); // AST_SHIFT uses negative amounts for shifting left shift_val = new AstNode(AST_NEG, shift_val); // dst = (dst & ~(width'1 << lsb)) | unsigned'(width'(src)) << lsb) did_something = true; AstNode *bitmask = mkconst_bits(std::vector(result_width, State::S1), false); newNode->children.push_back( new AstNode(type, lvalue, new AstNode(AST_BIT_OR, new AstNode(AST_BIT_AND, old_data, new AstNode(AST_BIT_NOT, new AstNode(AST_SHIFT, bitmask, shift_val->clone()))), new AstNode(AST_SHIFT, new AstNode(AST_TO_UNSIGNED, new AstNode(AST_CAST_SIZE, mkconst_int(result_width, true), children[1]->clone())), shift_val)))); newNode->fixup_hierarchy_flags(true); } goto apply_newNode; } skip_dynamic_range_lvalue_expansion:; // found right-hand side identifier for memory -> replace with memory read port if (stage > 1 && type == AST_IDENTIFIER && id2ast != NULL && id2ast->type == AST_MEMORY && !in_lvalue && children.size() == 1 && children[0]->type == AST_RANGE && children[0]->children.size() == 1) { if (integer < (unsigned)id2ast->unpacked_dimensions) input_error("Insufficient number of array indices for %s.\n", log_id(str)); newNode = new AstNode(AST_MEMRD, children[0]->children[0]->clone()); newNode->str = str; newNode->id2ast = id2ast; goto apply_newNode; } // assignment with nontrivial member in left-hand concat expression -> split assignment if ((type == AST_ASSIGN_EQ || type == AST_ASSIGN_LE) && children[0]->type == AST_CONCAT && width_hint > 0) { bool found_nontrivial_member = false; for (auto child : children[0]->children) { if (child->type == AST_IDENTIFIER && child->id2ast != NULL && child->id2ast->type == AST_MEMORY) found_nontrivial_member = true; } if (found_nontrivial_member) { newNode = new AstNode(AST_BLOCK); AstNode *wire_tmp = new AstNode(AST_WIRE, new AstNode(AST_RANGE, mkconst_int(width_hint-1, true), mkconst_int(0, true))); wire_tmp->str = stringf("$splitcmplxassign$%s:%d$%d", RTLIL::encode_filename(filename).c_str(), location.first_line, autoidx++); current_ast_mod->children.push_back(wire_tmp); current_scope[wire_tmp->str] = wire_tmp; wire_tmp->set_attribute(ID::nosync, AstNode::mkconst_int(1, false)); while (wire_tmp->simplify(true, 1, -1, false)) { } wire_tmp->is_logic = true; AstNode *wire_tmp_id = new AstNode(AST_IDENTIFIER); wire_tmp_id->str = wire_tmp->str; newNode->children.push_back(new AstNode(AST_ASSIGN_EQ, wire_tmp_id, children[1]->clone())); newNode->children.back()->was_checked = true; int cursor = 0; for (auto child : children[0]->children) { int child_width_hint = -1; bool child_sign_hint = true; child->detectSignWidth(child_width_hint, child_sign_hint); AstNode *rhs = wire_tmp_id->clone(); rhs->children.push_back(new AstNode(AST_RANGE, AstNode::mkconst_int(cursor+child_width_hint-1, true), AstNode::mkconst_int(cursor, true))); newNode->children.push_back(new AstNode(type, child->clone(), rhs)); cursor += child_width_hint; } goto apply_newNode; } } // assignment with memory in left-hand side expression -> replace with memory write port if (stage > 1 && (type == AST_ASSIGN_EQ || type == AST_ASSIGN_LE) && children[0]->type == AST_IDENTIFIER && children[0]->id2ast && children[0]->id2ast->type == AST_MEMORY && children[0]->id2ast->children.size() >= 2 && children[0]->id2ast->children[0]->range_valid && children[0]->id2ast->children[1]->range_valid && (children[0]->children.size() == 1 || children[0]->children.size() == 2) && children[0]->children[0]->type == AST_RANGE) { if (children[0]->integer < (unsigned)children[0]->id2ast->unpacked_dimensions) input_error("Insufficient number of array indices for %s.\n", log_id(str)); std::stringstream sstr; sstr << "$memwr$" << children[0]->str << "$" << RTLIL::encode_filename(filename) << ":" << location.first_line << "$" << (autoidx++); std::string id_addr = sstr.str() + "_ADDR", id_data = sstr.str() + "_DATA", id_en = sstr.str() + "_EN"; int mem_width, mem_size, addr_bits; bool mem_signed = children[0]->id2ast->is_signed; children[0]->id2ast->meminfo(mem_width, mem_size, addr_bits); newNode = new AstNode(AST_BLOCK); AstNode *defNode = new AstNode(AST_BLOCK); int data_range_left = children[0]->id2ast->children[0]->range_left; int data_range_right = children[0]->id2ast->children[0]->range_right; int mem_data_range_offset = std::min(data_range_left, data_range_right); int addr_width_hint = -1; bool addr_sign_hint = true; children[0]->children[0]->children[0]->detectSignWidthWorker(addr_width_hint, addr_sign_hint); addr_bits = std::max(addr_bits, addr_width_hint); std::vector x_bits_addr, x_bits_data, set_bits_en; for (int i = 0; i < addr_bits; i++) x_bits_addr.push_back(RTLIL::State::Sx); for (int i = 0; i < mem_width; i++) x_bits_data.push_back(RTLIL::State::Sx); for (int i = 0; i < mem_width; i++) set_bits_en.push_back(RTLIL::State::S1); AstNode *node_addr = nullptr; if (children[0]->children[0]->children[0]->isConst()) { node_addr = children[0]->children[0]->children[0]->clone(); } else { AstNode *wire_addr = new AstNode(AST_WIRE, new AstNode(AST_RANGE, mkconst_int(addr_bits-1, true), mkconst_int(0, true))); wire_addr->str = id_addr; wire_addr->was_checked = true; current_ast_mod->children.push_back(wire_addr); current_scope[wire_addr->str] = wire_addr; while (wire_addr->simplify(true, 1, -1, false)) { } AstNode *assign_addr = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER), mkconst_bits(x_bits_addr, false)); assign_addr->children[0]->str = id_addr; assign_addr->children[0]->was_checked = true; defNode->children.push_back(assign_addr); assign_addr = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER), children[0]->children[0]->children[0]->clone()); assign_addr->children[0]->str = id_addr; assign_addr->children[0]->was_checked = true; newNode->children.push_back(assign_addr); node_addr = new AstNode(AST_IDENTIFIER); node_addr->str = id_addr; } AstNode *node_data = nullptr; if (children[0]->children.size() == 1 && children[1]->isConst()) { node_data = children[1]->clone(); } else { AstNode *wire_data = new AstNode(AST_WIRE, new AstNode(AST_RANGE, mkconst_int(mem_width-1, true), mkconst_int(0, true))); wire_data->str = id_data; wire_data->was_checked = true; wire_data->is_signed = mem_signed; current_ast_mod->children.push_back(wire_data); current_scope[wire_data->str] = wire_data; while (wire_data->simplify(true, 1, -1, false)) { } AstNode *assign_data = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER), mkconst_bits(x_bits_data, false)); assign_data->children[0]->str = id_data; assign_data->children[0]->was_checked = true; defNode->children.push_back(assign_data); node_data = new AstNode(AST_IDENTIFIER); node_data->str = id_data; } AstNode *wire_en = new AstNode(AST_WIRE, new AstNode(AST_RANGE, mkconst_int(mem_width-1, true), mkconst_int(0, true))); wire_en->str = id_en; wire_en->was_checked = true; current_ast_mod->children.push_back(wire_en); current_scope[wire_en->str] = wire_en; while (wire_en->simplify(true, 1, -1, false)) { } AstNode *assign_en_first = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER), mkconst_int(0, false, mem_width)); assign_en_first->children[0]->str = id_en; assign_en_first->children[0]->was_checked = true; defNode->children.push_back(assign_en_first); AstNode *node_en = new AstNode(AST_IDENTIFIER); node_en->str = id_en; if (!defNode->children.empty()) current_top_block->children.insert(current_top_block->children.begin(), defNode); else delete defNode; AstNode *assign_data = nullptr; AstNode *assign_en = nullptr; if (children[0]->children.size() == 2) { if (children[0]->children[1]->range_valid) { int offset = children[0]->children[1]->range_right; int width = children[0]->children[1]->range_left - offset + 1; offset -= mem_data_range_offset; std::vector padding_x(offset, RTLIL::State::Sx); assign_data = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER), new AstNode(AST_CONCAT, mkconst_bits(padding_x, false), children[1]->clone())); assign_data->children[0]->str = id_data; assign_data->children[0]->was_checked = true; for (int i = 0; i < mem_width; i++) set_bits_en[i] = offset <= i && i < offset+width ? RTLIL::State::S1 : RTLIL::State::S0; assign_en = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER), mkconst_bits(set_bits_en, false)); assign_en->children[0]->str = id_en; assign_en->children[0]->was_checked = true; } else { AstNode *the_range = children[0]->children[1]; AstNode *offset_ast; int width; if (!try_determine_range_width(the_range, width)) input_error("Unsupported expression on dynamic range select on signal `%s'!\n", str.c_str()); if (the_range->children.size() >= 2) offset_ast = the_range->children[1]->clone(); else offset_ast = the_range->children[0]->clone(); if (mem_data_range_offset) offset_ast = new AstNode(AST_SUB, offset_ast, mkconst_int(mem_data_range_offset, true)); assign_data = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER), new AstNode(AST_SHIFT_LEFT, children[1]->clone(), offset_ast->clone())); assign_data->children[0]->str = id_data; assign_data->children[0]->was_checked = true; for (int i = 0; i < mem_width; i++) set_bits_en[i] = i < width ? RTLIL::State::S1 : RTLIL::State::S0; assign_en = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER), new AstNode(AST_SHIFT_LEFT, mkconst_bits(set_bits_en, false), offset_ast->clone())); assign_en->children[0]->str = id_en; assign_en->children[0]->was_checked = true; delete offset_ast; } } else { if (!(children[0]->children.size() == 1 && children[1]->isConst())) { assign_data = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER), children[1]->clone()); assign_data->children[0]->str = id_data; assign_data->children[0]->was_checked = true; } assign_en = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER), mkconst_bits(set_bits_en, false)); assign_en->children[0]->str = id_en; assign_en->children[0]->was_checked = true; } if (assign_data) newNode->children.push_back(assign_data); if (assign_en) newNode->children.push_back(assign_en); AstNode *wrnode; if (current_always->type == AST_INITIAL) wrnode = new AstNode(AST_MEMINIT, node_addr, node_data, node_en, mkconst_int(1, false)); else wrnode = new AstNode(AST_MEMWR, node_addr, node_data, node_en); wrnode->str = children[0]->str; wrnode->id2ast = children[0]->id2ast; wrnode->location = location; if (wrnode->type == AST_MEMWR) { int portid = current_memwr_count[wrnode->str]++; wrnode->children.push_back(mkconst_int(portid, false)); std::vector priority_mask; for (int i = 0; i < portid; i++) { bool has_prio = current_memwr_visible[wrnode->str].count(i); priority_mask.push_back(State(has_prio)); } wrnode->children.push_back(mkconst_bits(priority_mask, false)); current_memwr_visible[wrnode->str].insert(portid); current_always->children.push_back(wrnode); } else { current_ast_mod->children.push_back(wrnode); } if (newNode->children.empty()) { delete newNode; newNode = new AstNode(); } goto apply_newNode; } // replace function and task calls with the code from the function or task if ((type == AST_FCALL || type == AST_TCALL) && !str.empty()) { if (type == AST_FCALL) { if (str == "\\$initstate") { int myidx = autoidx++; AstNode *wire = new AstNode(AST_WIRE); wire->str = stringf("$initstate$%d_wire", myidx); current_ast_mod->children.push_back(wire); while (wire->simplify(true, 1, -1, false)) { } AstNode *cell = new AstNode(AST_CELL, new AstNode(AST_CELLTYPE), new AstNode(AST_ARGUMENT, new AstNode(AST_IDENTIFIER))); cell->str = stringf("$initstate$%d", myidx); cell->children[0]->str = "$initstate"; cell->children[1]->str = "\\Y"; cell->children[1]->children[0]->str = wire->str; cell->children[1]->children[0]->id2ast = wire; current_ast_mod->children.push_back(cell); while (cell->simplify(true, 1, -1, false)) { } newNode = new AstNode(AST_IDENTIFIER); newNode->str = wire->str; newNode->id2ast = wire; goto apply_newNode; } if (str == "\\$past") { if (width_hint < 0) goto replace_fcall_later; int num_steps = 1; if (GetSize(children) != 1 && GetSize(children) != 2) input_error("System function %s got %d arguments, expected 1 or 2.\n", RTLIL::unescape_id(str).c_str(), int(children.size())); if (!current_always_clocked) input_error("System function %s is only allowed in clocked blocks.\n", RTLIL::unescape_id(str).c_str()); if (GetSize(children) == 2) { AstNode *buf = children[1]->clone(); while (buf->simplify(true, stage, -1, false)) { } if (buf->type != AST_CONSTANT) input_error("Failed to evaluate system function `%s' with non-constant value.\n", str.c_str()); num_steps = buf->asInt(true); delete buf; } AstNode *block = nullptr; for (auto child : current_always->children) if (child->type == AST_BLOCK) block = child; log_assert(block != nullptr); if (num_steps == 0) { newNode = children[0]->clone(); goto apply_newNode; } int myidx = autoidx++; AstNode *outreg = nullptr; for (int i = 0; i < num_steps; i++) { AstNode *reg = new AstNode(AST_WIRE, new AstNode(AST_RANGE, mkconst_int(width_hint-1, true), mkconst_int(0, true))); reg->str = stringf("$past$%s:%d$%d$%d", RTLIL::encode_filename(filename).c_str(), location.first_line, myidx, i); reg->is_reg = true; reg->is_signed = sign_hint; current_ast_mod->children.push_back(reg); while (reg->simplify(true, 1, -1, false)) { } AstNode *regid = new AstNode(AST_IDENTIFIER); regid->str = reg->str; regid->id2ast = reg; regid->was_checked = true; AstNode *rhs = nullptr; if (outreg == nullptr) { rhs = children.at(0)->clone(); } else { rhs = new AstNode(AST_IDENTIFIER); rhs->str = outreg->str; rhs->id2ast = outreg; } block->children.push_back(new AstNode(AST_ASSIGN_LE, regid, rhs)); outreg = reg; } newNode = new AstNode(AST_IDENTIFIER); newNode->str = outreg->str; newNode->id2ast = outreg; goto apply_newNode; } if (str == "\\$stable" || str == "\\$rose" || str == "\\$fell" || str == "\\$changed") { if (GetSize(children) != 1) input_error("System function %s got %d arguments, expected 1.\n", RTLIL::unescape_id(str).c_str(), int(children.size())); if (!current_always_clocked) input_error("System function %s is only allowed in clocked blocks.\n", RTLIL::unescape_id(str).c_str()); AstNode *present = children.at(0)->clone(); AstNode *past = clone(); past->str = "\\$past"; if (str == "\\$stable") newNode = new AstNode(AST_EQ, past, present); else if (str == "\\$changed") newNode = new AstNode(AST_NE, past, present); else if (str == "\\$rose") newNode = new AstNode(AST_LOGIC_AND, new AstNode(AST_LOGIC_NOT, new AstNode(AST_BIT_AND, past, mkconst_int(1,false))), new AstNode(AST_BIT_AND, present, mkconst_int(1,false))); else if (str == "\\$fell") newNode = new AstNode(AST_LOGIC_AND, new AstNode(AST_BIT_AND, past, mkconst_int(1,false)), new AstNode(AST_LOGIC_NOT, new AstNode(AST_BIT_AND, present, mkconst_int(1,false)))); else log_abort(); goto apply_newNode; } // $anyconst and $anyseq are mapped in AstNode::genRTLIL() if (str == "\\$anyconst" || str == "\\$anyseq" || str == "\\$allconst" || str == "\\$allseq") { recursion_counter--; return false; } if (str == "\\$clog2") { if (children.size() != 1) input_error("System function %s got %d arguments, expected 1.\n", RTLIL::unescape_id(str).c_str(), int(children.size())); AstNode *buf = children[0]->clone(); while (buf->simplify(true, stage, width_hint, sign_hint)) { } if (buf->type != AST_CONSTANT) input_error("Failed to evaluate system function `%s' with non-constant value.\n", str.c_str()); RTLIL::Const arg_value = buf->bitsAsConst(); if (arg_value.as_bool()) arg_value = const_sub(arg_value, 1, false, false, GetSize(arg_value)); delete buf; uint32_t result = 0; for (auto i = 0; i < arg_value.size(); i++) if (arg_value.at(i) == RTLIL::State::S1) result = i + 1; newNode = mkconst_int(result, true); goto apply_newNode; } if (str == "\\$dimensions" || str == "\\$unpacked_dimensions" || str == "\\$increment" || str == "\\$size" || str == "\\$bits" || str == "\\$high" || str == "\\$low" || str == "\\$left" || str == "\\$right") { int dim = 1; if (str == "\\$dimensions" || str == "\\$unpacked_dimensions" || str == "\\$bits") { if (children.size() != 1) input_error("System function %s got %d arguments, expected 1.\n", RTLIL::unescape_id(str).c_str(), int(children.size())); } else { if (children.size() != 1 && children.size() != 2) input_error("System function %s got %d arguments, expected 1 or 2.\n", RTLIL::unescape_id(str).c_str(), int(children.size())); if (children.size() == 2) { AstNode *buf = children[1]->clone(); // Evaluate constant expression while (buf->simplify(true, stage, width_hint, sign_hint)) { } dim = buf->asInt(false); delete buf; } } AstNode *buf = children[0]->clone(); int mem_depth = 1; int result, high = 0, low = 0, left = 0, right = 0, width = 1; // defaults for a simple wire int expr_dimensions = 0, expr_unpacked_dimensions = 0; AstNode *id_ast = NULL; buf->detectSignWidth(width_hint, sign_hint); if (buf->type == AST_IDENTIFIER) { id_ast = buf->id2ast; if (id_ast == NULL && current_scope.count(buf->str)) id_ast = current_scope.at(buf->str); if (!id_ast) input_error("Failed to resolve identifier %s for width detection!\n", buf->str.c_str()); if (id_ast->type == AST_WIRE || id_ast->type == AST_MEMORY) { // Check for item in packed struct / union AstNode *item_node = buf->get_struct_member(); if (item_node) id_ast = item_node; // The dimension of the original array expression is saved in the 'integer' field dim += buf->integer; int dims = GetSize(id_ast->dimensions); // TODO: IEEE Std 1800-2017 20.7: "If the first argument to an array query function would cause $dimensions to return 0 // or if the second argument is out of range, then 'x shall be returned." if (dim < 1 || dim > dims) input_error("Dimension %d out of range in `%s', as it only has %d dimensions!\n", dim, id_ast->str.c_str(), dims); expr_dimensions = dims - dim + 1; expr_unpacked_dimensions = std::max(id_ast->unpacked_dimensions - dim + 1, 0); right = low = id_ast->dimensions[dim - 1].range_right; left = high = low + id_ast->dimensions[dim - 1].range_width - 1; if (id_ast->dimensions[dim - 1].range_swapped) { std::swap(left, right); } for (int i = dim; i < dims; i++) { mem_depth *= id_ast->dimensions[i].range_width; } } width = high - low + 1; } else { width = width_hint; right = low = 0; left = high = width - 1; expr_dimensions = 1; } delete buf; if (str == "\\$dimensions") result = expr_dimensions; else if (str == "\\$unpacked_dimensions") result = expr_unpacked_dimensions; else if (str == "\\$high") result = high; else if (str == "\\$low") result = low; else if (str == "\\$left") result = left; else if (str == "\\$right") result = right; else if (str == "\\$increment") result = left >= right ? 1 : -1; else if (str == "\\$size") result = width; else { // str == "\\$bits" result = width * mem_depth; } newNode = mkconst_int(result, true); goto apply_newNode; } if (str == "\\$ln" || str == "\\$log10" || str == "\\$exp" || str == "\\$sqrt" || str == "\\$pow" || str == "\\$floor" || str == "\\$ceil" || str == "\\$sin" || str == "\\$cos" || str == "\\$tan" || str == "\\$asin" || str == "\\$acos" || str == "\\$atan" || str == "\\$atan2" || str == "\\$hypot" || str == "\\$sinh" || str == "\\$cosh" || str == "\\$tanh" || str == "\\$asinh" || str == "\\$acosh" || str == "\\$atanh" || str == "\\$rtoi" || str == "\\$itor") { bool func_with_two_arguments = str == "\\$pow" || str == "\\$atan2" || str == "\\$hypot"; double x = 0, y = 0; if (func_with_two_arguments) { if (children.size() != 2) input_error("System function %s got %d arguments, expected 2.\n", RTLIL::unescape_id(str).c_str(), int(children.size())); } else { if (children.size() != 1) input_error("System function %s got %d arguments, expected 1.\n", RTLIL::unescape_id(str).c_str(), int(children.size())); } if (children.size() >= 1) { while (children[0]->simplify(true, stage, width_hint, sign_hint)) { } if (!children[0]->isConst()) input_error("Failed to evaluate system function `%s' with non-constant argument.\n", RTLIL::unescape_id(str).c_str()); int child_width_hint = width_hint; bool child_sign_hint = sign_hint; children[0]->detectSignWidth(child_width_hint, child_sign_hint); x = children[0]->asReal(child_sign_hint); } if (children.size() >= 2) { while (children[1]->simplify(true, stage, width_hint, sign_hint)) { } if (!children[1]->isConst()) input_error("Failed to evaluate system function `%s' with non-constant argument.\n", RTLIL::unescape_id(str).c_str()); int child_width_hint = width_hint; bool child_sign_hint = sign_hint; children[1]->detectSignWidth(child_width_hint, child_sign_hint); y = children[1]->asReal(child_sign_hint); } if (str == "\\$rtoi") { newNode = AstNode::mkconst_int(x, true); } else { newNode = new AstNode(AST_REALVALUE); if (str == "\\$ln") newNode->realvalue = ::log(x); else if (str == "\\$log10") newNode->realvalue = ::log10(x); else if (str == "\\$exp") newNode->realvalue = ::exp(x); else if (str == "\\$sqrt") newNode->realvalue = ::sqrt(x); else if (str == "\\$pow") newNode->realvalue = ::pow(x, y); else if (str == "\\$floor") newNode->realvalue = ::floor(x); else if (str == "\\$ceil") newNode->realvalue = ::ceil(x); else if (str == "\\$sin") newNode->realvalue = ::sin(x); else if (str == "\\$cos") newNode->realvalue = ::cos(x); else if (str == "\\$tan") newNode->realvalue = ::tan(x); else if (str == "\\$asin") newNode->realvalue = ::asin(x); else if (str == "\\$acos") newNode->realvalue = ::acos(x); else if (str == "\\$atan") newNode->realvalue = ::atan(x); else if (str == "\\$atan2") newNode->realvalue = ::atan2(x, y); else if (str == "\\$hypot") newNode->realvalue = ::hypot(x, y); else if (str == "\\$sinh") newNode->realvalue = ::sinh(x); else if (str == "\\$cosh") newNode->realvalue = ::cosh(x); else if (str == "\\$tanh") newNode->realvalue = ::tanh(x); else if (str == "\\$asinh") newNode->realvalue = ::asinh(x); else if (str == "\\$acosh") newNode->realvalue = ::acosh(x); else if (str == "\\$atanh") newNode->realvalue = ::atanh(x); else if (str == "\\$itor") newNode->realvalue = x; else log_abort(); } goto apply_newNode; } if (str == "\\$sformatf") { Fmt fmt = processFormat(stage, /*sformat_like=*/true); newNode = AstNode::mkconst_str(fmt.render()); goto apply_newNode; } if (str == "\\$countbits") { if (children.size() < 2) input_error("System function %s got %d arguments, expected at least 2.\n", RTLIL::unescape_id(str).c_str(), int(children.size())); std::vector control_bits; // Determine which bits to count for (size_t i = 1; i < children.size(); i++) { AstNode *node = children[i]; while (node->simplify(true, stage, -1, false)) { } if (node->type != AST_CONSTANT) input_error("Failed to evaluate system function `%s' with non-constant control bit argument.\n", str.c_str()); if (node->bits.size() != 1) input_error("Failed to evaluate system function `%s' with control bit width != 1.\n", str.c_str()); control_bits.push_back(node->bits[0]); } // Detect width of exp (first argument of $countbits) int exp_width = -1; bool exp_sign = false; AstNode *exp = children[0]; exp->detectSignWidth(exp_width, exp_sign, NULL); newNode = mkconst_int(0, false); for (int i = 0; i < exp_width; i++) { // Generate nodes for: exp << i >> ($size(exp) - 1) // ^^ ^^ AstNode *lsh_node = new AstNode(AST_SHIFT_LEFT, exp->clone(), mkconst_int(i, false)); AstNode *rsh_node = new AstNode(AST_SHIFT_RIGHT, lsh_node, mkconst_int(exp_width - 1, false)); AstNode *or_node = nullptr; for (RTLIL::State control_bit : control_bits) { // Generate node for: (exp << i >> ($size(exp) - 1)) === control_bit // ^^^ AstNode *eq_node = new AstNode(AST_EQX, rsh_node->clone(), mkconst_bits({control_bit}, false)); // Or the result for each checked bit value if (or_node) or_node = new AstNode(AST_LOGIC_OR, or_node, eq_node); else or_node = eq_node; } // We should have at least one element in control_bits, // because we checked for the number of arguments above log_assert(or_node != nullptr); delete rsh_node; // Generate node for adding with result of previous bit newNode = new AstNode(AST_ADD, newNode, or_node); } goto apply_newNode; } if (str == "\\$countones" || str == "\\$isunknown" || str == "\\$onehot" || str == "\\$onehot0") { if (children.size() != 1) input_error("System function %s got %d arguments, expected 1.\n", RTLIL::unescape_id(str).c_str(), int(children.size())); AstNode *countbits = clone(); countbits->str = "\\$countbits"; if (str == "\\$countones") { countbits->children.push_back(mkconst_bits({RTLIL::State::S1}, false)); newNode = countbits; } else if (str == "\\$isunknown") { countbits->children.push_back(mkconst_bits({RTLIL::Sx}, false)); countbits->children.push_back(mkconst_bits({RTLIL::Sz}, false)); newNode = new AstNode(AST_GT, countbits, mkconst_int(0, false)); } else if (str == "\\$onehot") { countbits->children.push_back(mkconst_bits({RTLIL::State::S1}, false)); newNode = new AstNode(AST_EQ, countbits, mkconst_int(1, false)); } else if (str == "\\$onehot0") { countbits->children.push_back(mkconst_bits({RTLIL::State::S1}, false)); newNode = new AstNode(AST_LE, countbits, mkconst_int(1, false)); } else { log_abort(); } goto apply_newNode; } if (current_scope.count(str) != 0 && current_scope[str]->type == AST_DPI_FUNCTION) { AstNode *dpi_decl = current_scope[str]; std::string rtype, fname; std::vector argtypes; std::vector args; rtype = RTLIL::unescape_id(dpi_decl->children.at(0)->str); fname = RTLIL::unescape_id(dpi_decl->children.at(1)->str); for (int i = 2; i < GetSize(dpi_decl->children); i++) { if (i-2 >= GetSize(children)) input_error("Insufficient number of arguments in DPI function call.\n"); argtypes.push_back(RTLIL::unescape_id(dpi_decl->children.at(i)->str)); args.push_back(children.at(i-2)->clone()); while (args.back()->simplify(true, stage, -1, false)) { } if (args.back()->type != AST_CONSTANT && args.back()->type != AST_REALVALUE) input_error("Failed to evaluate DPI function with non-constant argument.\n"); } newNode = dpi_call(rtype, fname, argtypes, args); for (auto arg : args) delete arg; goto apply_newNode; } if (current_scope.count(str) == 0) str = try_pop_module_prefix(); if (current_scope.count(str) == 0 || current_scope[str]->type != AST_FUNCTION) input_error("Can't resolve function name `%s'.\n", str.c_str()); } if (type == AST_TCALL) { if (str == "$finish" || str == "$stop") { if (!current_always || current_always->type != AST_INITIAL) input_error("System task `%s' outside initial block is unsupported.\n", str.c_str()); input_error("System task `%s' executed.\n", str.c_str()); } if (str == "\\$readmemh" || str == "\\$readmemb") { if (GetSize(children) < 2 || GetSize(children) > 4) input_error("System function %s got %d arguments, expected 2-4.\n", RTLIL::unescape_id(str).c_str(), int(children.size())); AstNode *node_filename = children[0]->clone(); while (node_filename->simplify(true, stage, width_hint, sign_hint)) { } if (node_filename->type != AST_CONSTANT) input_error("Failed to evaluate system function `%s' with non-constant 1st argument.\n", str.c_str()); AstNode *node_memory = children[1]->clone(); while (node_memory->simplify(true, stage, width_hint, sign_hint)) { } if (node_memory->type != AST_IDENTIFIER || node_memory->id2ast == nullptr || node_memory->id2ast->type != AST_MEMORY) input_error("Failed to evaluate system function `%s' with non-memory 2nd argument.\n", str.c_str()); int start_addr = -1, finish_addr = -1; if (GetSize(children) > 2) { AstNode *node_addr = children[2]->clone(); while (node_addr->simplify(true, stage, width_hint, sign_hint)) { } if (node_addr->type != AST_CONSTANT) input_error("Failed to evaluate system function `%s' with non-constant 3rd argument.\n", str.c_str()); start_addr = int(node_addr->asInt(false)); } if (GetSize(children) > 3) { AstNode *node_addr = children[3]->clone(); while (node_addr->simplify(true, stage, width_hint, sign_hint)) { } if (node_addr->type != AST_CONSTANT) input_error("Failed to evaluate system function `%s' with non-constant 4th argument.\n", str.c_str()); finish_addr = int(node_addr->asInt(false)); } bool unconditional_init = false; if (current_always->type == AST_INITIAL) { pool queue; log_assert(current_always->children[0]->type == AST_BLOCK); queue.insert(current_always->children[0]); while (!unconditional_init && !queue.empty()) { pool next_queue; for (auto n : queue) for (auto c : n->children) { if (c == this) unconditional_init = true; next_queue.insert(c); } next_queue.swap(queue); } } newNode = readmem(str == "\\$readmemh", node_filename->bitsAsConst().decode_string(), node_memory->id2ast, start_addr, finish_addr, unconditional_init); delete node_filename; delete node_memory; goto apply_newNode; } if (current_scope.count(str) == 0) str = try_pop_module_prefix(); if (current_scope.count(str) == 0 || current_scope[str]->type != AST_TASK) input_error("Can't resolve task name `%s'.\n", str.c_str()); } std::stringstream sstr; sstr << str << "$func$" << RTLIL::encode_filename(filename) << ":" << location.first_line << "$" << (autoidx++) << '.'; std::string prefix = sstr.str(); AstNode *decl = current_scope[str]; if (unevaluated_tern_branch && decl->is_recursive_function()) goto replace_fcall_later; decl = decl->clone(); decl->replace_result_wire_name_in_function(str, "$result"); // enables recursion decl->expand_genblock(prefix); if (decl->type == AST_FUNCTION && !decl->attributes.count(ID::via_celltype)) { bool require_const_eval = decl->has_const_only_constructs(); bool all_args_const = true; for (auto child : children) { while (child->simplify(true, 1, -1, false)) { } if (child->type != AST_CONSTANT && child->type != AST_REALVALUE) all_args_const = false; } if (all_args_const) { AstNode *func_workspace = decl->clone(); func_workspace->set_in_param_flag(true); func_workspace->str = prefix_id(prefix, "$result"); newNode = func_workspace->eval_const_function(this, in_param || require_const_eval); delete func_workspace; if (newNode) { delete decl; goto apply_newNode; } } if (in_param) input_error("Non-constant function call in constant expression.\n"); if (require_const_eval) input_error("Function %s can only be called with constant arguments.\n", str.c_str()); } size_t arg_count = 0; dict wire_cache; vector new_stmts; vector output_assignments; if (current_block == NULL) { log_assert(type == AST_FCALL); AstNode *wire = NULL; std::string res_name = prefix_id(prefix, "$result"); for (auto child : decl->children) if (child->type == AST_WIRE && child->str == res_name) wire = child->clone(); log_assert(wire != NULL); wire->port_id = 0; wire->is_input = false; wire->is_output = false; current_scope[wire->str] = wire; current_ast_mod->children.push_back(wire); while (wire->simplify(true, 1, -1, false)) { } AstNode *lvalue = new AstNode(AST_IDENTIFIER); lvalue->str = wire->str; AstNode *always = new AstNode(AST_ALWAYS, new AstNode(AST_BLOCK, new AstNode(AST_ASSIGN_EQ, lvalue, clone()))); always->children[0]->children[0]->was_checked = true; current_ast_mod->children.push_back(always); goto replace_fcall_with_id; } if (decl->attributes.count(ID::via_celltype)) { std::string celltype = decl->attributes.at(ID::via_celltype)->asAttrConst().decode_string(); std::string outport = str; if (celltype.find(' ') != std::string::npos) { int pos = celltype.find(' '); outport = RTLIL::escape_id(celltype.substr(pos+1)); celltype = RTLIL::escape_id(celltype.substr(0, pos)); } else celltype = RTLIL::escape_id(celltype); AstNode *cell = new AstNode(AST_CELL, new AstNode(AST_CELLTYPE)); cell->str = prefix.substr(0, GetSize(prefix)-1); cell->children[0]->str = celltype; for (auto attr : decl->attributes) if (attr.first.str().rfind("\\via_celltype_defparam_", 0) == 0) { AstNode *cell_arg = new AstNode(AST_PARASET, attr.second->clone()); cell_arg->str = RTLIL::escape_id(attr.first.substr(strlen("\\via_celltype_defparam_"))); cell->children.push_back(cell_arg); } for (auto child : decl->children) if (child->type == AST_WIRE && (child->is_input || child->is_output || (type == AST_FCALL && child->str == str))) { AstNode *wire = child->clone(); wire->port_id = 0; wire->is_input = false; wire->is_output = false; current_ast_mod->children.push_back(wire); while (wire->simplify(true, 1, -1, false)) { } AstNode *wire_id = new AstNode(AST_IDENTIFIER); wire_id->str = wire->str; if ((child->is_input || child->is_output) && arg_count < children.size()) { AstNode *arg = children[arg_count++]->clone(); AstNode *assign = child->is_input ? new AstNode(AST_ASSIGN_EQ, wire_id->clone(), arg) : new AstNode(AST_ASSIGN_EQ, arg, wire_id->clone()); assign->children[0]->was_checked = true; for (auto it = current_block->children.begin(); it != current_block->children.end(); it++) { if (*it != current_block_child) continue; current_block->children.insert(it, assign); break; } } AstNode *cell_arg = new AstNode(AST_ARGUMENT, wire_id); cell_arg->str = child->str == str ? outport : child->str; cell->children.push_back(cell_arg); } current_ast_mod->children.push_back(cell); goto replace_fcall_with_id; } for (auto child : decl->children) if (child->type == AST_WIRE || child->type == AST_MEMORY || child->type == AST_PARAMETER || child->type == AST_LOCALPARAM || child->type == AST_ENUM_ITEM) { AstNode *wire = nullptr; if (wire_cache.count(child->str)) { wire = wire_cache.at(child->str); bool contains_value = wire->type == AST_LOCALPARAM; if (wire->children.size() == contains_value) { for (auto c : child->children) wire->children.push_back(c->clone()); } else if (!child->children.empty()) { while (child->simplify(true, stage, -1, false)) { } if (GetSize(child->children) == GetSize(wire->children) - contains_value) { for (int i = 0; i < GetSize(child->children); i++) if (*child->children.at(i) != *wire->children.at(i + contains_value)) goto tcall_incompatible_wires; } else { tcall_incompatible_wires: input_error("Incompatible re-declaration of wire %s.\n", child->str.c_str()); } } } else { wire = child->clone(); wire->port_id = 0; wire->is_input = false; wire->is_output = false; wire->is_reg = true; wire->set_attribute(ID::nosync, AstNode::mkconst_int(1, false)); if (child->type == AST_ENUM_ITEM) wire->set_attribute(ID::enum_base_type, child->attributes[ID::enum_base_type]); wire_cache[child->str] = wire; current_scope[wire->str] = wire; current_ast_mod->children.push_back(wire); } while (wire->simplify(true, 1, -1, false)) { } if ((child->is_input || child->is_output) && arg_count < children.size()) { AstNode *arg = children[arg_count++]->clone(); // convert purely constant arguments into localparams if (child->is_input && child->type == AST_WIRE && arg->type == AST_CONSTANT && node_contains_assignment_to(decl, child)) { wire->type = AST_LOCALPARAM; if (wire->attributes.count(ID::nosync)) delete wire->attributes.at(ID::nosync); wire->attributes.erase(ID::nosync); wire->children.insert(wire->children.begin(), arg->clone()); // args without a range implicitly have width 1 if (wire->children.back()->type != AST_RANGE) { // check if this wire is redeclared with an explicit size bool uses_explicit_size = false; for (const AstNode *other_child : decl->children) if (other_child->type == AST_WIRE && child->str == other_child->str && !other_child->children.empty() && other_child->children.back()->type == AST_RANGE) { uses_explicit_size = true; break; } if (!uses_explicit_size) { AstNode* range = new AstNode(); range->type = AST_RANGE; wire->children.push_back(range); range->children.push_back(mkconst_int(0, true)); range->children.push_back(mkconst_int(0, true)); } } wire->fixup_hierarchy_flags(); // updates the sizing while (wire->simplify(true, 1, -1, false)) { } delete arg; continue; } AstNode *wire_id = new AstNode(AST_IDENTIFIER); wire_id->str = wire->str; AstNode *assign = child->is_input ? new AstNode(AST_ASSIGN_EQ, wire_id, arg) : new AstNode(AST_ASSIGN_EQ, arg, wire_id); assign->children[0]->was_checked = true; if (child->is_input) new_stmts.push_back(assign); else output_assignments.push_back(assign); } } for (auto child : decl->children) if (child->type != AST_WIRE && child->type != AST_MEMORY && child->type != AST_PARAMETER && child->type != AST_LOCALPARAM) new_stmts.push_back(child->clone()); new_stmts.insert(new_stmts.end(), output_assignments.begin(), output_assignments.end()); for (auto it = current_block->children.begin(); ; it++) { log_assert(it != current_block->children.end()); if (*it == current_block_child) { current_block->children.insert(it, new_stmts.begin(), new_stmts.end()); break; } } replace_fcall_with_id: delete decl; if (type == AST_FCALL) { delete_children(); type = AST_IDENTIFIER; str = prefix_id(prefix, "$result"); } if (type == AST_TCALL) str = ""; did_something = true; } replace_fcall_later:; // perform const folding when activated if (const_fold) { bool string_op; std::vector tmp_bits; RTLIL::Const (*const_func)(const RTLIL::Const&, const RTLIL::Const&, bool, bool, int); RTLIL::Const dummy_arg; switch (type) { case AST_IDENTIFIER: if (current_scope.count(str) > 0 && (current_scope[str]->type == AST_PARAMETER || current_scope[str]->type == AST_LOCALPARAM || current_scope[str]->type == AST_ENUM_ITEM)) { if (current_scope[str]->children[0]->type == AST_CONSTANT) { if (children.size() != 0 && children[0]->type == AST_RANGE && children[0]->range_valid) { std::vector data; bool param_upto = current_scope[str]->range_valid && current_scope[str]->range_swapped; int param_offset = current_scope[str]->range_valid ? current_scope[str]->range_right : 0; int param_width = current_scope[str]->range_valid ? current_scope[str]->range_left - current_scope[str]->range_right + 1 : GetSize(current_scope[str]->children[0]->bits); int tmp_range_left = children[0]->range_left, tmp_range_right = children[0]->range_right; if (param_upto) { tmp_range_left = (param_width + 2*param_offset) - children[0]->range_right - 1; tmp_range_right = (param_width + 2*param_offset) - children[0]->range_left - 1; } AstNode *member_node = get_struct_member(); int chunk_offset = member_node ? member_node->range_right : 0; log_assert(!(chunk_offset && param_upto)); for (int i = tmp_range_right; i <= tmp_range_left; i++) { int index = i - param_offset; if (0 <= index && index < param_width) data.push_back(current_scope[str]->children[0]->bits[chunk_offset + index]); else data.push_back(RTLIL::State::Sx); } newNode = mkconst_bits(data, false); } else if (children.size() == 0) newNode = current_scope[str]->children[0]->clone(); } else if (current_scope[str]->children[0]->isConst()) newNode = current_scope[str]->children[0]->clone(); } break; case AST_BIT_NOT: if (children[0]->type == AST_CONSTANT) { RTLIL::Const y = RTLIL::const_not(children[0]->bitsAsConst(width_hint, sign_hint), dummy_arg, sign_hint, false, width_hint); newNode = mkconst_bits(y.to_bits(), sign_hint); } break; case AST_TO_SIGNED: case AST_TO_UNSIGNED: if (children[0]->type == AST_CONSTANT) { RTLIL::Const y = children[0]->bitsAsConst(width_hint, sign_hint); newNode = mkconst_bits(y.to_bits(), type == AST_TO_SIGNED); } break; if (0) { case AST_BIT_AND: const_func = RTLIL::const_and; } if (0) { case AST_BIT_OR: const_func = RTLIL::const_or; } if (0) { case AST_BIT_XOR: const_func = RTLIL::const_xor; } if (0) { case AST_BIT_XNOR: const_func = RTLIL::const_xnor; } if (children[0]->type == AST_CONSTANT && children[1]->type == AST_CONSTANT) { RTLIL::Const y = const_func(children[0]->bitsAsConst(width_hint, sign_hint), children[1]->bitsAsConst(width_hint, sign_hint), sign_hint, sign_hint, width_hint); newNode = mkconst_bits(y.to_bits(), sign_hint); } break; if (0) { case AST_REDUCE_AND: const_func = RTLIL::const_reduce_and; } if (0) { case AST_REDUCE_OR: const_func = RTLIL::const_reduce_or; } if (0) { case AST_REDUCE_XOR: const_func = RTLIL::const_reduce_xor; } if (0) { case AST_REDUCE_XNOR: const_func = RTLIL::const_reduce_xnor; } if (0) { case AST_REDUCE_BOOL: const_func = RTLIL::const_reduce_bool; } if (children[0]->type == AST_CONSTANT) { RTLIL::Const y = const_func(RTLIL::Const(children[0]->bits), dummy_arg, false, false, -1); newNode = mkconst_bits(y.to_bits(), false); } break; case AST_LOGIC_NOT: if (children[0]->type == AST_CONSTANT) { RTLIL::Const y = RTLIL::const_logic_not(RTLIL::Const(children[0]->bits), dummy_arg, children[0]->is_signed, false, -1); newNode = mkconst_bits(y.to_bits(), false); } else if (children[0]->isConst()) { newNode = mkconst_int(children[0]->asReal(sign_hint) == 0, false, 1); } break; if (0) { case AST_LOGIC_AND: const_func = RTLIL::const_logic_and; } if (0) { case AST_LOGIC_OR: const_func = RTLIL::const_logic_or; } if (children[0]->type == AST_CONSTANT && children[1]->type == AST_CONSTANT) { RTLIL::Const y = const_func(RTLIL::Const(children[0]->bits), RTLIL::Const(children[1]->bits), children[0]->is_signed, children[1]->is_signed, -1); newNode = mkconst_bits(y.to_bits(), false); } else if (children[0]->isConst() && children[1]->isConst()) { if (type == AST_LOGIC_AND) newNode = mkconst_int((children[0]->asReal(sign_hint) != 0) && (children[1]->asReal(sign_hint) != 0), false, 1); else newNode = mkconst_int((children[0]->asReal(sign_hint) != 0) || (children[1]->asReal(sign_hint) != 0), false, 1); } break; if (0) { case AST_SHIFT_LEFT: const_func = RTLIL::const_shl; } if (0) { case AST_SHIFT_RIGHT: const_func = RTLIL::const_shr; } if (0) { case AST_SHIFT_SLEFT: const_func = RTLIL::const_sshl; } if (0) { case AST_SHIFT_SRIGHT: const_func = RTLIL::const_sshr; } if (0) { case AST_POW: const_func = RTLIL::const_pow; } if (children[0]->type == AST_CONSTANT && children[1]->type == AST_CONSTANT) { RTLIL::Const y = const_func(children[0]->bitsAsConst(width_hint, sign_hint), RTLIL::Const(children[1]->bits), sign_hint, type == AST_POW ? children[1]->is_signed : false, width_hint); newNode = mkconst_bits(y.to_bits(), sign_hint); } else if (type == AST_POW && children[0]->isConst() && children[1]->isConst()) { newNode = new AstNode(AST_REALVALUE); newNode->realvalue = pow(children[0]->asReal(sign_hint), children[1]->asReal(sign_hint)); } break; if (0) { case AST_LT: const_func = RTLIL::const_lt; } if (0) { case AST_LE: const_func = RTLIL::const_le; } if (0) { case AST_EQ: const_func = RTLIL::const_eq; } if (0) { case AST_NE: const_func = RTLIL::const_ne; } if (0) { case AST_EQX: const_func = RTLIL::const_eqx; } if (0) { case AST_NEX: const_func = RTLIL::const_nex; } if (0) { case AST_GE: const_func = RTLIL::const_ge; } if (0) { case AST_GT: const_func = RTLIL::const_gt; } if (children[0]->type == AST_CONSTANT && children[1]->type == AST_CONSTANT) { int cmp_width = max(children[0]->bits.size(), children[1]->bits.size()); bool cmp_signed = children[0]->is_signed && children[1]->is_signed; RTLIL::Const y = const_func(children[0]->bitsAsConst(cmp_width, cmp_signed), children[1]->bitsAsConst(cmp_width, cmp_signed), cmp_signed, cmp_signed, 1); newNode = mkconst_bits(y.to_bits(), false); } else if (children[0]->isConst() && children[1]->isConst()) { bool cmp_signed = (children[0]->type == AST_REALVALUE || children[0]->is_signed) && (children[1]->type == AST_REALVALUE || children[1]->is_signed); switch (type) { case AST_LT: newNode = mkconst_int(children[0]->asReal(cmp_signed) < children[1]->asReal(cmp_signed), false, 1); break; case AST_LE: newNode = mkconst_int(children[0]->asReal(cmp_signed) <= children[1]->asReal(cmp_signed), false, 1); break; case AST_EQ: newNode = mkconst_int(children[0]->asReal(cmp_signed) == children[1]->asReal(cmp_signed), false, 1); break; case AST_NE: newNode = mkconst_int(children[0]->asReal(cmp_signed) != children[1]->asReal(cmp_signed), false, 1); break; case AST_EQX: newNode = mkconst_int(children[0]->asReal(cmp_signed) == children[1]->asReal(cmp_signed), false, 1); break; case AST_NEX: newNode = mkconst_int(children[0]->asReal(cmp_signed) != children[1]->asReal(cmp_signed), false, 1); break; case AST_GE: newNode = mkconst_int(children[0]->asReal(cmp_signed) >= children[1]->asReal(cmp_signed), false, 1); break; case AST_GT: newNode = mkconst_int(children[0]->asReal(cmp_signed) > children[1]->asReal(cmp_signed), false, 1); break; default: log_abort(); } } break; if (0) { case AST_ADD: const_func = RTLIL::const_add; } if (0) { case AST_SUB: const_func = RTLIL::const_sub; } if (0) { case AST_MUL: const_func = RTLIL::const_mul; } if (0) { case AST_DIV: const_func = RTLIL::const_div; } if (0) { case AST_MOD: const_func = RTLIL::const_mod; } if (children[0]->type == AST_CONSTANT && children[1]->type == AST_CONSTANT) { RTLIL::Const y = const_func(children[0]->bitsAsConst(width_hint, sign_hint), children[1]->bitsAsConst(width_hint, sign_hint), sign_hint, sign_hint, width_hint); newNode = mkconst_bits(y.to_bits(), sign_hint); } else if (children[0]->isConst() && children[1]->isConst()) { newNode = new AstNode(AST_REALVALUE); switch (type) { case AST_ADD: newNode->realvalue = children[0]->asReal(sign_hint) + children[1]->asReal(sign_hint); break; case AST_SUB: newNode->realvalue = children[0]->asReal(sign_hint) - children[1]->asReal(sign_hint); break; case AST_MUL: newNode->realvalue = children[0]->asReal(sign_hint) * children[1]->asReal(sign_hint); break; case AST_DIV: newNode->realvalue = children[0]->asReal(sign_hint) / children[1]->asReal(sign_hint); break; case AST_MOD: newNode->realvalue = fmod(children[0]->asReal(sign_hint), children[1]->asReal(sign_hint)); break; default: log_abort(); } } break; if (0) { case AST_SELFSZ: const_func = RTLIL::const_pos; } if (0) { case AST_POS: const_func = RTLIL::const_pos; } if (0) { case AST_NEG: const_func = RTLIL::const_neg; } if (children[0]->type == AST_CONSTANT) { RTLIL::Const y = const_func(children[0]->bitsAsConst(width_hint, sign_hint), dummy_arg, sign_hint, false, width_hint); newNode = mkconst_bits(y.to_bits(), sign_hint); } else if (children[0]->isConst()) { newNode = new AstNode(AST_REALVALUE); if (type == AST_NEG) newNode->realvalue = -children[0]->asReal(sign_hint); else newNode->realvalue = +children[0]->asReal(sign_hint); } break; case AST_TERNARY: if (children[0]->isConst()) { auto pair = get_tern_choice(); AstNode *choice = pair.first; AstNode *not_choice = pair.second; if (choice != NULL) { if (choice->type == AST_CONSTANT) { int other_width_hint = width_hint; bool other_sign_hint = sign_hint, other_real = false; not_choice->detectSignWidth(other_width_hint, other_sign_hint, &other_real); if (other_real) { newNode = new AstNode(AST_REALVALUE); choice->detectSignWidth(width_hint, sign_hint); newNode->realvalue = choice->asReal(sign_hint); } else { RTLIL::Const y = choice->bitsAsConst(width_hint, sign_hint); if (choice->is_string && y.size() % 8 == 0 && sign_hint == false) newNode = mkconst_str(y.to_bits()); else newNode = mkconst_bits(y.to_bits(), sign_hint); } } else if (choice->isConst()) { newNode = choice->clone(); } } else if (children[1]->type == AST_CONSTANT && children[2]->type == AST_CONSTANT) { RTLIL::Const a = children[1]->bitsAsConst(width_hint, sign_hint); RTLIL::Const b = children[2]->bitsAsConst(width_hint, sign_hint); log_assert(a.size() == b.size()); for (auto i = 0; i < a.size(); i++) if (a[i] != b[i]) a.bits()[i] = RTLIL::State::Sx; newNode = mkconst_bits(a.to_bits(), sign_hint); } else if (children[1]->isConst() && children[2]->isConst()) { newNode = new AstNode(AST_REALVALUE); if (children[1]->asReal(sign_hint) == children[2]->asReal(sign_hint)) newNode->realvalue = children[1]->asReal(sign_hint); else // IEEE Std 1800-2012 Sec. 11.4.11 states that the entry in Table 7-1 for // the data type in question should be returned if the ?: is ambiguous. The // value in Table 7-1 for the 'real' type is 0.0. newNode->realvalue = 0.0; } } break; case AST_CAST_SIZE: if (children.at(0)->type == AST_CONSTANT && children.at(1)->type == AST_CONSTANT) { int width = children[0]->bitsAsConst().as_int(); RTLIL::Const val; if (children[1]->is_unsized) val = children[1]->bitsAsUnsizedConst(width); else val = children[1]->bitsAsConst(width); newNode = mkconst_bits(val.to_bits(), children[1]->is_signed); } break; case AST_CONCAT: string_op = !children.empty(); for (auto it = children.begin(); it != children.end(); it++) { if ((*it)->type != AST_CONSTANT) goto not_const; if (!(*it)->is_string) string_op = false; tmp_bits.insert(tmp_bits.end(), (*it)->bits.begin(), (*it)->bits.end()); } newNode = string_op ? mkconst_str(tmp_bits) : mkconst_bits(tmp_bits, false); break; case AST_REPLICATE: if (children.at(0)->type != AST_CONSTANT || children.at(1)->type != AST_CONSTANT) goto not_const; for (int i = 0; i < children[0]->bitsAsConst().as_int(); i++) tmp_bits.insert(tmp_bits.end(), children.at(1)->bits.begin(), children.at(1)->bits.end()); newNode = children.at(1)->is_string ? mkconst_str(tmp_bits) : mkconst_bits(tmp_bits, false); break; default: not_const: break; } } // if any of the above set 'newNode' -> use 'newNode' as template to update 'this' if (newNode) { apply_newNode: // fprintf(stderr, "----\n"); // dumpAst(stderr, "- "); // newNode->dumpAst(stderr, "+ "); log_assert(newNode != NULL); newNode->filename = filename; newNode->location = location; newNode->cloneInto(this); fixup_hierarchy_flags(); delete newNode; did_something = true; } if (!did_something) basic_prep = true; recursion_counter--; return did_something; } void AstNode::replace_result_wire_name_in_function(const std::string &from, const std::string &to) { for (AstNode *child : children) child->replace_result_wire_name_in_function(from, to); if (str == from && type != AST_FCALL && type != AST_TCALL) str = to; } // replace a readmem[bh] TCALL ast node with a block of memory assignments AstNode *AstNode::readmem(bool is_readmemh, std::string mem_filename, AstNode *memory, int start_addr, int finish_addr, bool unconditional_init) { int mem_width, mem_size, addr_bits; memory->meminfo(mem_width, mem_size, addr_bits); AstNode *block = new AstNode(AST_BLOCK); AstNode *meminit = nullptr; int next_meminit_cursor=0; vector meminit_bits; vector en_bits; int meminit_size=0; for (int i = 0; i < mem_width; i++) en_bits.push_back(State::S1); std::ifstream f; f.open(mem_filename.c_str()); if (f.fail()) { #ifdef _WIN32 char slash = '\\'; #else char slash = '/'; #endif std::string path = filename.substr(0, filename.find_last_of(slash)+1); f.open(path + mem_filename.c_str()); yosys_input_files.insert(path + mem_filename); } else { yosys_input_files.insert(mem_filename); } if (f.fail() || GetSize(mem_filename) == 0) input_error("Can not open file `%s` for %s.\n", mem_filename.c_str(), str.c_str()); log_assert(GetSize(memory->children) == 2 && memory->children[1]->type == AST_RANGE && memory->children[1]->range_valid); int range_left = memory->children[1]->range_left, range_right = memory->children[1]->range_right; int range_min = min(range_left, range_right), range_max = max(range_left, range_right); if (start_addr < 0) start_addr = range_min; if (finish_addr < 0) finish_addr = range_max + 1; bool in_comment = false; int increment = start_addr <= finish_addr ? +1 : -1; int cursor = start_addr; while (!f.eof()) { std::string line, token; std::getline(f, line); for (int i = 0; i < GetSize(line); i++) { if (in_comment && line.compare(i, 2, "*/") == 0) { line[i] = ' '; line[i+1] = ' '; in_comment = false; continue; } if (!in_comment && line.compare(i, 2, "/*") == 0) in_comment = true; if (in_comment) line[i] = ' '; } while (1) { token = next_token(line, " \t\r\n"); if (token.empty() || token.compare(0, 2, "//") == 0) break; if (token[0] == '@') { token = token.substr(1); const char *nptr = token.c_str(); char *endptr; cursor = strtol(nptr, &endptr, 16); if (!*nptr || *endptr) input_error("Can not parse address `%s` for %s.\n", nptr, str.c_str()); continue; } AstNode *value = VERILOG_FRONTEND::const2ast(stringf("%d'%c", mem_width, is_readmemh ? 'h' : 'b') + token); if (unconditional_init) { if (meminit == nullptr || cursor != next_meminit_cursor) { if (meminit != nullptr) { meminit->children[1] = AstNode::mkconst_bits(meminit_bits, false); meminit->children[3] = AstNode::mkconst_int(meminit_size, false); } meminit = new AstNode(AST_MEMINIT); meminit->children.push_back(AstNode::mkconst_int(cursor, false)); meminit->children.push_back(nullptr); meminit->children.push_back(AstNode::mkconst_bits(en_bits, false)); meminit->children.push_back(nullptr); meminit->str = memory->str; meminit->id2ast = memory; meminit_bits.clear(); meminit_size = 0; current_ast_mod->children.push_back(meminit); next_meminit_cursor = cursor; } meminit_size++; next_meminit_cursor++; meminit_bits.insert(meminit_bits.end(), value->bits.begin(), value->bits.end()); delete value; } else { block->children.push_back(new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER, new AstNode(AST_RANGE, AstNode::mkconst_int(cursor, false))), value)); block->children.back()->children[0]->str = memory->str; block->children.back()->children[0]->id2ast = memory; block->children.back()->children[0]->was_checked = true; } cursor += increment; if ((cursor == finish_addr+increment) || (increment > 0 && cursor > range_max) || (increment < 0 && cursor < range_min)) break; } if ((cursor == finish_addr+increment) || (increment > 0 && cursor > range_max) || (increment < 0 && cursor < range_min)) break; } if (meminit != nullptr) { meminit->children[1] = AstNode::mkconst_bits(meminit_bits, false); meminit->children[3] = AstNode::mkconst_int(meminit_size, false); } return block; } // annotate the names of all wires and other named objects in a named generate // or procedural block; nested blocks are themselves annotated such that the // prefix is carried forward, but resolution of their children is deferred void AstNode::expand_genblock(const std::string &prefix) { if (type == AST_IDENTIFIER || type == AST_FCALL || type == AST_TCALL || type == AST_WIRETYPE || type == AST_PREFIX) { log_assert(!str.empty()); // search starting in the innermost scope and then stepping outward for (size_t ppos = prefix.size() - 1; ppos; --ppos) { if (prefix.at(ppos) != '.') continue; std::string new_prefix = prefix.substr(0, ppos + 1); auto attempt_resolve = [&new_prefix](const std::string &ident) -> std::string { std::string new_name = prefix_id(new_prefix, ident); if (current_scope.count(new_name)) return new_name; return {}; }; // attempt to resolve the full identifier std::string resolved = attempt_resolve(str); if (!resolved.empty()) { str = resolved; break; } // attempt to resolve hierarchical prefixes within the identifier, // as the prefix could refer to a local scope which exists but // hasn't yet been elaborated for (size_t spos = str.size() - 1; spos; --spos) { if (str.at(spos) != '.') continue; resolved = attempt_resolve(str.substr(0, spos)); if (!resolved.empty()) { str = resolved + str.substr(spos); ppos = 1; // break outer loop break; } } } } auto prefix_node = [&prefix](AstNode* child) { if (child->str.empty()) return; std::string new_name = prefix_id(prefix, child->str); if (child->type == AST_FUNCTION) child->replace_result_wire_name_in_function(child->str, new_name); else child->str = new_name; current_scope[new_name] = child; }; for (size_t i = 0; i < children.size(); i++) { AstNode *child = children[i]; switch (child->type) { case AST_WIRE: case AST_MEMORY: case AST_STRUCT: case AST_UNION: case AST_PARAMETER: case AST_LOCALPARAM: case AST_FUNCTION: case AST_TASK: case AST_CELL: case AST_TYPEDEF: case AST_ENUM_ITEM: case AST_GENVAR: prefix_node(child); break; case AST_BLOCK: case AST_GENBLOCK: if (!child->str.empty()) prefix_node(child); break; case AST_ENUM: current_scope[child->str] = child; for (auto enode : child->children){ log_assert(enode->type == AST_ENUM_ITEM); prefix_node(enode); } break; default: break; } } for (size_t i = 0; i < children.size(); i++) { AstNode *child = children[i]; // AST_PREFIX member names should not be prefixed; we recurse into them // as normal to ensure indices and ranges are properly resolved, and // then restore the previous string if (type == AST_PREFIX && i == 1) { std::string backup_scope_name = child->str; child->expand_genblock(prefix); child->str = backup_scope_name; continue; } // functions/tasks may reference wires, constants, etc. in this scope if (child->type == AST_FUNCTION || child->type == AST_TASK) continue; // named blocks pick up the current prefix and will expanded later if ((child->type == AST_GENBLOCK || child->type == AST_BLOCK) && !child->str.empty()) continue; child->expand_genblock(prefix); } } // add implicit AST_GENBLOCK names according to IEEE 1364-2005 Section 12.4.3 or // IEEE 1800-2017 Section 27.6 void AstNode::label_genblks(std::set& existing, int &counter) { switch (type) { case AST_GENIF: case AST_GENFOR: case AST_GENCASE: // seeing a proper generate control flow construct increments the // counter once ++counter; for (AstNode *child : children) child->label_genblks(existing, counter); break; case AST_GENBLOCK: { // if this block is unlabeled, generate its corresponding unique name for (int padding = 0; str.empty(); ++padding) { std::string candidate = "\\genblk"; for (int i = 0; i < padding; ++i) candidate += '0'; candidate += std::to_string(counter); if (!existing.count(candidate)) str = candidate; } // within a genblk, the counter starts fresh std::set existing_local = existing; int counter_local = 0; for (AstNode *child : children) child->label_genblks(existing_local, counter_local); break; } default: // track names which could conflict with implicit genblk names if (str.rfind("\\genblk", 0) == 0) existing.insert(str); for (AstNode *child : children) child->label_genblks(existing, counter); break; } } // helper function for mem2reg_as_needed_pass1 static void mark_memories_assign_lhs_complex(dict> &mem2reg_places, dict &mem2reg_candidates, AstNode *that) { for (auto &child : that->children) mark_memories_assign_lhs_complex(mem2reg_places, mem2reg_candidates, child); if (that->type == AST_IDENTIFIER && that->id2ast && that->id2ast->type == AST_MEMORY) { AstNode *mem = that->id2ast; if (!(mem2reg_candidates[mem] & AstNode::MEM2REG_FL_CMPLX_LHS)) mem2reg_places[mem].insert(stringf("%s:%d", RTLIL::encode_filename(that->filename).c_str(), that->location.first_line)); mem2reg_candidates[mem] |= AstNode::MEM2REG_FL_CMPLX_LHS; } } // find memories that should be replaced by registers void AstNode::mem2reg_as_needed_pass1(dict> &mem2reg_places, dict &mem2reg_candidates, dict &proc_flags, uint32_t &flags) { uint32_t children_flags = 0; int lhs_children_counter = 0; if (type == AST_TYPEDEF) return; // don't touch content of typedefs if (type == AST_ASSIGN || type == AST_ASSIGN_LE || type == AST_ASSIGN_EQ) { // mark all memories that are used in a complex expression on the left side of an assignment for (auto &lhs_child : children[0]->children) mark_memories_assign_lhs_complex(mem2reg_places, mem2reg_candidates, lhs_child); if (children[0]->type == AST_IDENTIFIER && children[0]->id2ast && children[0]->id2ast->type == AST_MEMORY) { AstNode *mem = children[0]->id2ast; // activate mem2reg if this is assigned in an async proc if (flags & AstNode::MEM2REG_FL_ASYNC) { if (!(mem2reg_candidates[mem] & AstNode::MEM2REG_FL_SET_ASYNC)) mem2reg_places[mem].insert(stringf("%s:%d", RTLIL::encode_filename(filename).c_str(), location.first_line)); mem2reg_candidates[mem] |= AstNode::MEM2REG_FL_SET_ASYNC; } // remember if this is assigned blocking (=) if (type == AST_ASSIGN_EQ) { if (!(proc_flags[mem] & AstNode::MEM2REG_FL_EQ1)) mem2reg_places[mem].insert(stringf("%s:%d", RTLIL::encode_filename(filename).c_str(), location.first_line)); proc_flags[mem] |= AstNode::MEM2REG_FL_EQ1; } // for proper (non-init) writes: remember if this is a constant index or not if ((flags & MEM2REG_FL_INIT) == 0) { if (children[0]->children.size() && children[0]->children[0]->type == AST_RANGE && children[0]->children[0]->children.size()) { if (children[0]->children[0]->children[0]->type == AST_CONSTANT) mem2reg_candidates[mem] |= AstNode::MEM2REG_FL_CONST_LHS; else mem2reg_candidates[mem] |= AstNode::MEM2REG_FL_VAR_LHS; } } // remember where this is if (flags & MEM2REG_FL_INIT) { if (!(mem2reg_candidates[mem] & AstNode::MEM2REG_FL_SET_INIT)) mem2reg_places[mem].insert(stringf("%s:%d", RTLIL::encode_filename(filename).c_str(), location.first_line)); mem2reg_candidates[mem] |= AstNode::MEM2REG_FL_SET_INIT; } else { if (!(mem2reg_candidates[mem] & AstNode::MEM2REG_FL_SET_ELSE)) mem2reg_places[mem].insert(stringf("%s:%d", RTLIL::encode_filename(filename).c_str(), location.first_line)); mem2reg_candidates[mem] |= AstNode::MEM2REG_FL_SET_ELSE; } } lhs_children_counter = 1; } if (type == AST_IDENTIFIER && id2ast && id2ast->type == AST_MEMORY) { AstNode *mem = id2ast; if (integer < (unsigned)mem->unpacked_dimensions) input_error("Insufficient number of array indices for %s.\n", log_id(str)); // flag if used after blocking assignment (in same proc) if ((proc_flags[mem] & AstNode::MEM2REG_FL_EQ1) && !(mem2reg_candidates[mem] & AstNode::MEM2REG_FL_EQ2)) { mem2reg_places[mem].insert(stringf("%s:%d", RTLIL::encode_filename(filename).c_str(), location.first_line)); mem2reg_candidates[mem] |= AstNode::MEM2REG_FL_EQ2; } } // also activate if requested, either by using mem2reg attribute or by declaring array as 'wire' instead of 'reg' or 'logic' if (type == AST_MEMORY && (get_bool_attribute(ID::mem2reg) || (flags & AstNode::MEM2REG_FL_ALL) || !(is_reg || is_logic))) mem2reg_candidates[this] |= AstNode::MEM2REG_FL_FORCED; if ((type == AST_MODULE || type == AST_INTERFACE) && get_bool_attribute(ID::mem2reg)) children_flags |= AstNode::MEM2REG_FL_ALL; dict *proc_flags_p = NULL; if (type == AST_ALWAYS) { int count_edge_events = 0; for (auto child : children) if (child->type == AST_POSEDGE || child->type == AST_NEGEDGE) count_edge_events++; if (count_edge_events != 1) children_flags |= AstNode::MEM2REG_FL_ASYNC; proc_flags_p = new dict; } else if (type == AST_INITIAL) { children_flags |= AstNode::MEM2REG_FL_INIT; proc_flags_p = new dict; } uint32_t backup_flags = flags; flags |= children_flags; log_assert((flags & ~0x000000ff) == 0); for (auto child : children) { if (lhs_children_counter > 0) { lhs_children_counter--; if (child->children.size() && child->children[0]->type == AST_RANGE && child->children[0]->children.size()) { for (auto c : child->children[0]->children) { if (proc_flags_p) c->mem2reg_as_needed_pass1(mem2reg_places, mem2reg_candidates, *proc_flags_p, flags); else c->mem2reg_as_needed_pass1(mem2reg_places, mem2reg_candidates, proc_flags, flags); } } } else if (proc_flags_p) child->mem2reg_as_needed_pass1(mem2reg_places, mem2reg_candidates, *proc_flags_p, flags); else child->mem2reg_as_needed_pass1(mem2reg_places, mem2reg_candidates, proc_flags, flags); } flags &= ~children_flags | backup_flags; if (proc_flags_p) { #ifndef NDEBUG for (auto it : *proc_flags_p) log_assert((it.second & ~0xff000000) == 0); #endif delete proc_flags_p; } } bool AstNode::mem2reg_check(pool &mem2reg_set) { if (type != AST_IDENTIFIER || !id2ast || !mem2reg_set.count(id2ast)) return false; if (children.empty() || children[0]->type != AST_RANGE || GetSize(children[0]->children) != 1) input_error("Invalid array access.\n"); return true; } void AstNode::mem2reg_remove(pool &mem2reg_set, vector &delnodes) { log_assert(mem2reg_set.count(this) == 0); if (mem2reg_set.count(id2ast)) id2ast = nullptr; for (size_t i = 0; i < children.size(); i++) { if (mem2reg_set.count(children[i]) > 0) { delnodes.push_back(children[i]); children.erase(children.begin() + (i--)); } else { children[i]->mem2reg_remove(mem2reg_set, delnodes); } } } // actually replace memories with registers bool AstNode::mem2reg_as_needed_pass2(pool &mem2reg_set, AstNode *mod, AstNode *block, AstNode *&async_block) { bool did_something = false; if (type == AST_BLOCK) block = this; if (type == AST_FUNCTION || type == AST_TASK) return false; if (type == AST_TYPEDEF) return false; if (type == AST_MEMINIT && id2ast && mem2reg_set.count(id2ast)) { log_assert(children[0]->type == AST_CONSTANT); log_assert(children[1]->type == AST_CONSTANT); log_assert(children[2]->type == AST_CONSTANT); log_assert(children[3]->type == AST_CONSTANT); int cursor = children[0]->asInt(false); Const data = children[1]->bitsAsConst(); Const en = children[2]->bitsAsConst(); int length = children[3]->asInt(false); if (length != 0) { AstNode *block = new AstNode(AST_INITIAL, new AstNode(AST_BLOCK)); mod->children.push_back(block); block = block->children[0]; int wordsz = GetSize(data) / length; for (int i = 0; i < length; i++) { int pos = 0; while (pos < wordsz) { if (en[pos] != State::S1) { pos++; } else { int epos = pos + 1; while (epos < wordsz && en[epos] == State::S1) epos++; int clen = epos - pos; AstNode *range = new AstNode(AST_RANGE, AstNode::mkconst_int(cursor+i, false)); if (pos != 0 || epos != wordsz) { int left; int right; AstNode *mrange = id2ast->children[0]; if (mrange->range_left < mrange->range_right) { right = mrange->range_right - pos; left = mrange->range_right - epos + 1; } else { right = mrange->range_right + pos; left = mrange->range_right + epos - 1; } range = new AstNode(AST_MULTIRANGE, range, new AstNode(AST_RANGE, AstNode::mkconst_int(left, true), AstNode::mkconst_int(right, true))); } AstNode *target = new AstNode(AST_IDENTIFIER, range); target->str = str; target->id2ast = id2ast; target->was_checked = true; block->children.push_back(new AstNode(AST_ASSIGN_EQ, target, mkconst_bits(data.extract(i*wordsz + pos, clen).to_bits(), false))); pos = epos; } } } } AstNode *newNode = new AstNode(AST_NONE); newNode->cloneInto(this); delete newNode; did_something = true; } if (type == AST_ASSIGN && block == NULL && children[0]->mem2reg_check(mem2reg_set)) { if (async_block == NULL) { async_block = new AstNode(AST_ALWAYS, new AstNode(AST_BLOCK)); mod->children.push_back(async_block); } AstNode *newNode = clone(); newNode->type = AST_ASSIGN_EQ; newNode->children[0]->was_checked = true; async_block->children[0]->children.push_back(newNode); newNode = new AstNode(AST_NONE); newNode->cloneInto(this); delete newNode; did_something = true; } if ((type == AST_ASSIGN_LE || type == AST_ASSIGN_EQ) && children[0]->mem2reg_check(mem2reg_set) && children[0]->children[0]->children[0]->type != AST_CONSTANT) { std::stringstream sstr; sstr << "$mem2reg_wr$" << children[0]->str << "$" << RTLIL::encode_filename(filename) << ":" << location.first_line << "$" << (autoidx++); std::string id_addr = sstr.str() + "_ADDR", id_data = sstr.str() + "_DATA"; int mem_width, mem_size, addr_bits; bool mem_signed = children[0]->id2ast->is_signed; children[0]->id2ast->meminfo(mem_width, mem_size, addr_bits); AstNode *wire_addr = new AstNode(AST_WIRE, new AstNode(AST_RANGE, mkconst_int(addr_bits-1, true), mkconst_int(0, true))); wire_addr->str = id_addr; wire_addr->is_reg = true; wire_addr->was_checked = true; wire_addr->set_attribute(ID::nosync, AstNode::mkconst_int(1, false)); mod->children.push_back(wire_addr); while (wire_addr->simplify(true, 1, -1, false)) { } AstNode *wire_data = new AstNode(AST_WIRE, new AstNode(AST_RANGE, mkconst_int(mem_width-1, true), mkconst_int(0, true))); wire_data->str = id_data; wire_data->is_reg = true; wire_data->was_checked = true; wire_data->is_signed = mem_signed; wire_data->set_attribute(ID::nosync, AstNode::mkconst_int(1, false)); mod->children.push_back(wire_data); while (wire_data->simplify(true, 1, -1, false)) { } log_assert(block != NULL); size_t assign_idx = 0; while (assign_idx < block->children.size() && block->children[assign_idx] != this) assign_idx++; log_assert(assign_idx < block->children.size()); AstNode *assign_addr = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER), children[0]->children[0]->children[0]->clone()); assign_addr->children[0]->str = id_addr; assign_addr->children[0]->was_checked = true; block->children.insert(block->children.begin()+assign_idx+1, assign_addr); AstNode *case_node = new AstNode(AST_CASE, new AstNode(AST_IDENTIFIER)); case_node->children[0]->str = id_addr; for (int i = 0; i < mem_size; i++) { if (children[0]->children[0]->children[0]->type == AST_CONSTANT && int(children[0]->children[0]->children[0]->integer) != i) continue; AstNode *cond_node = new AstNode(AST_COND, AstNode::mkconst_int(i, false, addr_bits), new AstNode(AST_BLOCK)); AstNode *assign_reg = new AstNode(type, new AstNode(AST_IDENTIFIER), new AstNode(AST_IDENTIFIER)); if (children[0]->children.size() == 2) assign_reg->children[0]->children.push_back(children[0]->children[1]->clone()); assign_reg->children[0]->str = stringf("%s[%d]", children[0]->str.c_str(), i); assign_reg->children[1]->str = id_data; cond_node->children[1]->children.push_back(assign_reg); case_node->children.push_back(cond_node); } // fixup on the full hierarchy below case_node case_node->fixup_hierarchy_flags(true); block->children.insert(block->children.begin()+assign_idx+2, case_node); children[0]->delete_children(); children[0]->range_valid = false; children[0]->id2ast = NULL; children[0]->str = id_data; type = AST_ASSIGN_EQ; children[0]->was_checked = true; fixup_hierarchy_flags(); did_something = true; } if (mem2reg_check(mem2reg_set)) { AstNode *bit_part_sel = NULL; if (children.size() == 2) bit_part_sel = children[1]->clone(); if (children[0]->children[0]->type == AST_CONSTANT) { int id = children[0]->children[0]->integer; int left = id2ast->children[1]->children[0]->integer; int right = id2ast->children[1]->children[1]->integer; bool valid_const_access = (left <= id && id <= right) || (right <= id && id <= left); if (valid_const_access) { str = stringf("%s[%d]", str.c_str(), id); delete_children(); range_valid = false; id2ast = NULL; } else { int width; if (bit_part_sel) { // bit_part_sel->dumpAst(nullptr, "? "); if (bit_part_sel->children.size() == 1) width = 0; else width = bit_part_sel->children[0]->integer - bit_part_sel->children[1]->integer; delete bit_part_sel; bit_part_sel = nullptr; } else { width = id2ast->children[0]->children[0]->integer - id2ast->children[0]->children[1]->integer; } width = abs(width) + 1; delete_children(); std::vector x_bits; for (int i = 0; i < width; i++) x_bits.push_back(RTLIL::State::Sx); AstNode *constant = AstNode::mkconst_bits(x_bits, false); constant->cloneInto(this); delete constant; } } else { std::stringstream sstr; sstr << "$mem2reg_rd$" << str << "$" << RTLIL::encode_filename(filename) << ":" << location.first_line << "$" << (autoidx++); std::string id_addr = sstr.str() + "_ADDR", id_data = sstr.str() + "_DATA"; int mem_width, mem_size, addr_bits; bool mem_signed = id2ast->is_signed; id2ast->meminfo(mem_width, mem_size, addr_bits); AstNode *wire_addr = new AstNode(AST_WIRE, new AstNode(AST_RANGE, mkconst_int(addr_bits-1, true), mkconst_int(0, true))); wire_addr->str = id_addr; wire_addr->is_reg = true; wire_addr->was_checked = true; if (block) wire_addr->set_attribute(ID::nosync, AstNode::mkconst_int(1, false)); mod->children.push_back(wire_addr); while (wire_addr->simplify(true, 1, -1, false)) { } AstNode *wire_data = new AstNode(AST_WIRE, new AstNode(AST_RANGE, mkconst_int(mem_width-1, true), mkconst_int(0, true))); wire_data->str = id_data; wire_data->is_reg = true; wire_data->was_checked = true; wire_data->is_signed = mem_signed; if (block) wire_data->set_attribute(ID::nosync, AstNode::mkconst_int(1, false)); mod->children.push_back(wire_data); while (wire_data->simplify(true, 1, -1, false)) { } AstNode *assign_addr = new AstNode(block ? AST_ASSIGN_EQ : AST_ASSIGN, new AstNode(AST_IDENTIFIER), children[0]->children[0]->clone()); assign_addr->children[0]->str = id_addr; assign_addr->children[0]->was_checked = true; AstNode *case_node = new AstNode(AST_CASE, new AstNode(AST_IDENTIFIER)); case_node->children[0]->str = id_addr; for (int i = 0; i < mem_size; i++) { if (children[0]->children[0]->type == AST_CONSTANT && int(children[0]->children[0]->integer) != i) continue; AstNode *cond_node = new AstNode(AST_COND, AstNode::mkconst_int(i, false, addr_bits), new AstNode(AST_BLOCK)); AstNode *assign_reg = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER), new AstNode(AST_IDENTIFIER)); assign_reg->children[0]->str = id_data; assign_reg->children[0]->was_checked = true; assign_reg->children[1]->str = stringf("%s[%d]", str.c_str(), i); cond_node->children[1]->children.push_back(assign_reg); case_node->children.push_back(cond_node); } std::vector x_bits; for (int i = 0; i < mem_width; i++) x_bits.push_back(RTLIL::State::Sx); AstNode *cond_node = new AstNode(AST_COND, new AstNode(AST_DEFAULT), new AstNode(AST_BLOCK)); AstNode *assign_reg = new AstNode(AST_ASSIGN_EQ, new AstNode(AST_IDENTIFIER), AstNode::mkconst_bits(x_bits, false)); assign_reg->children[0]->str = id_data; assign_reg->children[0]->was_checked = true; cond_node->children[1]->children.push_back(assign_reg); case_node->children.push_back(cond_node); // fixup on the full hierarchy below case_node case_node->fixup_hierarchy_flags(true); if (block) { size_t assign_idx = 0; while (assign_idx < block->children.size() && !block->children[assign_idx]->contains(this)) assign_idx++; log_assert(assign_idx < block->children.size()); block->children.insert(block->children.begin()+assign_idx, case_node); block->children.insert(block->children.begin()+assign_idx, assign_addr); } else { AstNode *proc = new AstNode(AST_ALWAYS, new AstNode(AST_BLOCK, case_node)); mod->children.push_back(proc); mod->children.push_back(assign_addr); mod->fixup_hierarchy_flags(); } delete_children(); range_valid = false; id2ast = NULL; str = id_data; } if (bit_part_sel) { children.push_back(bit_part_sel); fixup_hierarchy_flags(); } did_something = true; } log_assert(id2ast == NULL || mem2reg_set.count(id2ast) == 0); auto children_list = children; for (size_t i = 0; i < children_list.size(); i++) if (children_list[i]->mem2reg_as_needed_pass2(mem2reg_set, mod, block, async_block)) did_something = true; return did_something; } // calculate memory dimensions void AstNode::meminfo(int &mem_width, int &mem_size, int &addr_bits) { log_assert(type == AST_MEMORY); mem_width = children[0]->range_left - children[0]->range_right + 1; mem_size = children[1]->range_left - children[1]->range_right; if (mem_size < 0) mem_size *= -1; mem_size += min(children[1]->range_left, children[1]->range_right) + 1; addr_bits = 1; while ((1 << addr_bits) < mem_size) addr_bits++; } bool AstNode::detect_latch(const std::string &var) { switch (type) { case AST_ALWAYS: for (auto &c : children) { switch (c->type) { case AST_POSEDGE: case AST_NEGEDGE: return false; case AST_EDGE: break; case AST_BLOCK: if (!c->detect_latch(var)) return false; break; default: log_abort(); } } return true; case AST_BLOCK: for (auto &c : children) if (!c->detect_latch(var)) return false; return true; case AST_CASE: { bool r = true; for (auto &c : children) { if (c->type == AST_COND) { if (c->children.at(1)->detect_latch(var)) return true; r = false; } if (c->type == AST_DEFAULT) { if (c->children.at(0)->detect_latch(var)) return true; r = false; } } return r; } case AST_ASSIGN_EQ: case AST_ASSIGN_LE: if (children.at(0)->type == AST_IDENTIFIER && children.at(0)->children.empty() && children.at(0)->str == var) return false; return true; default: return true; } } bool AstNode::has_const_only_constructs() { if (type == AST_WHILE || type == AST_REPEAT) return true; for (auto child : children) if (child->has_const_only_constructs()) return true; return false; } bool AstNode::is_simple_const_expr() { if (type == AST_IDENTIFIER) return false; for (auto child : children) if (!child->is_simple_const_expr()) return false; return true; } // helper function for AstNode::eval_const_function() bool AstNode::replace_variables(std::map &variables, AstNode *fcall, bool must_succeed) { if (type == AST_IDENTIFIER && variables.count(str)) { int offset = variables.at(str).offset, width = variables.at(str).val.size(); if (!children.empty()) { if (children.size() != 1 || children.at(0)->type != AST_RANGE) { if (!must_succeed) return false; input_error("Memory access in constant function is not supported\n%s: ...called from here.\n", fcall->loc_string().c_str()); } if (!children.at(0)->replace_variables(variables, fcall, must_succeed)) return false; while (simplify(true, 1, -1, false)) { } if (!children.at(0)->range_valid) { if (!must_succeed) return false; input_error("Non-constant range\n%s: ... called from here.\n", fcall->loc_string().c_str()); } offset = min(children.at(0)->range_left, children.at(0)->range_right); width = min(std::abs(children.at(0)->range_left - children.at(0)->range_right) + 1, width); } offset -= variables.at(str).offset; if (variables.at(str).range_swapped) offset = -offset; std::vector &var_bits = variables.at(str).val.bits(); std::vector new_bits(var_bits.begin() + offset, var_bits.begin() + offset + width); AstNode *newNode = mkconst_bits(new_bits, variables.at(str).is_signed); newNode->cloneInto(this); delete newNode; return true; } for (auto &child : children) if (!child->replace_variables(variables, fcall, must_succeed)) return false; return true; } // attempt to statically evaluate a functions with all-const arguments AstNode *AstNode::eval_const_function(AstNode *fcall, bool must_succeed) { std::map backup_scope = current_scope; std::map variables; std::vector to_delete; AstNode *block = new AstNode(AST_BLOCK); AstNode *result = nullptr; size_t argidx = 0; for (auto child : children) { block->children.push_back(child->clone()); } block->set_in_param_flag(true); while (!block->children.empty()) { AstNode *stmt = block->children.front(); #if 0 log("-----------------------------------\n"); for (auto &it : variables) log("%20s %40s\n", it.first.c_str(), log_signal(it.second.val)); stmt->dumpAst(NULL, "stmt> "); #endif if (stmt->type == AST_WIRE) { while (stmt->simplify(true, 1, -1, false)) { } if (!stmt->range_valid) { if (!must_succeed) goto finished; stmt->input_error("Can't determine size of variable %s\n%s: ... called from here.\n", stmt->str.c_str(), fcall->loc_string().c_str()); } AstNode::varinfo_t &variable = variables[stmt->str]; int width = abs(stmt->range_left - stmt->range_right) + 1; // if this variable has already been declared as an input, check the // sizes match if it already had an explicit size if (variable.arg && variable.explicitly_sized && variable.val.size() != width) { input_error("Incompatible re-declaration of constant function wire %s.\n", stmt->str.c_str()); } variable.val = RTLIL::Const(RTLIL::State::Sx, width); variable.offset = stmt->range_swapped ? stmt->range_left : stmt->range_right; variable.range_swapped = stmt->range_swapped; variable.is_signed = stmt->is_signed; variable.explicitly_sized = stmt->children.size() && stmt->children.back()->type == AST_RANGE; // identify the argument corresponding to this wire, if applicable if (stmt->is_input && argidx < fcall->children.size()) { variable.arg = fcall->children.at(argidx++); } // load the constant arg's value into this variable if (variable.arg) { if (variable.arg->type == AST_CONSTANT) { variable.val = variable.arg->bitsAsConst(width); } else { log_assert(variable.arg->type == AST_REALVALUE); variable.val = variable.arg->realAsConst(width); } } current_scope[stmt->str] = stmt; block->children.erase(block->children.begin()); to_delete.push_back(stmt); continue; } log_assert(variables.count(str) != 0); if (stmt->type == AST_LOCALPARAM) { while (stmt->simplify(true, 1, -1, false)) { } current_scope[stmt->str] = stmt; block->children.erase(block->children.begin()); to_delete.push_back(stmt); continue; } if (stmt->type == AST_ASSIGN_EQ) { if (stmt->children.at(0)->type == AST_IDENTIFIER && stmt->children.at(0)->children.size() != 0 && stmt->children.at(0)->children.at(0)->type == AST_RANGE) if (!stmt->children.at(0)->children.at(0)->replace_variables(variables, fcall, must_succeed)) goto finished; if (!stmt->children.at(1)->replace_variables(variables, fcall, must_succeed)) goto finished; while (stmt->simplify(true, 1, -1, false)) { } if (stmt->type != AST_ASSIGN_EQ) continue; if (stmt->children.at(1)->type != AST_CONSTANT) { if (!must_succeed) goto finished; stmt->input_error("Non-constant expression in constant function\n%s: ... called from here. X\n", fcall->loc_string().c_str()); } if (stmt->children.at(0)->type != AST_IDENTIFIER) { if (!must_succeed) goto finished; stmt->input_error("Unsupported composite left hand side in constant function\n%s: ... called from here.\n", fcall->loc_string().c_str()); } if (!variables.count(stmt->children.at(0)->str)) { if (!must_succeed) goto finished; stmt->input_error("Assignment to non-local variable in constant function\n%s: ... called from here.\n", fcall->loc_string().c_str()); } if (stmt->children.at(0)->children.empty()) { variables[stmt->children.at(0)->str].val = stmt->children.at(1)->bitsAsConst(variables[stmt->children.at(0)->str].val.size()); } else { AstNode *range = stmt->children.at(0)->children.at(0); if (!range->range_valid) { if (!must_succeed) goto finished; range->input_error("Non-constant range\n%s: ... called from here.\n", fcall->loc_string().c_str()); } int offset = min(range->range_left, range->range_right); int width = std::abs(range->range_left - range->range_right) + 1; varinfo_t &v = variables[stmt->children.at(0)->str]; RTLIL::Const r = stmt->children.at(1)->bitsAsConst(v.val.size()); for (int i = 0; i < width; i++) { int index = i + offset - v.offset; if (v.range_swapped) index = -index; v.val.bits().at(index) = r.at(i); } } delete block->children.front(); block->children.erase(block->children.begin()); continue; } if (stmt->type == AST_FOR) { block->children.insert(block->children.begin(), stmt->children.at(0)); stmt->children.at(3)->children.push_back(stmt->children.at(2)); stmt->children.erase(stmt->children.begin() + 2); stmt->children.erase(stmt->children.begin()); stmt->type = AST_WHILE; continue; } if (stmt->type == AST_WHILE) { AstNode *cond = stmt->children.at(0)->clone(); if (!cond->replace_variables(variables, fcall, must_succeed)) goto finished; cond->set_in_param_flag(true); while (cond->simplify(true, 1, -1, false)) { } if (cond->type != AST_CONSTANT) { if (!must_succeed) goto finished; stmt->input_error("Non-constant expression in constant function\n%s: ... called from here.\n", fcall->loc_string().c_str()); } if (cond->asBool()) { block->children.insert(block->children.begin(), stmt->children.at(1)->clone()); } else { delete block->children.front(); block->children.erase(block->children.begin()); } delete cond; continue; } if (stmt->type == AST_REPEAT) { AstNode *num = stmt->children.at(0)->clone(); if (!num->replace_variables(variables, fcall, must_succeed)) goto finished; num->set_in_param_flag(true); while (num->simplify(true, 1, -1, false)) { } if (num->type != AST_CONSTANT) { if (!must_succeed) goto finished; stmt->input_error("Non-constant expression in constant function\n%s: ... called from here.\n", fcall->loc_string().c_str()); } block->children.erase(block->children.begin()); for (int i = 0; i < num->bitsAsConst().as_int(); i++) block->children.insert(block->children.begin(), stmt->children.at(1)->clone()); delete stmt; delete num; continue; } if (stmt->type == AST_CASE) { AstNode *expr = stmt->children.at(0)->clone(); if (!expr->replace_variables(variables, fcall, must_succeed)) goto finished; expr->set_in_param_flag(true); while (expr->simplify(true, 1, -1, false)) { } AstNode *sel_case = NULL; for (size_t i = 1; i < stmt->children.size(); i++) { bool found_match = false; log_assert(stmt->children.at(i)->type == AST_COND || stmt->children.at(i)->type == AST_CONDX || stmt->children.at(i)->type == AST_CONDZ); if (stmt->children.at(i)->children.front()->type == AST_DEFAULT) { sel_case = stmt->children.at(i)->children.back(); continue; } for (size_t j = 0; j+1 < stmt->children.at(i)->children.size() && !found_match; j++) { AstNode *cond = stmt->children.at(i)->children.at(j)->clone(); if (!cond->replace_variables(variables, fcall, must_succeed)) goto finished; cond = new AstNode(AST_EQ, expr->clone(), cond); cond->set_in_param_flag(true); while (cond->simplify(true, 1, -1, false)) { } if (cond->type != AST_CONSTANT) { if (!must_succeed) goto finished; stmt->input_error("Non-constant expression in constant function\n%s: ... called from here.\n", fcall->loc_string().c_str()); } found_match = cond->asBool(); delete cond; } if (found_match) { sel_case = stmt->children.at(i)->children.back(); break; } } block->children.erase(block->children.begin()); if (sel_case) block->children.insert(block->children.begin(), sel_case->clone()); delete stmt; delete expr; continue; } if (stmt->type == AST_BLOCK) { if (!stmt->str.empty()) stmt->expand_genblock(stmt->str + "."); block->children.erase(block->children.begin()); block->children.insert(block->children.begin(), stmt->children.begin(), stmt->children.end()); stmt->children.clear(); block->fixup_hierarchy_flags(); delete stmt; continue; } if (!must_succeed) goto finished; stmt->input_error("Unsupported language construct in constant function\n%s: ... called from here.\n", fcall->loc_string().c_str()); log_abort(); } result = AstNode::mkconst_bits(variables.at(str).val.to_bits(), variables.at(str).is_signed); finished: delete block; current_scope = backup_scope; for (auto it : to_delete) { delete it; } to_delete.clear(); return result; } void AstNode::allocateDefaultEnumValues() { log_assert(type==AST_ENUM); log_assert(children.size() > 0); if (children.front()->attributes.count(ID::enum_base_type)) return; // already elaborated int last_enum_int = -1; for (auto node : children) { log_assert(node->type==AST_ENUM_ITEM); node->set_attribute(ID::enum_base_type, mkconst_str(str)); for (size_t i = 0; i < node->children.size(); i++) { switch (node->children[i]->type) { case AST_NONE: // replace with auto-incremented constant delete node->children[i]; node->children[i] = AstNode::mkconst_int(++last_enum_int, true); break; case AST_CONSTANT: // explicit constant (or folded expression) // TODO: can't extend 'x or 'z item last_enum_int = node->children[i]->integer; break; default: // ignore ranges break; } // TODO: range check } } } bool AstNode::is_recursive_function() const { std::set visited; std::function visit = [&](const AstNode *node) { if (visited.count(node)) return node == this; visited.insert(node); if (node->type == AST_FCALL) { auto it = current_scope.find(node->str); if (it != current_scope.end() && visit(it->second)) return true; } for (const AstNode *child : node->children) { if (visit(child)) return true; } return false; }; log_assert(type == AST_FUNCTION); return visit(this); } std::pair AstNode::get_tern_choice() { if (!children[0]->isConst()) return {}; bool found_sure_true = false; bool found_maybe_true = false; if (children[0]->type == AST_CONSTANT) for (auto &bit : children[0]->bits) { if (bit == RTLIL::State::S1) found_sure_true = true; if (bit > RTLIL::State::S1) found_maybe_true = true; } else found_sure_true = children[0]->asReal(true) != 0; AstNode *choice = nullptr, *not_choice = nullptr; if (found_sure_true) choice = children[1], not_choice = children[2]; else if (!found_maybe_true) choice = children[2], not_choice = children[1]; return {choice, not_choice}; } std::string AstNode::try_pop_module_prefix() const { AstNode *current_scope_ast = (current_ast_mod == nullptr) ? current_ast : current_ast_mod; size_t pos = str.find('.', 1); if (str[0] == '\\' && pos != std::string::npos) { std::string new_str = "\\" + str.substr(pos + 1); if (current_scope.count(new_str)) { std::string prefix = str.substr(0, pos); auto it = current_scope_ast->attributes.find(ID::hdlname); if ((it != current_scope_ast->attributes.end() && it->second->str == prefix.substr(1)) || prefix == current_scope_ast->str) return new_str; } } return str; } YOSYS_NAMESPACE_END