/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * 2019 Eddie Hung * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/register.h" #include "kernel/sigtools.h" #include "kernel/utils.h" #include "kernel/celltypes.h" #include "kernel/timinginfo.h" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN int map_autoidx; inline std::string remap_name(RTLIL::IdString abc9_name) { return stringf("$abc$%d$%s", map_autoidx, abc9_name.c_str()+1); } void check(RTLIL::Design *design) { dict box_lookup; for (auto m : design->modules()) { if (m->name.begins_with("$paramod")) continue; auto flop = m->get_bool_attribute(ID(abc9_flop)); auto it = m->attributes.find(ID(abc9_box_id)); if (!flop) { if (it == m->attributes.end()) continue; auto id = it->second.as_int(); auto r = box_lookup.insert(std::make_pair(stringf("$__boxid%d", id), m->name)); if (!r.second) log_error("Module '%s' has the same abc9_box_id = %d value as '%s'.\n", log_id(m), id, log_id(r.first->second)); } // Make carry in the last PI, and carry out the last PO // since ABC requires it this way IdString carry_in, carry_out; for (const auto &port_name : m->ports) { auto w = m->wire(port_name); log_assert(w); if (w->get_bool_attribute("\\abc9_carry")) { if (w->port_input) { if (carry_in != IdString()) log_error("Module '%s' contains more than one (* abc9_carry *) input port.\n", log_id(m)); carry_in = port_name; } if (w->port_output) { if (carry_out != IdString()) log_error("Module '%s' contains more than one (* abc9_carry *) output port.\n", log_id(m)); carry_out = port_name; } } } if (carry_in != IdString() && carry_out == IdString()) log_error("Module '%s' contains an (* abc9_carry *) input port but no output port.\n", log_id(m)); if (carry_in == IdString() && carry_out != IdString()) log_error("Module '%s' contains an (* abc9_carry *) output port but no input port.\n", log_id(m)); if (flop) { int num_outputs = 0; for (auto port_name : m->ports) { auto wire = m->wire(port_name); if (wire->port_output) num_outputs++; } if (num_outputs != 1) log_error("Module '%s' with (* abc9_flop *) has %d outputs (expect 1).\n", log_id(m), num_outputs); } } } void mark_scc(RTLIL::Module *module) { // For every unique SCC found, (arbitrarily) find the first // cell in the component, and convert all wires driven by // its output ports into a new PO, and drive its previous // sinks with a new PI pool ids_seen; for (auto cell : module->cells()) { auto it = cell->attributes.find(ID(abc9_scc_id)); if (it == cell->attributes.end()) continue; auto id = it->second; auto r = ids_seen.insert(id); cell->attributes.erase(it); if (!r.second) continue; for (auto &c : cell->connections_) { if (c.second.is_fully_const()) continue; if (cell->output(c.first)) { SigBit b = c.second.as_bit(); Wire *w = b.wire; w->set_bool_attribute(ID::keep); w->attributes[ID(abc9_scc_id)] = id.as_int(); } } } module->fixup_ports(); } void prep_dff(RTLIL::Module *module) { auto design = module->design; log_assert(design); SigMap assign_map(module); typedef SigSpec clkdomain_t; dict clk_to_mergeability; for (auto cell : module->cells()) { if (cell->type != "$__ABC9_FF_") continue; Wire *abc9_clock_wire = module->wire(stringf("%s.clock", cell->name.c_str())); if (abc9_clock_wire == NULL) log_error("'%s.clock' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module)); SigSpec abc9_clock = assign_map(abc9_clock_wire); clkdomain_t key(abc9_clock); auto r = clk_to_mergeability.insert(std::make_pair(abc9_clock, clk_to_mergeability.size() + 1)); auto r2 = cell->attributes.insert(ID(abc9_mergeability));; log_assert(r2.second); r2.first->second = r.first->second; } RTLIL::Module *holes_module = design->module(stringf("%s$holes", module->name.c_str())); if (holes_module) { SigMap sigmap(holes_module); dict replace; for (auto cell : holes_module->cells().to_vector()) { if (!cell->type.in("$_DFF_N_", "$_DFF_NN0_", "$_DFF_NN1_", "$_DFF_NP0_", "$_DFF_NP1_", "$_DFF_P_", "$_DFF_PN0_", "$_DFF_PN1", "$_DFF_PP0_", "$_DFF_PP1_")) continue; SigBit D = cell->getPort("\\D"); SigBit Q = cell->getPort("\\Q"); // Emulate async control embedded inside $_DFF_* cell with mux in front of D if (cell->type.in("$_DFF_NN0_", "$_DFF_PN0_")) D = holes_module->MuxGate(NEW_ID, State::S0, D, cell->getPort("\\R")); else if (cell->type.in("$_DFF_NN1_", "$_DFF_PN1_")) D = holes_module->MuxGate(NEW_ID, State::S1, D, cell->getPort("\\R")); else if (cell->type.in("$_DFF_NP0_", "$_DFF_PP0_")) D = holes_module->MuxGate(NEW_ID, D, State::S0, cell->getPort("\\R")); else if (cell->type.in("$_DFF_NP1_", "$_DFF_PP1_")) D = holes_module->MuxGate(NEW_ID, D, State::S1, cell->getPort("\\R")); // Remove the $_DFF_* cell from what needs to be a combinatorial box holes_module->remove(cell); Wire *port; if (GetSize(Q.wire) == 1) port = holes_module->wire(stringf("$abc%s", Q.wire->name.c_str())); else port = holes_module->wire(stringf("$abc%s[%d]", Q.wire->name.c_str(), Q.offset)); log_assert(port); // Prepare to replace "assign = $_DFF_*.Q;" with "assign = $_DFF_*.D;" // in order to extract just the combinatorial control logic that feeds the box // (i.e. clock enable, synchronous reset, etc.) replace.insert(std::make_pair(Q,D)); // Since `flatten` above would have created wires named ".Q", // extract the pre-techmap cell name auto pos = Q.wire->name.str().rfind("."); log_assert(pos != std::string::npos); IdString driver = Q.wire->name.substr(0, pos); // And drive the signal that was previously driven by "DFF.Q" (typically // used to implement clock-enable functionality) with the ".$abc9_currQ" // wire (which itself is driven an by input port) we inserted above Wire *currQ = holes_module->wire(stringf("%s.abc9_ff.Q", driver.c_str())); log_assert(currQ); holes_module->connect(Q, currQ); } for (auto &conn : holes_module->connections_) conn.second = replace.at(sigmap(conn.second), conn.second); } } void prep_xaiger(RTLIL::Module *module, bool dff) { auto design = module->design; log_assert(design); SigMap sigmap(module); dict> bit_drivers, bit_users; TopoSort toposort; dict> box_ports; for (auto cell : module->cells()) { if (cell->type == "$__ABC9_FF_") continue; if (cell->has_keep_attr()) continue; auto inst_module = module->design->module(cell->type); bool abc9_flop = inst_module && inst_module->get_bool_attribute("\\abc9_flop"); if (abc9_flop && !dff) continue; if ((inst_module && inst_module->get_bool_attribute("\\abc9_box")) || abc9_flop) { auto r = box_ports.insert(cell->type); if (r.second) { // Make carry in the last PI, and carry out the last PO // since ABC requires it this way IdString carry_in, carry_out; for (const auto &port_name : inst_module->ports) { auto w = inst_module->wire(port_name); log_assert(w); if (w->get_bool_attribute("\\abc9_carry")) { log_assert(w->port_input != w->port_output); if (w->port_input) carry_in = port_name; else if (w->port_output) carry_out = port_name; } else r.first->second.push_back(port_name); } if (carry_in != IdString()) { r.first->second.push_back(carry_in); r.first->second.push_back(carry_out); } } } else if (!yosys_celltypes.cell_known(cell->type)) continue; // TODO: Speed up toposort -- we care about box ordering only for (auto conn : cell->connections()) { if (cell->input(conn.first)) for (auto bit : sigmap(conn.second)) bit_users[bit].insert(cell->name); if (cell->output(conn.first) && !abc9_flop) for (auto bit : sigmap(conn.second)) bit_drivers[bit].insert(cell->name); } toposort.node(cell->name); } if (box_ports.empty()) return; for (auto &it : bit_users) if (bit_drivers.count(it.first)) for (auto driver_cell : bit_drivers.at(it.first)) for (auto user_cell : it.second) toposort.edge(driver_cell, user_cell); if (ys_debug(1)) toposort.analyze_loops = true; bool no_loops YS_ATTRIBUTE(unused) = toposort.sort(); if (ys_debug(1)) { unsigned i = 0; for (auto &it : toposort.loops) { log(" loop %d\n", i++); for (auto cell_name : it) { auto cell = module->cell(cell_name); log_assert(cell); log("\t%s (%s @ %s)\n", log_id(cell), log_id(cell->type), cell->get_src_attribute().c_str()); } } } log_assert(no_loops); RTLIL::Module *holes_module = design->addModule(stringf("%s$holes", module->name.c_str())); log_assert(holes_module); holes_module->set_bool_attribute("\\abc9_holes"); dict cell_cache; TimingInfo timing; int port_id = 1, box_count = 0; for (auto cell_name : toposort.sorted) { RTLIL::Cell *cell = module->cell(cell_name); log_assert(cell); RTLIL::Module* box_module = design->module(cell->type); if (!box_module || (!box_module->get_bool_attribute("\\abc9_box") && !box_module->get_bool_attribute("\\abc9_flop"))) continue; cell->attributes["\\abc9_box_seq"] = box_count++; IdString derived_type = box_module->derive(design, cell->parameters); box_module = design->module(derived_type); auto r = cell_cache.insert(derived_type); auto &holes_cell = r.first->second; if (r.second) { if (box_module->has_processes()) Pass::call_on_module(design, box_module, "proc"); if (box_module->get_bool_attribute("\\whitebox")) { holes_cell = holes_module->addCell(cell->name, derived_type); if (box_module->has_processes()) Pass::call_on_module(design, box_module, "proc"); int box_inputs = 0; for (auto port_name : box_ports.at(cell->type)) { RTLIL::Wire *w = box_module->wire(port_name); log_assert(w); log_assert(!w->port_input || !w->port_output); auto &conn = holes_cell->connections_[port_name]; if (w->port_input) { for (int i = 0; i < GetSize(w); i++) { box_inputs++; RTLIL::Wire *holes_wire = holes_module->wire(stringf("\\i%d", box_inputs)); if (!holes_wire) { holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs)); holes_wire->port_input = true; holes_wire->port_id = port_id++; holes_module->ports.push_back(holes_wire->name); } conn.append(holes_wire); } } else if (w->port_output) conn = holes_module->addWire(stringf("%s.%s", derived_type.c_str(), log_id(port_name)), GetSize(w)); } // For flops only, create an extra 1-bit input that drives a new wire // called ".abc9_ff.Q" that is used below if (box_module->get_bool_attribute("\\abc9_flop")) { box_inputs++; Wire *holes_wire = holes_module->wire(stringf("\\i%d", box_inputs)); if (!holes_wire) { holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs)); holes_wire->port_input = true; holes_wire->port_id = port_id++; holes_module->ports.push_back(holes_wire->name); } Wire *Q = holes_module->addWire(stringf("%s.abc9_ff.Q", cell->name.c_str())); holes_module->connect(Q, holes_wire); } } else // box_module is a blackbox log_assert(holes_cell == nullptr); } for (auto port_name : box_ports.at(cell->type)) { RTLIL::Wire *w = box_module->wire(port_name); log_assert(w); if (!w->port_output) continue; Wire *holes_wire = holes_module->addWire(stringf("$abc%s.%s", cell->name.c_str(), log_id(port_name)), GetSize(w)); holes_wire->port_output = true; holes_wire->port_id = port_id++; holes_module->ports.push_back(holes_wire->name); if (holes_cell) // whitebox holes_module->connect(holes_wire, holes_cell->getPort(port_name)); else // blackbox holes_module->connect(holes_wire, Const(State::S0, GetSize(w))); } } } void prep_delays(RTLIL::Design *design, bool dff_mode) { TimingInfo timing; // Derive all Yosys blackbox modules that are not combinatorial abc9 boxes // (e.g. DSPs, RAMs, etc.) nor abc9 flops and collect all such instantiations pool flops; std::vector cells; for (auto module : design->selected_modules()) { if (module->processes.size() > 0) { log("Skipping module %s as it contains processes.\n", log_id(module)); continue; } for (auto cell : module->cells()) { if (cell->type.in(ID($_AND_), ID($_NOT_), ID($__ABC9_FF_), ID($__ABC9_DELAY))) continue; RTLIL::Module* inst_module = module->design->module(cell->type); if (!inst_module) continue; if (!inst_module->get_blackbox_attribute()) continue; if (inst_module->attributes.count(ID(abc9_box))) continue; IdString derived_type = inst_module->derive(design, cell->parameters); inst_module = design->module(derived_type); log_assert(inst_module); if (dff_mode && inst_module->get_bool_attribute(ID(abc9_flop))) { flops.insert(inst_module); continue; // do not add $__ABC9_DELAY boxes to flops // as delays will be captured in the flop box } if (!timing.count(derived_type)) timing.setup_module(inst_module); cells.emplace_back(cell); } } // Insert $__ABC9_DELAY cells on all cells that instantiate blackboxes // with required times for (auto cell : cells) { auto module = cell->module; RTLIL::Module* inst_module = module->design->module(cell->type); log_assert(inst_module); IdString derived_type = inst_module->derive(design, cell->parameters); inst_module = design->module(derived_type); log_assert(inst_module); auto &t = timing.at(derived_type).required; for (auto &conn : cell->connections_) { auto port_wire = inst_module->wire(conn.first); if (!port_wire->port_input) continue; SigSpec O = module->addWire(NEW_ID, GetSize(conn.second)); for (int i = 0; i < GetSize(conn.second); i++) { auto d = t.at(SigBit(port_wire,i), 0); if (d == 0) continue; #ifndef NDEBUG if (ys_debug(1)) { static std::set> seen; if (seen.emplace(derived_type, conn.first, i).second) log("%s.%s[%d] abc9_required = %d\n", log_id(cell->type), log_id(conn.first), i, d); } #endif auto box = module->addCell(NEW_ID, ID($__ABC9_DELAY)); box->setPort(ID(I), conn.second[i]); box->setPort(ID(O), O[i]); box->setParam(ID(DELAY), d); conn.second[i] = O[i]; } } } } void prep_lut(RTLIL::Design *design, int maxlut) { TimingInfo timing; std::vector>> table; for (auto module : design->modules()) { auto it = module->attributes.find(ID(abc9_lut)); if (it == module->attributes.end()) continue; auto &t = timing.setup_module(module); SigBit o; std::vector specify; for (const auto &i : t.comb) { auto &d = i.first.second; if (o == SigBit()) o = d; else if (o != d) log_error("(* abc9_lut *) module '%s' with has more than one output.\n", log_id(module)); specify.push_back(i.second); } if (maxlut && GetSize(specify) > maxlut) continue; // ABC requires non-decreasing LUT input delays std::sort(specify.begin(), specify.end()); table.emplace_back(GetSize(specify), module->name, it->second.as_int(), std::move(specify)); } // ABC requires ascending size std::sort(table.begin(), table.end()); std::stringstream ss; const auto &first = table.front(); // If the first entry does not start from a 1-input LUT, // (as ABC requires) crop the first entry to do so for (int i = 1; i < std::get<0>(first); i++) { ss << "# $__ABC9_LUT" << i << std::endl; ss << i << " " << std::get<2>(first); for (int j = 0; j < i; j++) ss << " " << std::get<3>(first)[j]; ss << std::endl; } for (const auto &i : table) { ss << "# " << log_id(std::get<1>(i)) << std::endl; ss << std::get<0>(i) << " " << std::get<2>(i); for (const auto &j : std::get<3>(i)) ss << " " << j; ss << std::endl; } design->scratchpad_set_string("abc9_ops.lut_library", ss.str()); } void write_lut(RTLIL::Module *module, const std::string &dst) { std::ofstream ofs(dst); log_assert(ofs.is_open()); ofs << module->design->scratchpad_get_string("abc9_ops.lut_library"); ofs.close(); } void prep_box(RTLIL::Design *design, bool dff_mode) { TimingInfo timing; std::stringstream ss; int abc9_box_id = 1; for (auto module : design->modules()) { auto it = module->attributes.find(ID(abc9_box_id)); if (it == module->attributes.end()) continue; abc9_box_id = std::max(abc9_box_id, it->second.as_int()); } dict> box_ports; for (auto module : design->modules()) { auto abc9_flop = module->get_bool_attribute(ID(abc9_flop)); if (abc9_flop) { auto r = module->attributes.insert(ID(abc9_box_id)); if (!r.second) continue; r.first->second = abc9_box_id++; if (dff_mode) { int num_inputs = 0, num_outputs = 0; for (auto port_name : module->ports) { auto wire = module->wire(port_name); log_assert(GetSize(wire) == 1); if (wire->port_input) num_inputs++; if (wire->port_output) num_outputs++; } log_assert(num_outputs == 1); ss << log_id(module) << " " << r.first->second.as_int(); ss << " " << (module->get_bool_attribute(ID::whitebox) ? "1" : "0"); ss << " " << num_inputs+1 << " " << num_outputs << std::endl; ss << "#"; bool first = true; for (auto port_name : module->ports) { auto wire = module->wire(port_name); if (!wire->port_input) continue; if (first) first = false; else ss << " "; ss << log_id(wire); } ss << " abc9_ff.Q" << std::endl; auto &t = timing.setup_module(module).required; first = true; for (auto port_name : module->ports) { auto wire = module->wire(port_name); if (!wire->port_input) continue; if (first) first = false; else ss << " "; auto it = t.find(wire); if (it == t.end()) // Assume that no setup time means zero ss << 0; else { ss << it->second; #ifndef NDEBUG if (ys_debug(1)) { static std::set> seen; if (seen.emplace(module->name, port_name).second) log("%s.%s abc9_required = %d\n", log_id(module), log_id(port_name), it->second); } #endif } } // Last input is 'abc9_ff.Q' ss << " 0" << std::endl << std::endl; continue; } } else { if (!module->attributes.erase(ID(abc9_box))) continue; auto r = module->attributes.insert(ID(abc9_box_id)); if (!r.second) continue; r.first->second = abc9_box_id++; } auto r = box_ports.insert(module->name); if (r.second) { // Make carry in the last PI, and carry out the last PO // since ABC requires it this way IdString carry_in, carry_out; for (const auto &port_name : module->ports) { auto w = module->wire(port_name); log_assert(w); if (w->get_bool_attribute("\\abc9_carry")) { log_assert(w->port_input != w->port_output); if (w->port_input) carry_in = port_name; else if (w->port_output) carry_out = port_name; } else r.first->second.push_back(port_name); } if (carry_in != IdString()) { r.first->second.push_back(carry_in); r.first->second.push_back(carry_out); } } std::vector inputs; std::vector outputs; for (auto port_name : r.first->second) { auto wire = module->wire(port_name); if (wire->port_input) for (int i = 0; i < GetSize(wire); i++) inputs.emplace_back(wire, i); if (wire->port_output) for (int i = 0; i < GetSize(wire); i++) outputs.emplace_back(wire, i); } ss << log_id(module) << " " << module->attributes.at(ID(abc9_box_id)).as_int(); ss << " " << (module->get_bool_attribute(ID::whitebox) ? "1" : "0"); ss << " " << GetSize(inputs) << " " << GetSize(outputs) << std::endl; bool first = true; ss << "#"; for (const auto &i : inputs) { if (first) first = false; else ss << " "; if (GetSize(i.wire) == 1) ss << log_id(i.wire); else ss << log_id(i.wire) << "[" << i.offset << "]"; } ss << std::endl; auto &t = timing.setup_module(module).comb; if (t.empty()) log_warning("(* abc9_box *) module '%s' has no timing (and thus no connectivity) information.\n", log_id(module)); for (const auto &o : outputs) { first = true; for (const auto &i : inputs) { if (first) first = false; else ss << " "; auto jt = t.find(std::make_pair(i,o)); if (jt == t.end()) ss << "-"; else ss << jt->second; } ss << " # "; if (GetSize(o.wire) == 1) ss << log_id(o.wire); else ss << log_id(o.wire) << "[" << o.offset << "]"; ss << std::endl; } ss << std::endl; } // ABC expects at least one box if (ss.tellp() == 0) ss << "(dummy) 1 0 0 0"; design->scratchpad_set_string("abc9_ops.box_library", ss.str()); } void write_box(RTLIL::Module *module, const std::string &dst) { std::ofstream ofs(dst); log_assert(ofs.is_open()); ofs << module->design->scratchpad_get_string("abc9_ops.box_library"); ofs.close(); } void reintegrate(RTLIL::Module *module) { auto design = module->design; log_assert(design); map_autoidx = autoidx++; RTLIL::Module *mapped_mod = design->module(stringf("%s$abc9", module->name.c_str())); if (mapped_mod == NULL) log_error("ABC output file does not contain a module `%s$abc'.\n", log_id(module)); for (auto w : mapped_mod->wires()) module->addWire(remap_name(w->name), GetSize(w)); dict> box_ports; for (auto m : design->modules()) { if (!m->attributes.count(ID(abc9_box_id))) continue; auto r = box_ports.insert(m->name); if (!r.second) continue; // Make carry in the last PI, and carry out the last PO // since ABC requires it this way IdString carry_in, carry_out; for (const auto &port_name : m->ports) { auto w = m->wire(port_name); log_assert(w); if (w->get_bool_attribute("\\abc9_carry")) { log_assert(w->port_input != w->port_output); if (w->port_input) carry_in = port_name; else if (w->port_output) carry_out = port_name; } else r.first->second.push_back(port_name); } if (carry_in != IdString()) { r.first->second.push_back(carry_in); r.first->second.push_back(carry_out); } } std::vector boxes; for (auto cell : module->cells().to_vector()) { if (cell->has_keep_attr()) continue; if (cell->type.in(ID($_AND_), ID($_NOT_), ID($__ABC9_FF_))) module->remove(cell); else if (cell->attributes.erase("\\abc9_box_seq")) boxes.emplace_back(cell); } dict> bit_drivers, bit_users; TopoSort toposort; dict not2drivers; dict> bit2sinks; std::map cell_stats; for (auto mapped_cell : mapped_mod->cells()) { // TODO: Speed up toposort -- we care about NOT ordering only toposort.node(mapped_cell->name); if (mapped_cell->type == ID($_NOT_)) { RTLIL::SigBit a_bit = mapped_cell->getPort(ID::A); RTLIL::SigBit y_bit = mapped_cell->getPort(ID::Y); bit_users[a_bit].insert(mapped_cell->name); // Ignore inouts for topo ordering if (y_bit.wire && !(y_bit.wire->port_input && y_bit.wire->port_output)) bit_drivers[y_bit].insert(mapped_cell->name); if (!a_bit.wire) { mapped_cell->setPort(ID::Y, module->addWire(NEW_ID)); RTLIL::Wire *wire = module->wire(remap_name(y_bit.wire->name)); log_assert(wire); module->connect(RTLIL::SigBit(wire, y_bit.offset), State::S1); } else { RTLIL::Cell* driver_lut = nullptr; // ABC can return NOT gates that drive POs if (!a_bit.wire->port_input) { // If it's not a NOT gate that that comes from a PI directly, // find the driver LUT and clone that to guarantee that we won't // increase the max logic depth // (TODO: Optimise by not cloning unless will increase depth) RTLIL::IdString driver_name; if (GetSize(a_bit.wire) == 1) driver_name = stringf("$lut%s", a_bit.wire->name.c_str()); else driver_name = stringf("$lut%s[%d]", a_bit.wire->name.c_str(), a_bit.offset); driver_lut = mapped_mod->cell(driver_name); } if (!driver_lut) { // If a driver couldn't be found (could be from PI or box CI) // then implement using a LUT RTLIL::Cell *cell = module->addLut(remap_name(stringf("$lut%s", mapped_cell->name.c_str())), RTLIL::SigBit(module->wires_.at(remap_name(a_bit.wire->name)), a_bit.offset), RTLIL::SigBit(module->wires_.at(remap_name(y_bit.wire->name)), y_bit.offset), RTLIL::Const::from_string("01")); bit2sinks[cell->getPort(ID::A)].push_back(cell); cell_stats[ID($lut)]++; } else not2drivers[mapped_cell] = driver_lut; } continue; } if (mapped_cell->type.in(ID($lut), ID($__ABC9_FF_))) { RTLIL::Cell *cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type); cell->parameters = mapped_cell->parameters; cell->attributes = mapped_cell->attributes; for (auto &mapped_conn : mapped_cell->connections()) { RTLIL::SigSpec newsig; for (auto c : mapped_conn.second.chunks()) { if (c.width == 0) continue; //log_assert(c.width == 1); if (c.wire) c.wire = module->wires_.at(remap_name(c.wire->name)); newsig.append(c); } cell->setPort(mapped_conn.first, newsig); if (cell->input(mapped_conn.first)) { for (auto i : newsig) bit2sinks[i].push_back(cell); for (auto i : mapped_conn.second) bit_users[i].insert(mapped_cell->name); } if (cell->output(mapped_conn.first)) for (auto i : mapped_conn.second) // Ignore inouts for topo ordering if (i.wire && !(i.wire->port_input && i.wire->port_output)) bit_drivers[i].insert(mapped_cell->name); } } else { RTLIL::Cell *existing_cell = module->cell(mapped_cell->name); if (!existing_cell) log_error("Cannot find existing box cell with name '%s' in original design.\n", log_id(mapped_cell)); if (existing_cell->type == ID($__ABC9_DELAY)) { SigBit I = mapped_cell->getPort(ID(i)); SigBit O = mapped_cell->getPort(ID(o)); if (I.wire) I.wire = module->wires_.at(remap_name(I.wire->name)); log_assert(O.wire); O.wire = module->wires_.at(remap_name(O.wire->name)); module->connect(O, I); continue; } RTLIL::Module* box_module = design->module(existing_cell->type); IdString derived_type = box_module->derive(design, existing_cell->parameters); RTLIL::Module* derived_module = design->module(derived_type); log_assert(derived_module); log_assert(mapped_cell->type == stringf("$__boxid%d", derived_module->attributes.at("\\abc9_box_id").as_int())); mapped_cell->type = existing_cell->type; RTLIL::Cell *cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type); cell->parameters = existing_cell->parameters; cell->attributes = existing_cell->attributes; module->swap_names(cell, existing_cell); auto jt = mapped_cell->connections_.find("\\i"); log_assert(jt != mapped_cell->connections_.end()); SigSpec inputs = std::move(jt->second); mapped_cell->connections_.erase(jt); jt = mapped_cell->connections_.find("\\o"); log_assert(jt != mapped_cell->connections_.end()); SigSpec outputs = std::move(jt->second); mapped_cell->connections_.erase(jt); auto abc9_flop = box_module->attributes.count("\\abc9_flop"); if (!abc9_flop) { for (const auto &i : inputs) bit_users[i].insert(mapped_cell->name); for (const auto &i : outputs) // Ignore inouts for topo ordering if (i.wire && !(i.wire->port_input && i.wire->port_output)) bit_drivers[i].insert(mapped_cell->name); } int input_count = 0, output_count = 0; for (const auto &port_name : box_ports.at(derived_type)) { RTLIL::Wire *w = box_module->wire(port_name); log_assert(w); SigSpec sig; if (w->port_input) { sig = inputs.extract(input_count, GetSize(w)); input_count += GetSize(w); } if (w->port_output) { sig = outputs.extract(output_count, GetSize(w)); output_count += GetSize(w); } SigSpec newsig; for (auto c : sig.chunks()) { if (c.width == 0) continue; //log_assert(c.width == 1); if (c.wire) c.wire = module->wires_.at(remap_name(c.wire->name)); newsig.append(c); } cell->setPort(port_name, newsig); if (w->port_input && !abc9_flop) for (const auto &i : newsig) bit2sinks[i].push_back(cell); } } cell_stats[mapped_cell->type]++; } for (auto cell : boxes) module->remove(cell); // Copy connections (and rename) from mapped_mod to module for (auto conn : mapped_mod->connections()) { if (!conn.first.is_fully_const()) { auto chunks = conn.first.chunks(); for (auto &c : chunks) c.wire = module->wires_.at(remap_name(c.wire->name)); conn.first = std::move(chunks); } if (!conn.second.is_fully_const()) { auto chunks = conn.second.chunks(); for (auto &c : chunks) if (c.wire) c.wire = module->wires_.at(remap_name(c.wire->name)); conn.second = std::move(chunks); } module->connect(conn); } for (auto &it : cell_stats) log("ABC RESULTS: %15s cells: %8d\n", it.first.c_str(), it.second); int in_wires = 0, out_wires = 0; // Stitch in mapped_mod's inputs/outputs into module for (auto port : mapped_mod->ports) { RTLIL::Wire *mapped_wire = mapped_mod->wire(port); RTLIL::Wire *wire = module->wire(port); log_assert(wire); if (wire->attributes.erase(ID(abc9_scc_id))) { auto r YS_ATTRIBUTE(unused) = wire->attributes.erase(ID::keep); log_assert(r); } RTLIL::Wire *remap_wire = module->wire(remap_name(port)); RTLIL::SigSpec signal(wire, 0, GetSize(remap_wire)); log_assert(GetSize(signal) >= GetSize(remap_wire)); RTLIL::SigSig conn; if (mapped_wire->port_output) { conn.first = signal; conn.second = remap_wire; out_wires++; module->connect(conn); } else if (mapped_wire->port_input) { conn.first = remap_wire; conn.second = signal; in_wires++; module->connect(conn); } } // ABC9 will return $_NOT_ gates in its mapping (since they are // treated as being "free"), in particular driving primary // outputs (real primary outputs, or cells treated as blackboxes) // or driving box inputs. // Instead of just mapping those $_NOT_ gates into 2-input $lut-s // at an area and delay cost, see if it is possible to push // this $_NOT_ into the driving LUT, or into all sink LUTs. // When this is not possible, (i.e. this signal drives two primary // outputs, only one of which is complemented) and when the driver // is a LUT, then clone the LUT so that it can be inverted without // increasing depth/delay. for (auto &it : bit_users) if (bit_drivers.count(it.first)) for (auto driver_cell : bit_drivers.at(it.first)) for (auto user_cell : it.second) toposort.edge(driver_cell, user_cell); bool no_loops YS_ATTRIBUTE(unused) = toposort.sort(); log_assert(no_loops); for (auto ii = toposort.sorted.rbegin(); ii != toposort.sorted.rend(); ii++) { RTLIL::Cell *not_cell = mapped_mod->cell(*ii); log_assert(not_cell); if (not_cell->type != ID($_NOT_)) continue; auto it = not2drivers.find(not_cell); if (it == not2drivers.end()) continue; RTLIL::Cell *driver_lut = it->second; RTLIL::SigBit a_bit = not_cell->getPort(ID::A); RTLIL::SigBit y_bit = not_cell->getPort(ID::Y); RTLIL::Const driver_mask; a_bit.wire = module->wires_.at(remap_name(a_bit.wire->name)); y_bit.wire = module->wires_.at(remap_name(y_bit.wire->name)); auto jt = bit2sinks.find(a_bit); if (jt == bit2sinks.end()) goto clone_lut; for (auto sink_cell : jt->second) if (sink_cell->type != ID($lut)) goto clone_lut; // Push downstream LUTs past inverter for (auto sink_cell : jt->second) { SigSpec A = sink_cell->getPort(ID::A); RTLIL::Const mask = sink_cell->getParam(ID(LUT)); int index = 0; for (; index < GetSize(A); index++) if (A[index] == a_bit) break; log_assert(index < GetSize(A)); int i = 0; while (i < GetSize(mask)) { for (int j = 0; j < (1 << index); j++) std::swap(mask[i+j], mask[i+j+(1 << index)]); i += 1 << (index+1); } A[index] = y_bit; sink_cell->setPort(ID::A, A); sink_cell->setParam(ID(LUT), mask); } // Since we have rewritten all sinks (which we know // to be only LUTs) to be after the inverter, we can // go ahead and clone the LUT with the expectation // that the original driving LUT will become dangling // and get cleaned away clone_lut: driver_mask = driver_lut->getParam(ID(LUT)); for (auto &b : driver_mask.bits) { if (b == RTLIL::State::S0) b = RTLIL::State::S1; else if (b == RTLIL::State::S1) b = RTLIL::State::S0; } auto cell = module->addLut(NEW_ID, driver_lut->getPort(ID::A), y_bit, driver_mask); for (auto &bit : cell->connections_.at(ID::A)) { bit.wire = module->wires_.at(remap_name(bit.wire->name)); bit2sinks[bit].push_back(cell); } } //log("ABC RESULTS: internal signals: %8d\n", int(signal_list.size()) - in_wires - out_wires); log("ABC RESULTS: input signals: %8d\n", in_wires); log("ABC RESULTS: output signals: %8d\n", out_wires); design->remove(mapped_mod); } struct Abc9OpsPass : public Pass { Abc9OpsPass() : Pass("abc9_ops", "helper functions for ABC9") { } void help() YS_OVERRIDE { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" abc9_ops [options] [selection]\n"); log("\n"); log("This pass contains a set of supporting operations for use during ABC technology\n"); log("mapping, and is expected to be called in conjunction with other operations from\n"); log("the `abc9' script pass. Only fully-selected modules are supported.\n"); log("\n"); log(" -check\n"); log(" check that the design is valid, e.g. (* abc9_box_id *) values are unique,\n"); log(" (* abc9_carry *) is only given for one input/output port, etc.\n"); log("\n"); log(" -prep_delays\n"); log(" insert `$__ABC9_DELAY' blackbox cells into the design to account for\n"); log(" certain required times.\n"); log("\n"); log(" -mark_scc\n"); log(" for an arbitrarily chosen cell in each unique SCC of each selected module\n"); log(" (tagged with an (* abc9_scc_id = *) attribute), temporarily mark all\n"); log(" wires driven by this cell's outputs with a (* keep *) attribute in order\n"); log(" to break the SCC. this temporary attribute will be removed on -reintegrate.\n"); log("\n"); log(" -prep_xaiger\n"); log(" prepare the design for XAIGER output. this includes computing the\n"); log(" topological ordering of ABC9 boxes, as well as preparing the\n"); log(" '$holes' module that contains the logic behaviour of ABC9\n"); log(" whiteboxes.\n"); log("\n"); log(" -dff\n"); log(" consider flop cells (those instantiating modules marked with (* abc9_flop *))\n"); log(" during -prep_{delays,xaiger,box}.\n"); log("\n"); log(" -prep_dff\n"); log(" compute the clock domain and initial value of each flop in the design.\n"); log(" process the '$holes' module to support clock-enable functionality.\n"); log("\n"); log(" -prep_lut \n"); log(" pre-compute the lut library by analysing all modules marked with\n"); log(" (* abc9_lut= *).\n"); log("\n"); log(" -write_lut \n"); log(" write the pre-computed lut library to .\n"); log("\n"); log(" -prep_box\n"); log(" pre-compute the box library by analysing all modules marked with\n"); log(" (* abc9_box *).\n"); log("\n"); log(" -write_box \n"); log(" write the pre-computed box library to .\n"); log("\n"); log(" -reintegrate\n"); log(" for each selected module, re-intergrate the module '$abc9'\n"); log(" by first recovering ABC9 boxes, and then stitching in the remaining primary\n"); log(" inputs and outputs.\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) YS_OVERRIDE { log_header(design, "Executing ABC9_OPS pass (helper functions for ABC9).\n"); bool check_mode = false; bool prep_delays_mode = false; bool mark_scc_mode = false; bool prep_dff_mode = false; bool prep_xaiger_mode = false; bool prep_lut_mode = false; bool prep_box_mode = false; bool reintegrate_mode = false; bool dff_mode = false; std::string write_lut_dst; int maxlut = 0; std::string write_box_dst; size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { std::string arg = args[argidx]; if (arg == "-check") { check_mode = true; continue; } if (arg == "-mark_scc") { mark_scc_mode = true; continue; } if (arg == "-prep_dff") { prep_dff_mode = true; continue; } if (arg == "-prep_xaiger") { prep_xaiger_mode = true; continue; } if (arg == "-prep_delays") { prep_delays_mode = true; continue; } if (arg == "-prep_lut" && argidx+1 < args.size()) { prep_lut_mode = true; maxlut = atoi(args[++argidx].c_str()); continue; } if (arg == "-maxlut" && argidx+1 < args.size()) { continue; } if (arg == "-write_lut" && argidx+1 < args.size()) { write_lut_dst = args[++argidx]; rewrite_filename(write_lut_dst); continue; } if (arg == "-prep_box") { prep_box_mode = true; continue; } if (arg == "-write_box" && argidx+1 < args.size()) { write_box_dst = args[++argidx]; rewrite_filename(write_box_dst); continue; } if (arg == "-reintegrate") { reintegrate_mode = true; continue; } if (arg == "-dff") { dff_mode = true; continue; } break; } extra_args(args, argidx, design); if (!(check_mode || mark_scc_mode || prep_delays_mode || prep_xaiger_mode || prep_dff_mode || prep_lut_mode || prep_box_mode || !write_lut_dst.empty() || !write_box_dst.empty() || reintegrate_mode)) log_cmd_error("At least one of -check, -mark_scc, -prep_{delays,xaiger,dff,lut,box}, -write_{lut,box}, -reintegrate must be specified.\n"); if (dff_mode && !prep_delays_mode && !prep_xaiger_mode && !prep_box_mode) log_cmd_error("'-dff' option is only relevant for -prep_{delay,xaiger,box}.\n"); if (check_mode) check(design); if (prep_delays_mode) prep_delays(design, dff_mode); if (prep_lut_mode) prep_lut(design, maxlut); if (prep_box_mode) prep_box(design, dff_mode); for (auto mod : design->selected_modules()) { if (mod->get_bool_attribute("\\abc9_holes")) continue; if (mod->processes.size() > 0) { log("Skipping module %s as it contains processes.\n", log_id(mod)); continue; } if (!design->selected_whole_module(mod)) log_error("Can't handle partially selected module %s!\n", log_id(mod)); if (!write_lut_dst.empty()) write_lut(mod, write_lut_dst); if (!write_box_dst.empty()) write_box(mod, write_box_dst); if (mark_scc_mode) mark_scc(mod); if (prep_dff_mode) prep_dff(mod); if (prep_xaiger_mode) prep_xaiger(mod, dff_mode); if (reintegrate_mode) reintegrate(mod); } } } Abc9OpsPass; PRIVATE_NAMESPACE_END