// This pass performs an optimisation that decomposes wide arithmetic // comparisons into LUT-size chunks (as guided by the `LUT_WIDTH // macro) connected to a single lookahead-carry-unit $lcu cell, // which is typically mapped to dedicated (and fast) FPGA // carry-chains. (* techmap_celltype = "$lt $le $gt $ge" *) module _90_lcu_cmp_ (A, B, Y); parameter A_SIGNED = 0; parameter B_SIGNED = 0; parameter A_WIDTH = 0; parameter B_WIDTH = 0; parameter Y_WIDTH = 0; input [A_WIDTH-1:0] A; input [B_WIDTH-1:0] B; output [Y_WIDTH-1:0] Y; parameter _TECHMAP_CELLTYPE_ = ""; generate if (_TECHMAP_CELLTYPE_ == "" || `LUT_WIDTH < 2) wire _TECHMAP_FAIL_ = 1; else if (_TECHMAP_CELLTYPE_ == "$lt") begin // Transform $lt into $gt by swapping A and B $gt #(.A_SIGNED(B_SIGNED), .B_SIGNED(A_SIGNED), .A_WIDTH(B_WIDTH), .B_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(B), .B(A), .Y(Y)); end else if (_TECHMAP_CELLTYPE_ == "$le") begin // Transform $le into $ge by swapping A and B $ge #(.A_SIGNED(B_SIGNED), .B_SIGNED(A_SIGNED), .A_WIDTH(B_WIDTH), .B_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) _TECHMAP_REPLACE_ (.A(B), .B(A), .Y(Y)); end else begin // Perform sign extension on A and B localparam WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH; wire [WIDTH-1:0] AA = {{(WIDTH-A_WIDTH){A_SIGNED ? A[A_WIDTH-1] : 1'b0}}, A}; wire [WIDTH-1:0] BB = {{(WIDTH-B_WIDTH){B_SIGNED ? B[B_WIDTH-1] : 1'b0}}, B}; // For $ge operation, start with the assumption that A and B are // equal (propagating this equality if A and B turn out to be so) if (_TECHMAP_CELLTYPE_ == "$ge") localparam CI = 1'b1; else localparam CI = 1'b0; $__CMP2LCU #(.AB_WIDTH(WIDTH), .AB_SIGNED(A_SIGNED && B_SIGNED), .LCU_WIDTH(1), .BUDGET(`LUT_WIDTH), .CI(CI)) _TECHMAP_REPLACE_ (.A(AA), .B(BB), .P(1'b1), .G(1'b0), .Y(Y)); end endgenerate endmodule module $__CMP2LCU (A, B, P, G, Y); parameter AB_WIDTH = 0; parameter AB_SIGNED = 0; parameter LCU_WIDTH = 1; parameter BUDGET = 0; parameter CI = 0; input [AB_WIDTH-1:0] A; // A from original $gt/$ge input [AB_WIDTH-1:0] B; // B from original $gt/$ge input [LCU_WIDTH-1:0] P; // P of $lcu input [LCU_WIDTH-1:0] G; // G of $lcu output Y; parameter [AB_WIDTH-1:0] _TECHMAP_CONSTMSK_A_ = 0; parameter [AB_WIDTH-1:0] _TECHMAP_CONSTMSK_B_ = 0; parameter [LCU_WIDTH-1:0] _TECHMAP_CONSTMSK_P_ = 0; generate if (AB_WIDTH == 0) begin wire [LCU_WIDTH-1:0] CO; $lcu #(.WIDTH(LCU_WIDTH)) _TECHMAP_REPLACE_ (.P(P), .G(G), .CI(CI), .CO(CO)); assign Y = CO[LCU_WIDTH-1]; end else begin if (_TECHMAP_CONSTMSK_A_[AB_WIDTH-1:0] && _TECHMAP_CONSTMSK_B_[AB_WIDTH-1:0]) localparam COST = 0; else if (_TECHMAP_CONSTMSK_A_[AB_WIDTH-1:0] || _TECHMAP_CONSTMSK_B_[AB_WIDTH-1:0]) localparam COST = 1; else localparam COST = 2; if (BUDGET < COST) $__CMP2LCU #(.AB_WIDTH(AB_WIDTH), .AB_SIGNED(AB_SIGNED), .LCU_WIDTH(LCU_WIDTH+1), .BUDGET(`LUT_WIDTH), .CI(CI)) _TECHMAP_REPLACE_ (.A(A), .B(B), .P({P, 1'b1}), .G({G, 1'b0}), .Y(Y)); else begin wire PP, GG; // Bit-wise equality (xnor) of A and B assign PP = A[AB_WIDTH-1] ^~ B[AB_WIDTH-1]; if (AB_SIGNED) assign GG = ~A[AB_WIDTH-1] & B[AB_WIDTH-1]; else if (_TECHMAP_CONSTMSK_P_[LCU_WIDTH-1]) // First compare for LUT if P (and G) is constant assign GG = A[AB_WIDTH-1] & ~B[AB_WIDTH-1]; else // Priority "encoder" that checks A[i] == 1'b1 && B[i] == 1'b0 // from MSB down, deferring to less significant bits if the // MSBs are equal assign GG = P[0] & (A[AB_WIDTH-1] & ~B[AB_WIDTH-1]); if (LCU_WIDTH == 1) begin // Propagate only if all pairs are equal // (inconclusive evidence to say A >= B) wire P_ = P[0] & PP; // Generate if any comparisons call for it wire G_ = G[0] | GG; end else begin // Propagate only if all pairs are equal // (inconclusive evidence to say A >= B) wire [LCU_WIDTH-1:0] P_ = {P[LCU_WIDTH-1:1], P[0] & PP}; // Generate if any comparisons call for it wire [LCU_WIDTH-1:0] G_ = {G[LCU_WIDTH-1:1], G[0] | GG}; end $__CMP2LCU #(.AB_WIDTH(AB_WIDTH-1), .AB_SIGNED(1'b0), .LCU_WIDTH(LCU_WIDTH), .BUDGET(BUDGET-COST), .CI(CI)) _TECHMAP_REPLACE_ (.A(A[AB_WIDTH-2:0]), .B(B[AB_WIDTH-2:0]), .P(P_), .G(G_), .Y(Y)); end end endgenerate endmodule