/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Claire Xenia Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * --- * * This is the AST frontend library. * * The AST frontend library is not a frontend on it's own but provides a * generic abstract syntax tree (AST) abstraction for HDL code and can be * used by HDL frontends. See "ast.h" for an overview of the API and the * Verilog frontend for an usage example. * */ #include "kernel/log.h" #include "kernel/utils.h" #include "kernel/binding.h" #include "libs/sha1/sha1.h" #include "ast.h" #include "ast_binding.h" #include #include #include YOSYS_NAMESPACE_BEGIN using namespace AST; using namespace AST_INTERNAL; // helper function for creating RTLIL code for unary operations static RTLIL::SigSpec uniop2rtlil(AstNode *that, IdString type, int result_width, const RTLIL::SigSpec &arg, bool gen_attributes = true) { IdString name = stringf("%s$%s:%d$%d", type.c_str(), RTLIL::encode_filename(that->filename).c_str(), that->location.first_line, autoidx++); RTLIL::Cell *cell = current_module->addCell(name, type); set_src_attr(cell, that); RTLIL::Wire *wire = current_module->addWire(cell->name.str() + "_Y", result_width); set_src_attr(wire, that); wire->is_signed = that->is_signed; if (gen_attributes) for (auto &attr : that->attributes) { if (attr.second->type != AST_CONSTANT) that->input_error("Attribute `%s' with non-constant value!\n", attr.first.c_str()); cell->attributes[attr.first] = attr.second->asAttrConst(); } cell->parameters[ID::A_SIGNED] = RTLIL::Const(that->children[0]->is_signed); cell->parameters[ID::A_WIDTH] = RTLIL::Const(arg.size()); cell->setPort(ID::A, arg); cell->parameters[ID::Y_WIDTH] = result_width; cell->setPort(ID::Y, wire); return wire; } // helper function for extending bit width (preferred over SigSpec::extend() because of correct undef propagation in ConstEval) static void widthExtend(AstNode *that, RTLIL::SigSpec &sig, int width, bool is_signed) { if (width <= sig.size()) { sig.extend_u0(width, is_signed); return; } IdString name = stringf("$extend$%s:%d$%d", RTLIL::encode_filename(that->filename).c_str(), that->location.first_line, autoidx++); RTLIL::Cell *cell = current_module->addCell(name, ID($pos)); set_src_attr(cell, that); RTLIL::Wire *wire = current_module->addWire(cell->name.str() + "_Y", width); set_src_attr(wire, that); wire->is_signed = that->is_signed; if (that != NULL) for (auto &attr : that->attributes) { if (attr.second->type != AST_CONSTANT) that->input_error("Attribute `%s' with non-constant value!\n", attr.first.c_str()); cell->attributes[attr.first] = attr.second->asAttrConst(); } cell->parameters[ID::A_SIGNED] = RTLIL::Const(is_signed); cell->parameters[ID::A_WIDTH] = RTLIL::Const(sig.size()); cell->setPort(ID::A, sig); cell->parameters[ID::Y_WIDTH] = width; cell->setPort(ID::Y, wire); sig = wire; } // helper function for creating RTLIL code for binary operations static RTLIL::SigSpec binop2rtlil(AstNode *that, IdString type, int result_width, const RTLIL::SigSpec &left, const RTLIL::SigSpec &right) { IdString name = stringf("%s$%s:%d$%d", type.c_str(), RTLIL::encode_filename(that->filename).c_str(), that->location.first_line, autoidx++); RTLIL::Cell *cell = current_module->addCell(name, type); set_src_attr(cell, that); RTLIL::Wire *wire = current_module->addWire(cell->name.str() + "_Y", result_width); set_src_attr(wire, that); wire->is_signed = that->is_signed; for (auto &attr : that->attributes) { if (attr.second->type != AST_CONSTANT) that->input_error("Attribute `%s' with non-constant value!\n", attr.first.c_str()); cell->attributes[attr.first] = attr.second->asAttrConst(); } cell->parameters[ID::A_SIGNED] = RTLIL::Const(that->children[0]->is_signed); cell->parameters[ID::B_SIGNED] = RTLIL::Const(that->children[1]->is_signed); cell->parameters[ID::A_WIDTH] = RTLIL::Const(left.size()); cell->parameters[ID::B_WIDTH] = RTLIL::Const(right.size()); cell->setPort(ID::A, left); cell->setPort(ID::B, right); cell->parameters[ID::Y_WIDTH] = result_width; cell->setPort(ID::Y, wire); return wire; } // helper function for creating RTLIL code for multiplexers static RTLIL::SigSpec mux2rtlil(AstNode *that, const RTLIL::SigSpec &cond, const RTLIL::SigSpec &left, const RTLIL::SigSpec &right) { log_assert(cond.size() == 1); std::stringstream sstr; sstr << "$ternary$" << RTLIL::encode_filename(that->filename) << ":" << that->location.first_line << "$" << (autoidx++); RTLIL::Cell *cell = current_module->addCell(sstr.str(), ID($mux)); set_src_attr(cell, that); RTLIL::Wire *wire = current_module->addWire(cell->name.str() + "_Y", left.size()); set_src_attr(wire, that); wire->is_signed = that->is_signed; for (auto &attr : that->attributes) { if (attr.second->type != AST_CONSTANT) that->input_error("Attribute `%s' with non-constant value!\n", attr.first.c_str()); cell->attributes[attr.first] = attr.second->asAttrConst(); } cell->parameters[ID::WIDTH] = RTLIL::Const(left.size()); cell->setPort(ID::A, right); cell->setPort(ID::B, left); cell->setPort(ID::S, cond); cell->setPort(ID::Y, wire); return wire; } static void check_unique_id(RTLIL::Module *module, RTLIL::IdString id, const AstNode *node, const char *to_add_kind) { auto already_exists = [&](const RTLIL::AttrObject *existing, const char *existing_kind) { std::string src = existing->get_string_attribute(ID::src); std::string location_str = "earlier"; if (!src.empty()) location_str = "at " + src; node->input_error("Cannot add %s `%s' because a %s with the same name was already created %s!\n", to_add_kind, id.c_str(), existing_kind, location_str.c_str()); }; if (const RTLIL::Wire *wire = module->wire(id)) already_exists(wire, "signal"); if (const RTLIL::Cell *cell = module->cell(id)) already_exists(cell, "cell"); if (module->processes.count(id)) already_exists(module->processes.at(id), "process"); if (module->memories.count(id)) already_exists(module->memories.at(id), "memory"); } // helper class for rewriting simple lookahead references in AST always blocks struct AST_INTERNAL::LookaheadRewriter { dict> lookaheadids; void collect_lookaheadids(AstNode *node) { if (node->lookahead) { log_assert(node->type == AST_IDENTIFIER); if (!lookaheadids.count(node->str)) { AstNode *wire = new AstNode(AST_WIRE); for (auto c : node->id2ast->children) wire->children.push_back(c->clone()); wire->fixup_hierarchy_flags(); wire->str = stringf("$lookahead%s$%d", node->str.c_str(), autoidx++); wire->set_attribute(ID::nosync, AstNode::mkconst_int(1, false)); wire->is_logic = true; while (wire->simplify(true, 1, -1, false)) { } current_ast_mod->children.push_back(wire); lookaheadids[node->str] = make_pair(node->id2ast, wire); wire->genRTLIL(); } } for (auto child : node->children) collect_lookaheadids(child); } bool has_lookaheadids(AstNode *node) { if (node->type == AST_IDENTIFIER && lookaheadids.count(node->str) != 0) return true; for (auto child : node->children) if (has_lookaheadids(child)) return true; return false; } bool has_nonlookaheadids(AstNode *node) { if (node->type == AST_IDENTIFIER && lookaheadids.count(node->str) == 0) return true; for (auto child : node->children) if (has_nonlookaheadids(child)) return true; return false; } void rewrite_lookaheadids(AstNode *node, bool lhs = false) { if (node->type == AST_ASSIGN_LE) { if (has_lookaheadids(node->children[0])) { if (has_nonlookaheadids(node->children[0])) log_error("incompatible mix of lookahead and non-lookahead IDs in LHS expression.\n"); rewrite_lookaheadids(node->children[0], true); node->type = AST_ASSIGN_EQ; } rewrite_lookaheadids(node->children[1], lhs); return; } if (node->type == AST_IDENTIFIER && (node->lookahead || lhs)) { AstNode *newwire = lookaheadids.at(node->str).second; node->str = newwire->str; node->id2ast = newwire; lhs = false; } for (auto child : node->children) rewrite_lookaheadids(child, lhs); } LookaheadRewriter(AstNode *top) { // top->dumpAst(NULL, "REWRITE-BEFORE> "); // top->dumpVlog(NULL, "REWRITE-BEFORE> "); AstNode *block = nullptr; for (auto c : top->children) if (c->type == AST_BLOCK) { log_assert(block == nullptr); block = c; } log_assert(block != nullptr); collect_lookaheadids(block); rewrite_lookaheadids(block); for (auto it : lookaheadids) { AstNode *ref_orig = new AstNode(AST_IDENTIFIER); ref_orig->str = it.second.first->str; ref_orig->id2ast = it.second.first; ref_orig->was_checked = true; AstNode *ref_temp = new AstNode(AST_IDENTIFIER); ref_temp->str = it.second.second->str; ref_temp->id2ast = it.second.second; ref_temp->was_checked = true; AstNode *init_assign = new AstNode(AST_ASSIGN_EQ, ref_temp->clone(), ref_orig->clone()); AstNode *final_assign = new AstNode(AST_ASSIGN_LE, ref_orig, ref_temp); block->children.insert(block->children.begin(), init_assign); block->children.push_back(final_assign); } // top->dumpAst(NULL, "REWRITE-AFTER> "); // top->dumpVlog(NULL, "REWRITE-AFTER> "); } }; // helper class for converting AST always nodes to RTLIL processes struct AST_INTERNAL::ProcessGenerator { // input and output structures AstNode *always; RTLIL::SigSpec initSyncSignals; RTLIL::Process *proc; RTLIL::SigSpec outputSignals; // This always points to the RTLIL::CaseRule being filled at the moment RTLIL::CaseRule *current_case; // This map contains the replacement pattern to be used in the right hand side // of an assignment. E.g. in the code "foo = bar; foo = func(foo);" the foo in the right // hand side of the 2nd assignment needs to be replace with the temporary signal holding // the value assigned in the first assignment. So when the first assignment is processed // the according information is appended to subst_rvalue_from and subst_rvalue_to. stackmap subst_rvalue_map; // This map contains the replacement pattern to be used in the left hand side // of an assignment. E.g. in the code "always @(posedge clk) foo <= bar" the signal bar // should not be connected to the signal foo. Instead it must be connected to the temporary // signal that is used as input for the register that drives the signal foo. stackmap subst_lvalue_map; // The code here generates a number of temporary signal for each output register. This // map helps generating nice numbered names for all this temporary signals. std::map new_temp_count; // Buffer for generating the init action RTLIL::SigSpec init_lvalue, init_rvalue; // The most recently assigned $print or $check cell \PRIORITY. int last_effect_priority; ProcessGenerator(AstNode *always, RTLIL::SigSpec initSyncSignalsArg = RTLIL::SigSpec()) : always(always), initSyncSignals(initSyncSignalsArg), last_effect_priority(0) { // rewrite lookahead references LookaheadRewriter la_rewriter(always); // generate process and simple root case proc = current_module->addProcess(stringf("$proc$%s:%d$%d", RTLIL::encode_filename(always->filename).c_str(), always->location.first_line, autoidx++)); set_src_attr(proc, always); for (auto &attr : always->attributes) { if (attr.second->type != AST_CONSTANT) always->input_error("Attribute `%s' with non-constant value!\n", attr.first.c_str()); proc->attributes[attr.first] = attr.second->asAttrConst(); } current_case = &proc->root_case; // create initial temporary signal for all output registers RTLIL::SigSpec subst_lvalue_from, subst_lvalue_to; collect_lvalues(subst_lvalue_from, always, true, true); subst_lvalue_to = new_temp_signal(subst_lvalue_from); subst_lvalue_map = subst_lvalue_from.to_sigbit_map(subst_lvalue_to); bool found_global_syncs = false; bool found_anyedge_syncs = false; for (auto child : always->children) { if ((child->type == AST_POSEDGE || child->type == AST_NEGEDGE) && GetSize(child->children) == 1 && child->children.at(0)->type == AST_IDENTIFIER && child->children.at(0)->id2ast && child->children.at(0)->id2ast->type == AST_WIRE && child->children.at(0)->id2ast->get_bool_attribute(ID::gclk)) { found_global_syncs = true; } if (child->type == AST_EDGE) { if (GetSize(child->children) == 1 && child->children.at(0)->type == AST_IDENTIFIER && child->children.at(0)->str == "\\$global_clock") found_global_syncs = true; else found_anyedge_syncs = true; } } if (found_anyedge_syncs) { if (found_global_syncs) always->input_error("Found non-synthesizable event list!\n"); log("Note: Assuming pure combinatorial block at %s in\n", always->loc_string().c_str()); log("compliance with IEC 62142(E):2005 / IEEE Std. 1364.1(E):2002. Recommending\n"); log("use of @* instead of @(...) for better match of synthesis and simulation.\n"); } // create syncs for the process bool found_clocked_sync = false; for (auto child : always->children) if (child->type == AST_POSEDGE || child->type == AST_NEGEDGE) { if (GetSize(child->children) == 1 && child->children.at(0)->type == AST_IDENTIFIER && child->children.at(0)->id2ast && child->children.at(0)->id2ast->type == AST_WIRE && child->children.at(0)->id2ast->get_bool_attribute(ID::gclk)) continue; found_clocked_sync = true; if (found_global_syncs || found_anyedge_syncs) always->input_error("Found non-synthesizable event list!\n"); RTLIL::SyncRule *syncrule = new RTLIL::SyncRule; syncrule->type = child->type == AST_POSEDGE ? RTLIL::STp : RTLIL::STn; syncrule->signal = child->children[0]->genRTLIL(); if (GetSize(syncrule->signal) != 1) always->input_error("Found posedge/negedge event on a signal that is not 1 bit wide!\n"); addChunkActions(syncrule->actions, subst_lvalue_from, subst_lvalue_to, true); proc->syncs.push_back(syncrule); } if (proc->syncs.empty()) { RTLIL::SyncRule *syncrule = new RTLIL::SyncRule; syncrule->type = found_global_syncs ? RTLIL::STg : RTLIL::STa; syncrule->signal = RTLIL::SigSpec(); addChunkActions(syncrule->actions, subst_lvalue_from, subst_lvalue_to, true); proc->syncs.push_back(syncrule); } // create initial assignments for the temporary signals if ((flag_nolatches || always->get_bool_attribute(ID::nolatches) || current_module->get_bool_attribute(ID::nolatches)) && !found_clocked_sync) { subst_rvalue_map = subst_lvalue_from.to_sigbit_dict(RTLIL::SigSpec(RTLIL::State::Sx, GetSize(subst_lvalue_from))); } else { addChunkActions(current_case->actions, subst_lvalue_to, subst_lvalue_from); } // process the AST for (auto child : always->children) if (child->type == AST_BLOCK) processAst(child); for (auto sync: proc->syncs) processMemWrites(sync); if (initSyncSignals.size() > 0) { RTLIL::SyncRule *sync = new RTLIL::SyncRule; sync->type = RTLIL::SyncType::STi; proc->syncs.push_back(sync); log_assert(init_lvalue.size() == init_rvalue.size()); int offset = 0; for (auto &init_lvalue_c : init_lvalue.chunks()) { RTLIL::SigSpec lhs = init_lvalue_c; RTLIL::SigSpec rhs = init_rvalue.extract(offset, init_lvalue_c.width); remove_unwanted_lvalue_bits(lhs, rhs); sync->actions.push_back(RTLIL::SigSig(lhs, rhs)); offset += lhs.size(); } } outputSignals = RTLIL::SigSpec(subst_lvalue_from); } void remove_unwanted_lvalue_bits(RTLIL::SigSpec &lhs, RTLIL::SigSpec &rhs) { RTLIL::SigSpec new_lhs, new_rhs; log_assert(GetSize(lhs) == GetSize(rhs)); for (int i = 0; i < GetSize(lhs); i++) { if (lhs[i].wire == nullptr) continue; new_lhs.append(lhs[i]); new_rhs.append(rhs[i]); } lhs = new_lhs; rhs = new_rhs; } // create new temporary signals RTLIL::SigSpec new_temp_signal(RTLIL::SigSpec sig) { std::vector chunks = sig.chunks(); for (int i = 0; i < GetSize(chunks); i++) { RTLIL::SigChunk &chunk = chunks[i]; if (chunk.wire == NULL) continue; std::string wire_name; do { wire_name = stringf("$%d%s[%d:%d]", new_temp_count[chunk.wire]++, chunk.wire->name.c_str(), chunk.width+chunk.offset-1, chunk.offset);; if (chunk.wire->name.str().find('$') != std::string::npos) wire_name += stringf("$%d", autoidx++); } while (current_module->wires_.count(wire_name) > 0); RTLIL::Wire *wire = current_module->addWire(wire_name, chunk.width); set_src_attr(wire, always); chunk.wire = wire; chunk.offset = 0; } return chunks; } // recursively traverse the AST and collect all assigned signals void collect_lvalues(RTLIL::SigSpec ®, AstNode *ast, bool type_eq, bool type_le, bool run_sort_and_unify = true) { switch (ast->type) { case AST_CASE: for (auto child : ast->children) if (child != ast->children[0]) { log_assert(child->type == AST_COND || child->type == AST_CONDX || child->type == AST_CONDZ); collect_lvalues(reg, child, type_eq, type_le, false); } break; case AST_COND: case AST_CONDX: case AST_CONDZ: case AST_ALWAYS: case AST_INITIAL: for (auto child : ast->children) if (child->type == AST_BLOCK) collect_lvalues(reg, child, type_eq, type_le, false); break; case AST_BLOCK: for (auto child : ast->children) { if (child->type == AST_ASSIGN_EQ && type_eq) reg.append(child->children[0]->genRTLIL()); if (child->type == AST_ASSIGN_LE && type_le) reg.append(child->children[0]->genRTLIL()); if (child->type == AST_CASE || child->type == AST_BLOCK) collect_lvalues(reg, child, type_eq, type_le, false); } break; default: log_abort(); } if (run_sort_and_unify) { std::set sorted_reg; for (auto bit : reg) if (bit.wire) sorted_reg.insert(bit); reg = RTLIL::SigSpec(sorted_reg); } } // remove all assignments to the given signal pattern in a case and all its children. // e.g. when the last statement in the code "a = 23; if (b) a = 42; a = 0;" is processed this // function is called to clean up the first two assignments as they are overwritten by // the third assignment. void removeSignalFromCaseTree(const RTLIL::SigSpec &pattern, RTLIL::CaseRule *cs) { for (auto it = cs->actions.begin(); it != cs->actions.end(); it++) it->first.remove2(pattern, &it->second); for (auto it = cs->switches.begin(); it != cs->switches.end(); it++) for (auto it2 = (*it)->cases.begin(); it2 != (*it)->cases.end(); it2++) removeSignalFromCaseTree(pattern, *it2); } // add an assignment (aka "action") but split it up in chunks. this way huge assignments // are avoided and the generated $mux cells have a more "natural" size. void addChunkActions(std::vector &actions, RTLIL::SigSpec lvalue, RTLIL::SigSpec rvalue, bool inSyncRule = false) { if (inSyncRule && initSyncSignals.size() > 0) { init_lvalue.append(lvalue.extract(initSyncSignals)); init_rvalue.append(lvalue.extract(initSyncSignals, &rvalue)); lvalue.remove2(initSyncSignals, &rvalue); } log_assert(lvalue.size() == rvalue.size()); int offset = 0; for (auto &lvalue_c : lvalue.chunks()) { RTLIL::SigSpec lhs = lvalue_c; RTLIL::SigSpec rhs = rvalue.extract(offset, lvalue_c.width); if (inSyncRule && lvalue_c.wire && lvalue_c.wire->get_bool_attribute(ID::nosync)) rhs = RTLIL::SigSpec(RTLIL::State::Sx, rhs.size()); remove_unwanted_lvalue_bits(lhs, rhs); actions.push_back(RTLIL::SigSig(lhs, rhs)); offset += lhs.size(); } } // recursively process the AST and fill the RTLIL::Process void processAst(AstNode *ast) { switch (ast->type) { case AST_BLOCK: for (auto child : ast->children) processAst(child); break; case AST_ASSIGN_EQ: case AST_ASSIGN_LE: { RTLIL::SigSpec unmapped_lvalue = ast->children[0]->genRTLIL(), lvalue = unmapped_lvalue; RTLIL::SigSpec rvalue = ast->children[1]->genWidthRTLIL(lvalue.size(), true, &subst_rvalue_map.stdmap()); pool lvalue_sigbits; for (int i = 0; i < GetSize(lvalue); i++) { if (lvalue_sigbits.count(lvalue[i]) > 0) { unmapped_lvalue.remove(i); lvalue.remove(i); rvalue.remove(i--); } else lvalue_sigbits.insert(lvalue[i]); } lvalue.replace(subst_lvalue_map.stdmap()); if (ast->type == AST_ASSIGN_EQ) { for (int i = 0; i < GetSize(unmapped_lvalue); i++) subst_rvalue_map.set(unmapped_lvalue[i], rvalue[i]); } removeSignalFromCaseTree(lvalue, current_case); remove_unwanted_lvalue_bits(lvalue, rvalue); current_case->actions.push_back(RTLIL::SigSig(lvalue, rvalue)); } break; case AST_CASE: { int width_hint; bool sign_hint; ast->detectSignWidth(width_hint, sign_hint); RTLIL::SwitchRule *sw = new RTLIL::SwitchRule; set_src_attr(sw, ast); sw->signal = ast->children[0]->genWidthRTLIL(width_hint, sign_hint, &subst_rvalue_map.stdmap()); current_case->switches.push_back(sw); for (auto &attr : ast->attributes) { if (attr.second->type != AST_CONSTANT) ast->input_error("Attribute `%s' with non-constant value!\n", attr.first.c_str()); sw->attributes[attr.first] = attr.second->asAttrConst(); } RTLIL::SigSpec this_case_eq_lvalue; collect_lvalues(this_case_eq_lvalue, ast, true, false); RTLIL::SigSpec this_case_eq_ltemp = new_temp_signal(this_case_eq_lvalue); RTLIL::SigSpec this_case_eq_rvalue = this_case_eq_lvalue; this_case_eq_rvalue.replace(subst_rvalue_map.stdmap()); RTLIL::CaseRule *default_case = NULL; RTLIL::CaseRule *last_generated_case = NULL; for (auto child : ast->children) { if (child == ast->children[0]) continue; log_assert(child->type == AST_COND || child->type == AST_CONDX || child->type == AST_CONDZ); subst_lvalue_map.save(); subst_rvalue_map.save(); for (int i = 0; i < GetSize(this_case_eq_lvalue); i++) subst_lvalue_map.set(this_case_eq_lvalue[i], this_case_eq_ltemp[i]); RTLIL::CaseRule *backup_case = current_case; current_case = new RTLIL::CaseRule; set_src_attr(current_case, child); last_generated_case = current_case; addChunkActions(current_case->actions, this_case_eq_ltemp, this_case_eq_rvalue); for (auto node : child->children) { if (node->type == AST_DEFAULT) default_case = current_case; else if (node->type == AST_BLOCK) processAst(node); else current_case->compare.push_back(node->genWidthRTLIL(width_hint, sign_hint, &subst_rvalue_map.stdmap())); } if (default_case != current_case) sw->cases.push_back(current_case); else log_assert(current_case->compare.size() == 0); current_case = backup_case; subst_lvalue_map.restore(); subst_rvalue_map.restore(); } if (last_generated_case != NULL && ast->get_bool_attribute(ID::full_case) && default_case == NULL) { #if 0 // this is a valid transformation, but as optimization it is premature. // better: add a default case that assigns 'x' to everything, and let later // optimizations take care of the rest last_generated_case->compare.clear(); #else default_case = new RTLIL::CaseRule; addChunkActions(default_case->actions, this_case_eq_ltemp, SigSpec(State::Sx, GetSize(this_case_eq_rvalue))); sw->cases.push_back(default_case); #endif } else { if (default_case == NULL) { default_case = new RTLIL::CaseRule; addChunkActions(default_case->actions, this_case_eq_ltemp, this_case_eq_rvalue); } sw->cases.push_back(default_case); } for (int i = 0; i < GetSize(this_case_eq_lvalue); i++) subst_rvalue_map.set(this_case_eq_lvalue[i], this_case_eq_ltemp[i]); this_case_eq_lvalue.replace(subst_lvalue_map.stdmap()); removeSignalFromCaseTree(this_case_eq_lvalue, current_case); addChunkActions(current_case->actions, this_case_eq_lvalue, this_case_eq_ltemp); } break; case AST_WIRE: ast->input_error("Found reg declaration in block without label!\n"); break; case AST_ASSIGN: ast->input_error("Found continous assignment in always/initial block!\n"); break; case AST_PARAMETER: case AST_LOCALPARAM: ast->input_error("Found parameter declaration in block without label!\n"); break; case AST_TCALL: if (ast->str == "$display" || ast->str == "$displayb" || ast->str == "$displayh" || ast->str == "$displayo" || ast->str == "$write" || ast->str == "$writeb" || ast->str == "$writeh" || ast->str == "$writeo") { std::stringstream sstr; sstr << ast->str << "$" << ast->filename << ":" << ast->location.first_line << "$" << (autoidx++); Wire *en = current_module->addWire(sstr.str() + "_EN", 1); set_src_attr(en, ast); proc->root_case.actions.push_back(SigSig(en, false)); current_case->actions.push_back(SigSig(en, true)); RTLIL::SigSpec triggers; RTLIL::Const polarity; for (auto sync : proc->syncs) { if (sync->type == RTLIL::STp) { triggers.append(sync->signal); polarity.bits.push_back(RTLIL::S1); } else if (sync->type == RTLIL::STn) { triggers.append(sync->signal); polarity.bits.push_back(RTLIL::S0); } } RTLIL::Cell *cell = current_module->addCell(sstr.str(), ID($print)); set_src_attr(cell, ast); cell->setParam(ID::TRG_WIDTH, triggers.size()); cell->setParam(ID::TRG_ENABLE, (always->type == AST_INITIAL) || !triggers.empty()); cell->setParam(ID::TRG_POLARITY, polarity); cell->setParam(ID::PRIORITY, --last_effect_priority); cell->setPort(ID::TRG, triggers); cell->setPort(ID::EN, en); int default_base = 10; if (ast->str.back() == 'b') default_base = 2; else if (ast->str.back() == 'o') default_base = 8; else if (ast->str.back() == 'h') default_base = 16; std::vector args; for (auto node : ast->children) { int width; bool is_signed; node->detectSignWidth(width, is_signed, nullptr); VerilogFmtArg arg = {}; arg.filename = node->filename; arg.first_line = node->location.first_line; if (node->type == AST_CONSTANT && node->is_string) { arg.type = VerilogFmtArg::STRING; arg.str = node->bitsAsConst().decode_string(); // and in case this will be used as an argument... arg.sig = node->bitsAsConst(); arg.signed_ = false; } else if (node->type == AST_IDENTIFIER && node->str == "$time") { arg.type = VerilogFmtArg::TIME; } else if (node->type == AST_IDENTIFIER && node->str == "$realtime") { arg.type = VerilogFmtArg::TIME; arg.realtime = true; } else { arg.type = VerilogFmtArg::INTEGER; arg.sig = node->genWidthRTLIL(-1, false, &subst_rvalue_map.stdmap()); arg.signed_ = is_signed; } args.push_back(arg); } Fmt fmt; fmt.parse_verilog(args, /*sformat_like=*/false, default_base, /*task_name=*/ast->str, current_module->name); if (ast->str.substr(0, 8) == "$display") fmt.append_string("\n"); fmt.emit_rtlil(cell); } else if (!ast->str.empty()) { log_file_error(ast->filename, ast->location.first_line, "Found unsupported invocation of system task `%s'!\n", ast->str.c_str()); } break; // generate $check cells case AST_ASSERT: case AST_ASSUME: case AST_LIVE: case AST_FAIR: case AST_COVER: { std::string flavor, desc; if (ast->type == AST_ASSERT) { flavor = "assert"; desc = "assert ()"; } if (ast->type == AST_ASSUME) { flavor = "assume"; desc = "assume ()"; } if (ast->type == AST_LIVE) { flavor = "live"; desc = "assert (eventually)"; } if (ast->type == AST_FAIR) { flavor = "fair"; desc = "assume (eventually)"; } if (ast->type == AST_COVER) { flavor = "cover"; desc = "cover ()"; } IdString cellname; if (ast->str.empty()) cellname = stringf("$%s$%s:%d$%d", flavor.c_str(), RTLIL::encode_filename(ast->filename).c_str(), ast->location.first_line, autoidx++); else cellname = ast->str; check_unique_id(current_module, cellname, ast, "procedural assertion"); RTLIL::SigSpec check = ast->children[0]->genWidthRTLIL(-1, false, &subst_rvalue_map.stdmap()); if (GetSize(check) != 1) check = current_module->ReduceBool(NEW_ID, check); Wire *en = current_module->addWire(cellname.str() + "_EN", 1); set_src_attr(en, ast); proc->root_case.actions.push_back(SigSig(en, false)); current_case->actions.push_back(SigSig(en, true)); RTLIL::SigSpec triggers; RTLIL::Const polarity; for (auto sync : proc->syncs) { if (sync->type == RTLIL::STp) { triggers.append(sync->signal); polarity.bits.push_back(RTLIL::S1); } else if (sync->type == RTLIL::STn) { triggers.append(sync->signal); polarity.bits.push_back(RTLIL::S0); } } RTLIL::Cell *cell = current_module->addCell(cellname, ID($check)); set_src_attr(cell, ast); for (auto &attr : ast->attributes) { if (attr.second->type != AST_CONSTANT) log_file_error(ast->filename, ast->location.first_line, "Attribute `%s' with non-constant value!\n", attr.first.c_str()); cell->attributes[attr.first] = attr.second->asAttrConst(); } cell->setParam(ID::FLAVOR, flavor); cell->setParam(ID::TRG_WIDTH, triggers.size()); cell->setParam(ID::TRG_ENABLE, (always->type == AST_INITIAL) || !triggers.empty()); cell->setParam(ID::TRG_POLARITY, polarity); cell->setParam(ID::PRIORITY, --last_effect_priority); cell->setPort(ID::TRG, triggers); cell->setPort(ID::EN, en); cell->setPort(ID::A, check); // No message is emitted to ensure Verilog code roundtrips correctly. Fmt fmt; fmt.emit_rtlil(cell); break; } case AST_NONE: case AST_FOR: break; default: // ast->dumpAst(NULL, "ast> "); // current_ast_mod->dumpAst(NULL, "mod> "); log_abort(); } } void processMemWrites(RTLIL::SyncRule *sync) { // Maps per-memid AST_MEMWR IDs to indices in the mem_write_actions array. dict, int> port_map; for (auto child : always->children) if (child->type == AST_MEMWR) { std::string memid = child->str; int portid = child->children[3]->asInt(false); int cur_idx = GetSize(sync->mem_write_actions); RTLIL::MemWriteAction action; set_src_attr(&action, child); action.memid = memid; action.address = child->children[0]->genWidthRTLIL(-1, true, &subst_rvalue_map.stdmap()); action.data = child->children[1]->genWidthRTLIL(current_module->memories[memid]->width, true, &subst_rvalue_map.stdmap()); action.enable = child->children[2]->genWidthRTLIL(-1, true, &subst_rvalue_map.stdmap()); RTLIL::Const orig_priority_mask = child->children[4]->bitsAsConst(); RTLIL::Const priority_mask = RTLIL::Const(0, cur_idx); for (int i = 0; i < portid; i++) { int new_bit = port_map[std::make_pair(memid, i)]; priority_mask.bits[new_bit] = orig_priority_mask.bits[i]; } action.priority_mask = priority_mask; sync->mem_write_actions.push_back(action); port_map[std::make_pair(memid, portid)] = cur_idx; } } }; // Generate RTLIL for a bind construct // // The AST node will have one or more AST_IDENTIFIER children, which were added // by bind_target_instance in the parser. After these, it will have one or more // cells, as parsed by single_cell. These have type AST_CELL. // // If there is more than one AST_IDENTIFIER, the first one should be considered // a module identifier. If there is only one AST_IDENTIFIER, we can't tell at // this point whether it's a module/interface name or the name of an instance // because the correct interpretation depends on what's visible at elaboration // time. For now, we just treat it as a target instance with unknown type, and // we'll deal with the corner case in the hierarchy pass. // // To simplify downstream code, RTLIL::Binding only has a single target and // single bound instance. If we see the syntax that allows more than one of // either, we split it into multiple Binding objects. std::vector AstNode::genBindings() const { // Partition children into identifiers and cells int num_ids = 0; for (int i = 0; i < GetSize(children); ++i) { if (children[i]->type != AST_IDENTIFIER) { log_assert(i > 0); num_ids = i; break; } } // We should have found at least one child that's not an identifier log_assert(num_ids > 0); // Make sense of the identifiers, extracting a possible type name and a // list of hierarchical IDs. We represent an unknown type with an empty // string. RTLIL::IdString tgt_type; int first_tgt_inst = 0; if (num_ids > 1) { tgt_type = children[0]->str; first_tgt_inst = 1; } std::vector ret; // At this point, we know that children with index >= first_tgt_inst and // index < num_ids are (hierarchical?) names of target instances. Make a // binding object for each of them, and fill in the generated instance // cells each time. for (int i = first_tgt_inst; i < num_ids; ++i) { const AstNode &tgt_child = *children[i]; for (int j = num_ids; j < GetSize(children); ++j) { const AstNode &cell_child = *children[j]; log_assert(cell_child.type == AST_CELL); ret.push_back(new AST::Binding(tgt_type, tgt_child.str, cell_child)); } } return ret; } // detect sign and width of an expression void AstNode::detectSignWidthWorker(int &width_hint, bool &sign_hint, bool *found_real) { std::string type_name; bool sub_sign_hint = true; int sub_width_hint = -1; int this_width = 0; AstNode *range = NULL; AstNode *id_ast = NULL; bool local_found_real = false; if (found_real == NULL) found_real = &local_found_real; switch (type) { case AST_NONE: // unallocated enum, ignore break; case AST_CONSTANT: width_hint = max(width_hint, int(bits.size())); if (!is_signed) sign_hint = false; break; case AST_REALVALUE: *found_real = true; width_hint = max(width_hint, 32); break; case AST_IDENTIFIER: id_ast = id2ast; if (!id_ast) { if (current_scope.count(str)) id_ast = current_scope[str]; else { std::string alt = try_pop_module_prefix(); if (current_scope.count(alt)) id_ast = current_scope[alt]; } } if (!id_ast) input_error("Failed to resolve identifier %s for width detection!\n", str.c_str()); if (id_ast->type == AST_PARAMETER || id_ast->type == AST_LOCALPARAM || id_ast->type == AST_ENUM_ITEM) { if (id_ast->children.size() > 1 && id_ast->children[1]->range_valid) { this_width = id_ast->children[1]->range_left - id_ast->children[1]->range_right + 1; } else { if (id_ast->children[0]->type != AST_CONSTANT) while (id_ast->simplify(true, 1, -1, false)) { } if (id_ast->children[0]->type == AST_CONSTANT) this_width = id_ast->children[0]->bits.size(); else input_error("Failed to detect width for parameter %s!\n", str.c_str()); } if (children.size() != 0) range = children[0]; } else if (id_ast->type == AST_WIRE || id_ast->type == AST_AUTOWIRE) { if (!id_ast->range_valid) { if (id_ast->type == AST_AUTOWIRE) this_width = 1; else { // current_ast_mod->dumpAst(NULL, "mod> "); // log("---\n"); // id_ast->dumpAst(NULL, "decl> "); // dumpAst(NULL, "ref> "); input_error("Failed to detect width of signal access `%s'!\n", str.c_str()); } } else { this_width = id_ast->range_left - id_ast->range_right + 1; if (children.size() != 0) range = children[0]; } } else if (id_ast->type == AST_GENVAR) { this_width = 32; } else if (id_ast->type == AST_MEMORY) { if (!id_ast->children[0]->range_valid) input_error("Failed to detect width of memory access `%s'!\n", str.c_str()); this_width = id_ast->children[0]->range_left - id_ast->children[0]->range_right + 1; if (children.size() > 1) range = children[1]; } else if (id_ast->type == AST_STRUCT_ITEM || id_ast->type == AST_STRUCT || id_ast->type == AST_UNION) { AstNode *tmp_range = make_struct_member_range(this, id_ast); this_width = tmp_range->range_left - tmp_range->range_right + 1; delete tmp_range; } else input_error("Failed to detect width for identifier %s!\n", str.c_str()); if (range) { if (range->children.size() == 1) this_width = 1; else if (!range->range_valid) { AstNode *left_at_zero_ast = children[0]->children[0]->clone_at_zero(); AstNode *right_at_zero_ast = children[0]->children.size() >= 2 ? children[0]->children[1]->clone_at_zero() : left_at_zero_ast->clone(); while (left_at_zero_ast->simplify(true, 1, -1, false)) { } while (right_at_zero_ast->simplify(true, 1, -1, false)) { } if (left_at_zero_ast->type != AST_CONSTANT || right_at_zero_ast->type != AST_CONSTANT) input_error("Unsupported expression on dynamic range select on signal `%s'!\n", str.c_str()); this_width = abs(int(left_at_zero_ast->integer - right_at_zero_ast->integer)) + 1; delete left_at_zero_ast; delete right_at_zero_ast; } else this_width = range->range_left - range->range_right + 1; sign_hint = false; } width_hint = max(width_hint, this_width); if (!id_ast->is_signed) sign_hint = false; break; case AST_TO_BITS: while (children[0]->simplify(true, 1, -1, false) == true) { } if (children[0]->type != AST_CONSTANT) input_error("Left operand of tobits expression is not constant!\n"); children[1]->detectSignWidthWorker(sub_width_hint, sign_hint); width_hint = max(width_hint, children[0]->bitsAsConst().as_int()); break; case AST_TO_SIGNED: children.at(0)->detectSignWidthWorker(width_hint, sub_sign_hint); break; case AST_TO_UNSIGNED: children.at(0)->detectSignWidthWorker(width_hint, sub_sign_hint); sign_hint = false; break; case AST_SELFSZ: sub_width_hint = 0; children.at(0)->detectSignWidthWorker(sub_width_hint, sign_hint); break; case AST_CAST_SIZE: while (children.at(0)->simplify(true, 1, -1, false)) { } if (children.at(0)->type != AST_CONSTANT) input_error("Static cast with non constant expression!\n"); children.at(1)->detectSignWidthWorker(width_hint, sign_hint); this_width = children.at(0)->bitsAsConst().as_int(); width_hint = max(width_hint, this_width); if (width_hint <= 0) input_error("Static cast with zero or negative size!\n"); break; case AST_CONCAT: for (auto child : children) { sub_width_hint = 0; sub_sign_hint = true; child->detectSignWidthWorker(sub_width_hint, sub_sign_hint); this_width += sub_width_hint; } width_hint = max(width_hint, this_width); sign_hint = false; break; case AST_REPLICATE: while (children[0]->simplify(true, 1, -1, false) == true) { } if (children[0]->type != AST_CONSTANT) input_error("Left operand of replicate expression is not constant!\n"); children[1]->detectSignWidthWorker(sub_width_hint, sub_sign_hint); width_hint = max(width_hint, children[0]->bitsAsConst().as_int() * sub_width_hint); sign_hint = false; break; case AST_NEG: case AST_BIT_NOT: case AST_POS: children[0]->detectSignWidthWorker(width_hint, sign_hint, found_real); break; case AST_BIT_AND: case AST_BIT_OR: case AST_BIT_XOR: case AST_BIT_XNOR: for (auto child : children) child->detectSignWidthWorker(width_hint, sign_hint, found_real); break; case AST_REDUCE_AND: case AST_REDUCE_OR: case AST_REDUCE_XOR: case AST_REDUCE_XNOR: case AST_REDUCE_BOOL: width_hint = max(width_hint, 1); sign_hint = false; break; case AST_SHIFT_LEFT: case AST_SHIFT_RIGHT: case AST_SHIFT_SLEFT: case AST_SHIFT_SRIGHT: case AST_SHIFTX: case AST_SHIFT: case AST_POW: children[0]->detectSignWidthWorker(width_hint, sign_hint, found_real); break; case AST_LT: case AST_LE: case AST_EQ: case AST_NE: case AST_EQX: case AST_NEX: case AST_GE: case AST_GT: width_hint = max(width_hint, 1); sign_hint = false; break; case AST_ADD: case AST_SUB: case AST_MUL: case AST_DIV: case AST_MOD: for (auto child : children) child->detectSignWidthWorker(width_hint, sign_hint, found_real); break; case AST_LOGIC_AND: case AST_LOGIC_OR: case AST_LOGIC_NOT: width_hint = max(width_hint, 1); sign_hint = false; break; case AST_TERNARY: children.at(1)->detectSignWidthWorker(width_hint, sign_hint, found_real); children.at(2)->detectSignWidthWorker(width_hint, sign_hint, found_real); break; case AST_MEMRD: if (!id2ast->is_signed) sign_hint = false; if (!id2ast->children[0]->range_valid) input_error("Failed to detect width of memory access `%s'!\n", str.c_str()); this_width = id2ast->children[0]->range_left - id2ast->children[0]->range_right + 1; width_hint = max(width_hint, this_width); break; case AST_CASE: { // This detects the _overall_ sign and width to be used for comparing // the case expression with the case item expressions. The case // expression and case item expressions are extended to the maximum // width among them, and are only interpreted as signed if all of them // are signed. width_hint = -1; sign_hint = true; auto visit_case_expr = [&width_hint, &sign_hint] (AstNode *node) { int sub_width_hint = -1; bool sub_sign_hint = true; node->detectSignWidth(sub_width_hint, sub_sign_hint); width_hint = max(width_hint, sub_width_hint); sign_hint &= sub_sign_hint; }; visit_case_expr(children[0]); for (size_t i = 1; i < children.size(); i++) { AstNode *child = children[i]; for (AstNode *v : child->children) if (v->type != AST_DEFAULT && v->type != AST_BLOCK) visit_case_expr(v); } break; } case AST_PREFIX: // Prefix nodes always resolve to identifiers in generate loops, so we // can simply perform the resolution to determine the sign and width. simplify(true, 1, -1, false); log_assert(type == AST_IDENTIFIER); detectSignWidthWorker(width_hint, sign_hint, found_real); break; case AST_FCALL: if (str == "\\$anyconst" || str == "\\$anyseq" || str == "\\$allconst" || str == "\\$allseq") { if (GetSize(children) == 1) { while (children[0]->simplify(true, 1, -1, false) == true) { } if (children[0]->type != AST_CONSTANT) input_error("System function %s called with non-const argument!\n", RTLIL::unescape_id(str).c_str()); width_hint = max(width_hint, int(children[0]->asInt(true))); } break; } if (str == "\\$past") { if (GetSize(children) > 0) { sub_width_hint = 0; sub_sign_hint = true; children.at(0)->detectSignWidthWorker(sub_width_hint, sub_sign_hint); width_hint = max(width_hint, sub_width_hint); sign_hint &= sub_sign_hint; } break; } if (str == "\\$size" || str == "\\$bits" || str == "\\$high" || str == "\\$low" || str == "\\$left" || str == "\\$right") { width_hint = max(width_hint, 32); break; } if (current_scope.count(str)) { // This width detection is needed for function calls which are // unelaborated, which currently applies to calls to functions // reached via unevaluated ternary branches or used in case or case // item expressions. const AstNode *func = current_scope.at(str); if (func->type != AST_FUNCTION) input_error("Function call to %s resolved to something that isn't a function!\n", RTLIL::unescape_id(str).c_str()); const AstNode *wire = nullptr; for (const AstNode *child : func->children) if (child->str == func->str) { wire = child; break; } log_assert(wire && wire->type == AST_WIRE); sign_hint &= wire->is_signed; int result_width = 1; if (!wire->children.empty()) { log_assert(wire->children.size() == 1); const AstNode *range = wire->children.at(0); log_assert(range->type == AST_RANGE && range->children.size() == 2); AstNode *left = range->children.at(0)->clone(); AstNode *right = range->children.at(1)->clone(); left->set_in_param_flag(true); right->set_in_param_flag(true); while (left->simplify(true, 1, -1, false)) { } while (right->simplify(true, 1, -1, false)) { } if (left->type != AST_CONSTANT || right->type != AST_CONSTANT) input_error("Function %s has non-constant width!", RTLIL::unescape_id(str).c_str()); result_width = abs(int(left->asInt(true) - right->asInt(true))); delete left; delete right; } width_hint = max(width_hint, result_width); break; } YS_FALLTHROUGH // everything should have been handled above -> print error if not. default: AstNode *current_scope_ast = current_ast_mod == nullptr ? current_ast : current_ast_mod; for (auto f : log_files) current_scope_ast->dumpAst(f, "verilog-ast> "); input_error("Don't know how to detect sign and width for %s node!\n", type2str(type).c_str()); } if (*found_real) sign_hint = true; } // detect sign and width of an expression void AstNode::detectSignWidth(int &width_hint, bool &sign_hint, bool *found_real) { width_hint = -1; sign_hint = true; if (found_real) *found_real = false; detectSignWidthWorker(width_hint, sign_hint, found_real); constexpr int kWidthLimit = 1 << 24; if (width_hint >= kWidthLimit) input_error("Expression width %d exceeds implementation limit of %d!\n", width_hint, kWidthLimit); } // create RTLIL from an AST node // all generated cells, wires and processes are added to the module pointed to by 'current_module' // when the AST node is an expression (AST_ADD, AST_BIT_XOR, etc.), the result signal is returned. // // note that this function is influenced by a number of global variables that might be set when // called from genWidthRTLIL(). also note that this function recursively calls itself to transform // larger expressions into a netlist of cells. RTLIL::SigSpec AstNode::genRTLIL(int width_hint, bool sign_hint) { // in the following big switch() statement there are some uses of // Clifford's Device (http://www.clifford.at/cfun/cliffdev/). In this // cases this variable is used to hold the type of the cell that should // be instantiated for this type of AST node. IdString type_name; current_filename = filename; switch (type) { // simply ignore this nodes. // they are either leftovers from simplify() or are referenced by other nodes // and are only accessed here thru this references case AST_NONE: case AST_TASK: case AST_FUNCTION: case AST_DPI_FUNCTION: case AST_AUTOWIRE: case AST_DEFPARAM: case AST_GENVAR: case AST_GENFOR: case AST_GENBLOCK: case AST_GENIF: case AST_GENCASE: case AST_PACKAGE: case AST_ENUM: case AST_MODPORT: case AST_MODPORTMEMBER: case AST_TYPEDEF: case AST_STRUCT: case AST_UNION: break; case AST_INTERFACEPORT: { // If a port in a module with unknown type is found, mark it with the attribute 'is_interface' // This is used by the hierarchy pass to know when it can replace interface connection with the individual // signals. RTLIL::IdString id = str; check_unique_id(current_module, id, this, "interface port"); RTLIL::Wire *wire = current_module->addWire(id, 1); set_src_attr(wire, this); wire->start_offset = 0; wire->port_id = port_id; wire->port_input = true; wire->port_output = true; wire->set_bool_attribute(ID::is_interface); if (children.size() > 0) { for(size_t i=0; itype == AST_INTERFACEPORTTYPE) { std::pair res = AST::split_modport_from_type(children[i]->str); wire->attributes[ID::interface_type] = res.first; if (res.second != "") wire->attributes[ID::interface_modport] = res.second; break; } } } wire->upto = 0; } break; case AST_INTERFACEPORTTYPE: break; // remember the parameter, needed for example in techmap case AST_PARAMETER: current_module->avail_parameters(str); if (GetSize(children) >= 1 && children[0]->type == AST_CONSTANT) { current_module->parameter_default_values[str] = children[0]->asParaConst(); } YS_FALLTHROUGH case AST_LOCALPARAM: if (flag_pwires) { if (GetSize(children) < 1 || children[0]->type != AST_CONSTANT) input_error("Parameter `%s' with non-constant value!\n", str.c_str()); RTLIL::Const val = children[0]->bitsAsConst(); RTLIL::IdString id = str; check_unique_id(current_module, id, this, "pwire"); RTLIL::Wire *wire = current_module->addWire(id, GetSize(val)); current_module->connect(wire, val); wire->is_signed = children[0]->is_signed; set_src_attr(wire, this); wire->attributes[type == AST_PARAMETER ? ID::parameter : ID::localparam] = 1; for (auto &attr : attributes) { if (attr.second->type != AST_CONSTANT) input_error("Attribute `%s' with non-constant value!\n", attr.first.c_str()); wire->attributes[attr.first] = attr.second->asAttrConst(); } } break; // create an RTLIL::Wire for an AST_WIRE node case AST_WIRE: { if (!range_valid) input_error("Signal `%s' with non-constant width!\n", str.c_str()); if (!(range_left + 1 >= range_right)) input_error("Signal `%s' with invalid width range %d!\n", str.c_str(), range_left - range_right + 1); RTLIL::IdString id = str; check_unique_id(current_module, id, this, "signal"); RTLIL::Wire *wire = current_module->addWire(id, range_left - range_right + 1); set_src_attr(wire, this); wire->start_offset = range_right; wire->port_id = port_id; wire->port_input = is_input; wire->port_output = is_output; wire->upto = range_swapped; wire->is_signed = is_signed; for (auto &attr : attributes) { if (attr.second->type != AST_CONSTANT) input_error("Attribute `%s' with non-constant value!\n", attr.first.c_str()); wire->attributes[attr.first] = attr.second->asAttrConst(); } if (is_wand) wire->set_bool_attribute(ID::wand); if (is_wor) wire->set_bool_attribute(ID::wor); } break; // create an RTLIL::Memory for an AST_MEMORY node case AST_MEMORY: { log_assert(children.size() >= 2); log_assert(children[0]->type == AST_RANGE); log_assert(children[1]->type == AST_RANGE); if (!children[0]->range_valid || !children[1]->range_valid) input_error("Memory `%s' with non-constant width or size!\n", str.c_str()); RTLIL::Memory *memory = new RTLIL::Memory; set_src_attr(memory, this); memory->name = str; memory->width = children[0]->range_left - children[0]->range_right + 1; if (children[1]->range_right < children[1]->range_left) { memory->start_offset = children[1]->range_right; memory->size = children[1]->range_left - children[1]->range_right + 1; } else { memory->start_offset = children[1]->range_left; memory->size = children[1]->range_right - children[1]->range_left + 1; } check_unique_id(current_module, memory->name, this, "memory"); current_module->memories[memory->name] = memory; for (auto &attr : attributes) { if (attr.second->type != AST_CONSTANT) input_error("Attribute `%s' with non-constant value!\n", attr.first.c_str()); memory->attributes[attr.first] = attr.second->asAttrConst(); } } break; // simply return the corresponding RTLIL::SigSpec for an AST_CONSTANT node case AST_CONSTANT: case AST_REALVALUE: { if (width_hint < 0) detectSignWidth(width_hint, sign_hint); is_signed = sign_hint; if (type == AST_CONSTANT) { if (is_unsized) { return RTLIL::SigSpec(bitsAsUnsizedConst(width_hint)); } else { return RTLIL::SigSpec(bitsAsConst()); } } RTLIL::SigSpec sig = realAsConst(width_hint); log_file_warning(filename, location.first_line, "converting real value %e to binary %s.\n", realvalue, log_signal(sig)); return sig; } // simply return the corresponding RTLIL::SigSpec for an AST_IDENTIFIER node // for identifiers with dynamic bit ranges (e.g. "foo[bar]" or "foo[bar+3:bar]") a // shifter cell is created and the output signal of this cell is returned case AST_IDENTIFIER: { RTLIL::Wire *wire = NULL; RTLIL::SigChunk chunk; bool is_interface = false; AST::AstNode *member_node = NULL; int add_undef_bits_msb = 0; int add_undef_bits_lsb = 0; log_assert(id2ast != nullptr); if (id2ast->type == AST_AUTOWIRE && current_module->wires_.count(str) == 0) { RTLIL::Wire *wire = current_module->addWire(str); set_src_attr(wire, this); wire->name = str; // If we are currently processing a bind directive which wires up // signals or parameters explicitly, rather than with .*, then // current_module will start out empty and we don't want to warn the // user about it: we'll spot broken wiring later, when we run the // hierarchy pass. if (dynamic_cast(current_module)) { /* nothing to do here */ } else if (flag_autowire) log_file_warning(filename, location.first_line, "Identifier `%s' is implicitly declared.\n", str.c_str()); else input_error("Identifier `%s' is implicitly declared and `default_nettype is set to none.\n", str.c_str()); } else if (id2ast->type == AST_PARAMETER || id2ast->type == AST_LOCALPARAM || id2ast->type == AST_ENUM_ITEM) { if (id2ast->children[0]->type != AST_CONSTANT) input_error("Parameter %s does not evaluate to constant value!\n", str.c_str()); chunk = RTLIL::Const(id2ast->children[0]->bits); goto use_const_chunk; } else if ((id2ast->type == AST_WIRE || id2ast->type == AST_AUTOWIRE || id2ast->type == AST_MEMORY) && current_module->wires_.count(str) != 0) { RTLIL::Wire *current_wire = current_module->wire(str); if (current_wire->get_bool_attribute(ID::is_interface)) is_interface = true; // Ignore } // If an identifier is found that is not already known, assume that it is an interface: else if (1) { // FIXME: Check if sv_mode first? is_interface = true; } else { input_error("Identifier `%s' doesn't map to any signal!\n", str.c_str()); } if (id2ast->type == AST_MEMORY) input_error("Identifier `%s' does map to an unexpanded memory!\n", str.c_str()); // If identifier is an interface, create a RTLIL::SigSpec with a dummy wire with a attribute called 'is_interface' // This makes it possible for the hierarchy pass to see what are interface connections and then replace them // with the individual signals: if (is_interface) { IdString dummy_wire_name = stringf("$dummywireforinterface%s", str.c_str()); RTLIL::Wire *dummy_wire = current_module->wire(dummy_wire_name); if (!dummy_wire) { dummy_wire = current_module->addWire(dummy_wire_name); dummy_wire->set_bool_attribute(ID::is_interface); } return dummy_wire; } wire = current_module->wires_[str]; chunk.wire = wire; chunk.width = wire->width; chunk.offset = 0; if ((member_node = get_struct_member(this))) { // Clamp wire chunk to range of member within struct/union. chunk.width = member_node->range_left - member_node->range_right + 1; chunk.offset = member_node->range_right; } use_const_chunk: if (children.size() != 0) { if (children[0]->type != AST_RANGE) input_error("Single range expected.\n"); int source_width = id2ast->range_left - id2ast->range_right + 1; int source_offset = id2ast->range_right; int chunk_left = source_width - 1; int chunk_right = 0; if (member_node) { // Clamp wire chunk to range of member within struct/union. log_assert(!source_offset && !id2ast->range_swapped); chunk_left = chunk.offset + chunk.width - 1; chunk_right = chunk.offset; } if (!children[0]->range_valid) { AstNode *left_at_zero_ast = children[0]->children[0]->clone_at_zero(); AstNode *right_at_zero_ast = children[0]->children.size() >= 2 ? children[0]->children[1]->clone_at_zero() : left_at_zero_ast->clone(); while (left_at_zero_ast->simplify(true, 1, -1, false)) { } while (right_at_zero_ast->simplify(true, 1, -1, false)) { } if (left_at_zero_ast->type != AST_CONSTANT || right_at_zero_ast->type != AST_CONSTANT) input_error("Unsupported expression on dynamic range select on signal `%s'!\n", str.c_str()); int width = abs(int(left_at_zero_ast->integer - right_at_zero_ast->integer)) + 1; AstNode *fake_ast = new AstNode(AST_NONE, clone(), children[0]->children.size() >= 2 ? children[0]->children[1]->clone() : children[0]->children[0]->clone()); fake_ast->children[0]->delete_children(); if (member_node) fake_ast->children[0]->set_attribute(ID::wiretype, member_node->clone()); int fake_ast_width = 0; bool fake_ast_sign = true; fake_ast->children[1]->detectSignWidth(fake_ast_width, fake_ast_sign); RTLIL::SigSpec shift_val = fake_ast->children[1]->genRTLIL(fake_ast_width, fake_ast_sign); if (source_offset != 0) { shift_val = current_module->Sub(NEW_ID, shift_val, source_offset, fake_ast_sign); fake_ast->children[1]->is_signed = true; } if (id2ast->range_swapped) { shift_val = current_module->Sub(NEW_ID, RTLIL::SigSpec(source_width - width), shift_val, fake_ast_sign); fake_ast->children[1]->is_signed = true; } if (GetSize(shift_val) >= 32) fake_ast->children[1]->is_signed = true; RTLIL::SigSpec sig = binop2rtlil(fake_ast, ID($shiftx), width, fake_ast->children[0]->genRTLIL(), shift_val); delete left_at_zero_ast; delete right_at_zero_ast; delete fake_ast; return sig; } else { chunk.width = children[0]->range_left - children[0]->range_right + 1; chunk.offset += children[0]->range_right - source_offset; if (id2ast->range_swapped) chunk.offset = source_width - (chunk.offset + chunk.width); if (chunk.offset > chunk_left || chunk.offset + chunk.width < chunk_right) { if (chunk.width == 1) log_file_warning(filename, location.first_line, "Range select out of bounds on signal `%s': Setting result bit to undef.\n", str.c_str()); else log_file_warning(filename, location.first_line, "Range select [%d:%d] out of bounds on signal `%s': Setting all %d result bits to undef.\n", children[0]->range_left, children[0]->range_right, str.c_str(), chunk.width); chunk = RTLIL::SigChunk(RTLIL::State::Sx, chunk.width); } else { if (chunk.offset + chunk.width - 1 > chunk_left) { add_undef_bits_msb = (chunk.offset + chunk.width - 1) - chunk_left; chunk.width -= add_undef_bits_msb; } if (chunk.offset < chunk_right) { add_undef_bits_lsb = chunk_right - chunk.offset; chunk.width -= add_undef_bits_lsb; chunk.offset += add_undef_bits_lsb; } if (add_undef_bits_lsb) log_file_warning(filename, location.first_line, "Range [%d:%d] select out of bounds on signal `%s': Setting %d LSB bits to undef.\n", children[0]->range_left, children[0]->range_right, str.c_str(), add_undef_bits_lsb); if (add_undef_bits_msb) log_file_warning(filename, location.first_line, "Range [%d:%d] select out of bounds on signal `%s': Setting %d MSB bits to undef.\n", children[0]->range_left, children[0]->range_right, str.c_str(), add_undef_bits_msb); } } } RTLIL::SigSpec sig = { RTLIL::SigSpec(RTLIL::State::Sx, add_undef_bits_msb), chunk, RTLIL::SigSpec(RTLIL::State::Sx, add_undef_bits_lsb) }; if (genRTLIL_subst_ptr) sig.replace(*genRTLIL_subst_ptr); is_signed = children.size() > 0 ? false : id2ast->is_signed && sign_hint; return sig; } // just pass thru the signal. the parent will evaluate the is_signed property and interpret the SigSpec accordingly case AST_TO_SIGNED: case AST_TO_UNSIGNED: case AST_SELFSZ: { RTLIL::SigSpec sig = children[0]->genRTLIL(); if (sig.size() < width_hint) sig.extend_u0(width_hint, sign_hint); is_signed = sign_hint; return sig; } // changing the size of signal can be done directly using RTLIL::SigSpec case AST_CAST_SIZE: { RTLIL::SigSpec size = children[0]->genRTLIL(); if (!size.is_fully_const()) input_error("Static cast with non constant expression!\n"); int width = size.as_int(); if (width <= 0) input_error("Static cast with zero or negative size!\n"); // determine the *signedness* of the expression int sub_width_hint = -1; bool sub_sign_hint = true; children[1]->detectSignWidth(sub_width_hint, sub_sign_hint); // generate the signal given the *cast's* size and the // *expression's* signedness RTLIL::SigSpec sig = children[1]->genWidthRTLIL(width, sub_sign_hint); // context may effect this node's signedness, but not that of the // casted expression is_signed = sign_hint; return sig; } // concatenation of signals can be done directly using RTLIL::SigSpec case AST_CONCAT: { RTLIL::SigSpec sig; for (auto it = children.begin(); it != children.end(); it++) sig.append((*it)->genRTLIL()); if (sig.size() < width_hint) sig.extend_u0(width_hint, false); return sig; } // replication of signals can be done directly using RTLIL::SigSpec case AST_REPLICATE: { RTLIL::SigSpec left = children[0]->genRTLIL(); RTLIL::SigSpec right = children[1]->genRTLIL(); if (!left.is_fully_const()) input_error("Left operand of replicate expression is not constant!\n"); int count = left.as_int(); RTLIL::SigSpec sig; for (int i = 0; i < count; i++) sig.append(right); if (sig.size() < width_hint) sig.extend_u0(width_hint, false); is_signed = false; return sig; } // generate cells for unary operations: $not, $pos, $neg if (0) { case AST_BIT_NOT: type_name = ID($not); } if (0) { case AST_POS: type_name = ID($pos); } if (0) { case AST_NEG: type_name = ID($neg); } { RTLIL::SigSpec arg = children[0]->genRTLIL(width_hint, sign_hint); is_signed = children[0]->is_signed; int width = arg.size(); if (width_hint > 0) { width = width_hint; widthExtend(this, arg, width, is_signed); } return uniop2rtlil(this, type_name, width, arg); } // generate cells for binary operations: $and, $or, $xor, $xnor if (0) { case AST_BIT_AND: type_name = ID($and); } if (0) { case AST_BIT_OR: type_name = ID($or); } if (0) { case AST_BIT_XOR: type_name = ID($xor); } if (0) { case AST_BIT_XNOR: type_name = ID($xnor); } { if (width_hint < 0) detectSignWidth(width_hint, sign_hint); RTLIL::SigSpec left = children[0]->genRTLIL(width_hint, sign_hint); RTLIL::SigSpec right = children[1]->genRTLIL(width_hint, sign_hint); int width = max(left.size(), right.size()); if (width_hint > 0) width = width_hint; is_signed = children[0]->is_signed && children[1]->is_signed; return binop2rtlil(this, type_name, width, left, right); } // generate cells for unary operations: $reduce_and, $reduce_or, $reduce_xor, $reduce_xnor if (0) { case AST_REDUCE_AND: type_name = ID($reduce_and); } if (0) { case AST_REDUCE_OR: type_name = ID($reduce_or); } if (0) { case AST_REDUCE_XOR: type_name = ID($reduce_xor); } if (0) { case AST_REDUCE_XNOR: type_name = ID($reduce_xnor); } { RTLIL::SigSpec arg = children[0]->genRTLIL(); RTLIL::SigSpec sig = uniop2rtlil(this, type_name, max(width_hint, 1), arg); return sig; } // generate cells for unary operations: $reduce_bool // (this is actually just an $reduce_or, but for clarity a different cell type is used) if (0) { case AST_REDUCE_BOOL: type_name = ID($reduce_bool); } { RTLIL::SigSpec arg = children[0]->genRTLIL(); RTLIL::SigSpec sig = arg.size() > 1 ? uniop2rtlil(this, type_name, max(width_hint, 1), arg) : arg; return sig; } // generate cells for binary operations: $shl, $shr, $sshl, $sshr if (0) { case AST_SHIFT_LEFT: type_name = ID($shl); } if (0) { case AST_SHIFT_RIGHT: type_name = ID($shr); } if (0) { case AST_SHIFT_SLEFT: type_name = ID($sshl); } if (0) { case AST_SHIFT_SRIGHT: type_name = ID($sshr); } if (0) { case AST_SHIFTX: type_name = ID($shiftx); } if (0) { case AST_SHIFT: type_name = ID($shift); } { if (width_hint < 0) detectSignWidth(width_hint, sign_hint); RTLIL::SigSpec left = children[0]->genRTLIL(width_hint, sign_hint); // for $shift and $shiftx, the second operand can be negative RTLIL::SigSpec right = children[1]->genRTLIL(-1, type == AST_SHIFT || type == AST_SHIFTX); int width = width_hint > 0 ? width_hint : left.size(); is_signed = children[0]->is_signed; return binop2rtlil(this, type_name, width, left, right); } // generate cells for binary operations: $pow case AST_POW: { int right_width; bool right_signed; children[1]->detectSignWidth(right_width, right_signed); if (width_hint < 0) detectSignWidth(width_hint, sign_hint); RTLIL::SigSpec left = children[0]->genRTLIL(width_hint, sign_hint); RTLIL::SigSpec right = children[1]->genRTLIL(right_width, right_signed); int width = width_hint > 0 ? width_hint : left.size(); is_signed = children[0]->is_signed; if (!flag_noopt && left.is_fully_const() && left.as_int() == 2 && !right_signed) return binop2rtlil(this, ID($shl), width, RTLIL::SigSpec(1, left.size()), right); return binop2rtlil(this, ID($pow), width, left, right); } // generate cells for binary operations: $lt, $le, $eq, $ne, $ge, $gt if (0) { case AST_LT: type_name = ID($lt); } if (0) { case AST_LE: type_name = ID($le); } if (0) { case AST_EQ: type_name = ID($eq); } if (0) { case AST_NE: type_name = ID($ne); } if (0) { case AST_EQX: type_name = ID($eqx); } if (0) { case AST_NEX: type_name = ID($nex); } if (0) { case AST_GE: type_name = ID($ge); } if (0) { case AST_GT: type_name = ID($gt); } { int width = max(width_hint, 1); width_hint = -1, sign_hint = true; children[0]->detectSignWidthWorker(width_hint, sign_hint); children[1]->detectSignWidthWorker(width_hint, sign_hint); RTLIL::SigSpec left = children[0]->genRTLIL(width_hint, sign_hint); RTLIL::SigSpec right = children[1]->genRTLIL(width_hint, sign_hint); RTLIL::SigSpec sig = binop2rtlil(this, type_name, width, left, right); return sig; } // generate cells for binary operations: $add, $sub, $mul, $div, $mod if (0) { case AST_ADD: type_name = ID($add); } if (0) { case AST_SUB: type_name = ID($sub); } if (0) { case AST_MUL: type_name = ID($mul); } if (0) { case AST_DIV: type_name = ID($div); } if (0) { case AST_MOD: type_name = ID($mod); } { if (width_hint < 0) detectSignWidth(width_hint, sign_hint); RTLIL::SigSpec left = children[0]->genRTLIL(width_hint, sign_hint); RTLIL::SigSpec right = children[1]->genRTLIL(width_hint, sign_hint); #if 0 int width = max(left.size(), right.size()); if (width > width_hint && width_hint > 0) width = width_hint; if (width < width_hint) { if (type == AST_ADD || type == AST_SUB || type == AST_DIV) width++; if (type == AST_SUB && (!children[0]->is_signed || !children[1]->is_signed)) width = width_hint; if (type == AST_MUL) width = min(left.size() + right.size(), width_hint); } #else int width = max(max(left.size(), right.size()), width_hint); #endif is_signed = children[0]->is_signed && children[1]->is_signed; return binop2rtlil(this, type_name, width, left, right); } // generate cells for binary operations: $logic_and, $logic_or if (0) { case AST_LOGIC_AND: type_name = ID($logic_and); } if (0) { case AST_LOGIC_OR: type_name = ID($logic_or); } { RTLIL::SigSpec left = children[0]->genRTLIL(); RTLIL::SigSpec right = children[1]->genRTLIL(); return binop2rtlil(this, type_name, max(width_hint, 1), left, right); } // generate cells for unary operations: $logic_not case AST_LOGIC_NOT: { RTLIL::SigSpec arg = children[0]->genRTLIL(); return uniop2rtlil(this, ID($logic_not), max(width_hint, 1), arg); } // generate multiplexer for ternary operator (aka ?:-operator) case AST_TERNARY: { if (width_hint < 0) detectSignWidth(width_hint, sign_hint); is_signed = sign_hint; RTLIL::SigSpec cond = children[0]->genRTLIL(); RTLIL::SigSpec sig; if (cond.is_fully_def()) { if (cond.as_bool()) { sig = children[1]->genRTLIL(width_hint, sign_hint); log_assert(is_signed == children[1]->is_signed); } else { sig = children[2]->genRTLIL(width_hint, sign_hint); log_assert(is_signed == children[2]->is_signed); } widthExtend(this, sig, sig.size(), is_signed); } else { RTLIL::SigSpec val1 = children[1]->genRTLIL(width_hint, sign_hint); RTLIL::SigSpec val2 = children[2]->genRTLIL(width_hint, sign_hint); if (cond.size() > 1) cond = uniop2rtlil(this, ID($reduce_bool), 1, cond, false); int width = max(val1.size(), val2.size()); log_assert(is_signed == children[1]->is_signed); log_assert(is_signed == children[2]->is_signed); widthExtend(this, val1, width, is_signed); widthExtend(this, val2, width, is_signed); sig = mux2rtlil(this, cond, val1, val2); } if (sig.size() < width_hint) sig.extend_u0(width_hint, sign_hint); return sig; } // generate $memrd cells for memory read ports case AST_MEMRD: { std::stringstream sstr; sstr << "$memrd$" << str << "$" << RTLIL::encode_filename(filename) << ":" << location.first_line << "$" << (autoidx++); RTLIL::Cell *cell = current_module->addCell(sstr.str(), ID($memrd)); set_src_attr(cell, this); RTLIL::Wire *wire = current_module->addWire(cell->name.str() + "_DATA", current_module->memories[str]->width); set_src_attr(wire, this); int mem_width, mem_size, addr_bits; is_signed = id2ast->is_signed; wire->is_signed = is_signed; id2ast->meminfo(mem_width, mem_size, addr_bits); RTLIL::SigSpec addr_sig = children[0]->genRTLIL(); cell->setPort(ID::CLK, RTLIL::SigSpec(RTLIL::State::Sx, 1)); cell->setPort(ID::EN, RTLIL::SigSpec(RTLIL::State::Sx, 1)); cell->setPort(ID::ADDR, addr_sig); cell->setPort(ID::DATA, RTLIL::SigSpec(wire)); cell->parameters[ID::MEMID] = RTLIL::Const(str); cell->parameters[ID::ABITS] = RTLIL::Const(GetSize(addr_sig)); cell->parameters[ID::WIDTH] = RTLIL::Const(wire->width); cell->parameters[ID::CLK_ENABLE] = RTLIL::Const(0); cell->parameters[ID::CLK_POLARITY] = RTLIL::Const(0); cell->parameters[ID::TRANSPARENT] = RTLIL::Const(0); if (!sign_hint) is_signed = false; return RTLIL::SigSpec(wire); } // generate $meminit cells case AST_MEMINIT: { std::stringstream sstr; sstr << "$meminit$" << str << "$" << RTLIL::encode_filename(filename) << ":" << location.first_line << "$" << (autoidx++); SigSpec en_sig = children[2]->genRTLIL(); RTLIL::Cell *cell = current_module->addCell(sstr.str(), ID($meminit_v2)); set_src_attr(cell, this); int mem_width, mem_size, addr_bits; id2ast->meminfo(mem_width, mem_size, addr_bits); if (children[3]->type != AST_CONSTANT) input_error("Memory init with non-constant word count!\n"); int num_words = int(children[3]->asInt(false)); cell->parameters[ID::WORDS] = RTLIL::Const(num_words); SigSpec addr_sig = children[0]->genRTLIL(); cell->setPort(ID::ADDR, addr_sig); cell->setPort(ID::DATA, children[1]->genWidthRTLIL(current_module->memories[str]->width * num_words, true)); cell->setPort(ID::EN, en_sig); cell->parameters[ID::MEMID] = RTLIL::Const(str); cell->parameters[ID::ABITS] = RTLIL::Const(GetSize(addr_sig)); cell->parameters[ID::WIDTH] = RTLIL::Const(current_module->memories[str]->width); cell->parameters[ID::PRIORITY] = RTLIL::Const(autoidx-1); } break; // generate $check cells case AST_ASSERT: case AST_ASSUME: case AST_LIVE: case AST_FAIR: case AST_COVER: { std::string flavor, desc; if (type == AST_ASSERT) { flavor = "assert"; desc = "assert property ()"; } if (type == AST_ASSUME) { flavor = "assume"; desc = "assume property ()"; } if (type == AST_LIVE) { flavor = "live"; desc = "assert property (eventually)"; } if (type == AST_FAIR) { flavor = "fair"; desc = "assume property (eventually)"; } if (type == AST_COVER) { flavor = "cover"; desc = "cover property ()"; } IdString cellname; if (str.empty()) cellname = stringf("$%s$%s:%d$%d", flavor.c_str(), RTLIL::encode_filename(filename).c_str(), location.first_line, autoidx++); else cellname = str; check_unique_id(current_module, cellname, this, "procedural assertion"); RTLIL::SigSpec check = children[0]->genRTLIL(); if (GetSize(check) != 1) check = current_module->ReduceBool(NEW_ID, check); RTLIL::Cell *cell = current_module->addCell(cellname, ID($check)); set_src_attr(cell, this); for (auto &attr : attributes) { if (attr.second->type != AST_CONSTANT) input_error("Attribute `%s' with non-constant value!\n", attr.first.c_str()); cell->attributes[attr.first] = attr.second->asAttrConst(); } cell->setParam(ID(FLAVOR), flavor); cell->parameters[ID::TRG_WIDTH] = 0; cell->parameters[ID::TRG_ENABLE] = 0; cell->parameters[ID::TRG_POLARITY] = 0; cell->parameters[ID::PRIORITY] = 0; cell->setPort(ID::TRG, RTLIL::SigSpec()); cell->setPort(ID::EN, RTLIL::S1); cell->setPort(ID::A, check); // No message is emitted to ensure Verilog code roundtrips correctly. Fmt fmt; fmt.emit_rtlil(cell); } break; // add entries to current_module->connections for assignments (outside of always blocks) case AST_ASSIGN: { RTLIL::SigSpec left = children[0]->genRTLIL(); RTLIL::SigSpec right = children[1]->genWidthRTLIL(left.size(), true); if (left.has_const()) { RTLIL::SigSpec new_left, new_right; for (int i = 0; i < GetSize(left); i++) if (left[i].wire) { new_left.append(left[i]); new_right.append(right[i]); } log_file_warning(filename, location.first_line, "Ignoring assignment to constant bits:\n" " old assignment: %s = %s\n new assignment: %s = %s.\n", log_signal(left), log_signal(right), log_signal(new_left), log_signal(new_right)); left = new_left; right = new_right; } current_module->connect(RTLIL::SigSig(left, right)); } break; // create an RTLIL::Cell for an AST_CELL case AST_CELL: { int port_counter = 0, para_counter = 0; RTLIL::IdString id = str; check_unique_id(current_module, id, this, "cell"); RTLIL::Cell *cell = current_module->addCell(id, ""); set_src_attr(cell, this); // Set attribute 'module_not_derived' which will be cleared again after the hierarchy pass cell->set_bool_attribute(ID::module_not_derived); for (auto it = children.begin(); it != children.end(); it++) { AstNode *child = *it; if (child->type == AST_CELLTYPE) { cell->type = child->str; if (flag_icells && cell->type.begins_with("\\$")) cell->type = cell->type.substr(1); continue; } if (child->type == AST_PARASET) { IdString paraname = child->str.empty() ? stringf("$%d", ++para_counter) : child->str; const AstNode *value = child->children[0]; if (value->type == AST_REALVALUE) log_file_warning(filename, location.first_line, "Replacing floating point parameter %s.%s = %f with string.\n", log_id(cell), log_id(paraname), value->realvalue); else if (value->type != AST_CONSTANT) input_error("Parameter %s.%s with non-constant value!\n", log_id(cell), log_id(paraname)); cell->parameters[paraname] = value->asParaConst(); continue; } if (child->type == AST_ARGUMENT) { RTLIL::SigSpec sig; if (child->children.size() > 0) { AstNode *arg = child->children[0]; int local_width_hint = -1; bool local_sign_hint = false; // don't inadvertently attempt to detect the width of interfaces if (arg->type != AST_IDENTIFIER || !arg->id2ast || arg->id2ast->type != AST_CELL) arg->detectSignWidth(local_width_hint, local_sign_hint); sig = arg->genRTLIL(local_width_hint, local_sign_hint); log_assert(local_sign_hint == arg->is_signed); if (sig.is_wire()) { // if the resulting SigSpec is a wire, its // signedness should match that of the AstNode if (arg->type == AST_IDENTIFIER && arg->id2ast && arg->id2ast->is_signed && !arg->is_signed) // fully-sliced signed wire will be resolved // once the module becomes available log_assert(attributes.count(ID::reprocess_after)); else log_assert(arg->is_signed == sig.as_wire()->is_signed); } else if (arg->is_signed) { // non-trivial signed nodes are indirected through // signed wires to enable sign extension RTLIL::IdString wire_name = NEW_ID; RTLIL::Wire *wire = current_module->addWire(wire_name, GetSize(sig)); wire->is_signed = true; current_module->connect(wire, sig); sig = wire; } } if (child->str.size() == 0) { char buf[100]; snprintf(buf, 100, "$%d", ++port_counter); cell->setPort(buf, sig); } else { cell->setPort(child->str, sig); } continue; } log_abort(); } for (auto &attr : attributes) { if (attr.second->type != AST_CONSTANT) input_error("Attribute `%s' with non-constant value.\n", attr.first.c_str()); cell->attributes[attr.first] = attr.second->asAttrConst(); } if (cell->type == ID($specify2)) { int src_width = GetSize(cell->getPort(ID::SRC)); int dst_width = GetSize(cell->getPort(ID::DST)); bool full = cell->getParam(ID::FULL).as_bool(); if (!full && src_width != dst_width) input_error("Parallel specify SRC width does not match DST width.\n"); cell->setParam(ID::SRC_WIDTH, Const(src_width)); cell->setParam(ID::DST_WIDTH, Const(dst_width)); } else if (cell->type == ID($specify3)) { int dat_width = GetSize(cell->getPort(ID::DAT)); int dst_width = GetSize(cell->getPort(ID::DST)); if (dat_width != dst_width) input_error("Specify DAT width does not match DST width.\n"); int src_width = GetSize(cell->getPort(ID::SRC)); cell->setParam(ID::SRC_WIDTH, Const(src_width)); cell->setParam(ID::DST_WIDTH, Const(dst_width)); } else if (cell->type == ID($specrule)) { int src_width = GetSize(cell->getPort(ID::SRC)); int dst_width = GetSize(cell->getPort(ID::DST)); cell->setParam(ID::SRC_WIDTH, Const(src_width)); cell->setParam(ID::DST_WIDTH, Const(dst_width)); } } break; // use ProcessGenerator for always blocks case AST_ALWAYS: { AstNode *always = this->clone(); ProcessGenerator generator(always); ignoreThisSignalsInInitial.append(generator.outputSignals); delete always; } break; case AST_INITIAL: { AstNode *always = this->clone(); ProcessGenerator generator(always, ignoreThisSignalsInInitial); delete always; } break; case AST_TECALL: { int sz = children.size(); if (str == "$info") { if (sz > 0) log_file_info(filename, location.first_line, "%s.\n", children[0]->str.c_str()); else log_file_info(filename, location.first_line, "\n"); } else if (str == "$warning") { if (sz > 0) log_file_warning(filename, location.first_line, "%s.\n", children[0]->str.c_str()); else log_file_warning(filename, location.first_line, "\n"); } else if (str == "$error") { if (sz > 0) input_error("%s.\n", children[0]->str.c_str()); else input_error("\n"); } else if (str == "$fatal") { // TODO: 1st parameter, if exists, is 0,1 or 2, and passed to $finish() // if no parameter is given, default value is 1 // dollar_finish(sz ? children[0] : 1); // perhaps create & use log_file_fatal() if (sz > 0) input_error("FATAL: %s.\n", children[0]->str.c_str()); else input_error("FATAL.\n"); } else { input_error("Unknown elabortoon system task '%s'.\n", str.c_str()); } } break; case AST_BIND: { // Read a bind construct. This should have one or more cells as children. for (RTLIL::Binding *binding : genBindings()) current_module->add(binding); break; } case AST_FCALL: { if (str == "\\$anyconst" || str == "\\$anyseq" || str == "\\$allconst" || str == "\\$allseq") { string myid = stringf("%s$%d", str.c_str() + 1, autoidx++); int width = width_hint; if (GetSize(children) > 1) input_error("System function %s got %d arguments, expected 1 or 0.\n", RTLIL::unescape_id(str).c_str(), GetSize(children)); if (GetSize(children) == 1) { if (children[0]->type != AST_CONSTANT) input_error("System function %s called with non-const argument!\n", RTLIL::unescape_id(str).c_str()); width = children[0]->asInt(true); } if (width <= 0) input_error("Failed to detect width of %s!\n", RTLIL::unescape_id(str).c_str()); Cell *cell = current_module->addCell(myid, str.substr(1)); set_src_attr(cell, this); cell->parameters[ID::WIDTH] = width; if (attributes.count(ID::reg)) { auto &attr = attributes.at(ID::reg); if (attr->type != AST_CONSTANT) input_error("Attribute `reg' with non-constant value!\n"); cell->attributes[ID::reg] = attr->asAttrConst(); } Wire *wire = current_module->addWire(myid + "_wire", width); set_src_attr(wire, this); cell->setPort(ID::Y, wire); is_signed = sign_hint; return SigSpec(wire); } } YS_FALLTHROUGH // everything should have been handled above -> print error if not. default: for (auto f : log_files) current_ast_mod->dumpAst(f, "verilog-ast> "); input_error("Don't know how to generate RTLIL code for %s node!\n", type2str(type).c_str()); } return RTLIL::SigSpec(); } // this is a wrapper for AstNode::genRTLIL() when a specific signal width is requested and/or // signals must be substituted before being used as input values (used by ProcessGenerator) // note that this is using some global variables to communicate this special settings to AstNode::genRTLIL(). RTLIL::SigSpec AstNode::genWidthRTLIL(int width, bool sgn, const dict *new_subst_ptr) { const dict *backup_subst_ptr = genRTLIL_subst_ptr; if (new_subst_ptr) genRTLIL_subst_ptr = new_subst_ptr; bool sign_hint = sgn; int width_hint = width; detectSignWidthWorker(width_hint, sign_hint); RTLIL::SigSpec sig = genRTLIL(width_hint, sign_hint); genRTLIL_subst_ptr = backup_subst_ptr; if (width >= 0) sig.extend_u0(width, is_signed); return sig; } YOSYS_NAMESPACE_END