\section{Introduction} \begin{frame} \sectionpage \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Representations of (digital) Circuits} \begin{frame}[t]{\subsecname} \begin{itemize} \item Graphical \begin{itemize} \item \alert<1>{Schematic Diagram} \item \alert<2>{Physical Layout} \end{itemize} \bigskip \item Non-graphical \begin{itemize} \item \alert<3>{Netlists} \item \alert<4>{Hardware Description Languages (HDLs)} \end{itemize} \end{itemize} \bigskip \begin{block}{Definition: \only<1>{Schematic Diagram}% \only<2>{Physical Layout}% \only<3>{Netlists}% \only<4>{Hardware Description Languages (HDLs)}} \only<1>{ Graphical representation of the circtuit topology. Circuit elements are represented by symbols and electrical connections by lines. The gometric layout is for readability only. }% \only<2>{ The actual physical geometry of the device (PCB or ASIC manufracturing masks). This is the final product of the design process. }% \only<3>{ A list of circuit elements and a list of connections. This is the raw circuit topology. }% \only<4>{ Computer languages (like programming languages) that can be used to describe circuits. HDLs are much more powerful in describing huge circuits than schematic diagrams. }% \end{block} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Levels of Abstraction for Digital Circuits} \begin{frame}[t]{\subsecname} \begin{itemize} \item \alert<1>{System Level} \item \alert<2>{High Level} \item \alert<3>{Behavioral Level} \item \alert<4>{Register-Transfer Level (RTL)} \item \alert<5>{Logical Gate Level} \item \alert<6>{Physical Gate Level} \item \alert<7>{Switch Level} \end{itemize} \bigskip \begin{block}{Definition: \only<1>{System Level}% \only<2>{High Level}% \only<3>{Behavioral Level}% \only<4>{Register-Transfer Level (RTL)}% \only<5>{Logical Gate Level}% \only<6>{Physical Gate Level}% \only<7>{Switch Level}} \only<1>{ Overall view of the circuit: E.g. block-diagrams or instruction-set architecture descriptions }% \only<2>{ Functional implementation of circuit in high-level programming language (C, C++, SystemC, Matlab, Python, etc.). }% \only<3>{ Cycle-accurate description of circuit in hardware description language (Verilog, VHDL, etc.). }% \only<4>{ List of registers (flip-flops) and logic functions that calculate the next state from the previous one. Usually a netlist utilizing high-level cells such as adders, multiplieres, multiplexer, etc. }% \only<5>{ Netlist of single-bit registers and basic logic gates (such as AND, OR, NOT, etc.). Popular form: And-Inverter-Graphs (AIGs) with pairs of primary inputs and outputs for each register bit. }% \only<6>{ Netlist of cells that actually are available on the target architecture (such as CMOS gates in an ASCI or LUTs in an FPGA). Optimized for area and/or and/or speed (static timing or number of logic levels). }% \only<7>{ Netlist of individual transistors. }% \end{block} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Digital Circuit Synthesis} \begin{frame}{\subsecname} Synthesis Tools (such as Yosys) can transform HDL code to circuits: \bigskip \begin{center} \begin{tikzpicture}[scale=0.8, every node/.style={transform shape}] \tikzstyle{lvl} = [draw, fill=MyBlue, rectangle, minimum height=2em, minimum width=15em] \node[lvl] (sys) {System Level}; \node[lvl] (hl) [below of=sys] {High Level}; \node[lvl] (beh) [below of=hl] {Behavioral Level}; \node[lvl] (rtl) [below of=beh] {Register-Transfer Level (RTL)}; \node[lvl] (lg) [below of=rtl] {Logical Gate Level}; \node[lvl] (pg) [below of=lg] {Physical Gate Level}; \node[lvl] (sw) [below of=pg] {Switch Level}; \draw[dotted] (sys.east) -- ++(1,0) coordinate (sysx); \draw[dotted] (hl.east) -- ++(1,0) coordinate (hlx); \draw[dotted] (beh.east) -- ++(1,0) coordinate (behx); \draw[dotted] (rtl.east) -- ++(1,0) coordinate (rtlx); \draw[dotted] (lg.east) -- ++(1,0) coordinate (lgx); \draw[dotted] (pg.east) -- ++(1,0) coordinate (pgx); \draw[dotted] (sw.east) -- ++(1,0) coordinate (swx); \draw[gray,|->] (sysx) -- node[right] {System Design} (hlx); \draw[|->|] (hlx) -- node[right] {High Level Synthesis (HLS)} (behx); \draw[->|] (behx) -- node[right] {Behavioral Synthesis} (rtlx); \draw[->|] (rtlx) -- node[right] {RTL Synthesis} (lgx); \draw[->|] (lgx) -- node[right] {Logic Synthesis} (pgx); \draw[gray,->|] (pgx) -- node[right] {Cell Library} (swx); \draw[dotted] (behx) -- ++(4,0) coordinate (a); \draw[dotted] (pgx) -- ++(4,0) coordinate (b); \draw[|->|] (a) -- node[right] {Yosys} (b); \end{tikzpicture} \end{center} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{What Yosys can and can't do} \begin{frame}{\subsecname} Things Yosys can do: \begin{itemize} \item Read and process (most of) modern Verilog-2005 code. \item Perform all kinds of operations on netlist (RTL, Logic, Gate). \item Perform logic optimiziations and gate mapping with ABC\footnote[frame]{\url{http://www.eecs.berkeley.edu/~alanmi/abc/}}. \end{itemize} \bigskip Things Yosys can't do: \begin{itemize} \item Process high-level languages such as C/C++/SystemC. \item Create physical layouts (place\&route). \end{itemize} \bigskip A typical flow combines Yosys with with a low-level implementation tool, such as Qflow\footnote[frame]{\url{http://opencircuitdesign.com/qflow/}} for ASIC designs. \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Yosys Data- and Control-Flow} \begin{frame}{\subsecname} A (usually short) synthesis script controlls Yosys. This scripts contain three types of commands: \begin{itemize} \item {\bf Frontends}, that read input files (usually Verilog). \item {\bf Passes}, that perform transformation on the design in memory. \item {\bf Backends}, that write the design in memory to a file (various formats are available, e.g. Verilog, BLIF, EDIF, SPICE, BTOR, etc.). \end{itemize} \bigskip \begin{center} \begin{tikzpicture}[scale=0.6, every node/.style={transform shape}] \path (-1.5,3) coordinate (cursor); \draw[-latex] ($ (cursor) + (0,-1.5) $) -- ++(1,0); \draw[fill=orange!10] ($ (cursor) + (1,-3) $) rectangle node[rotate=90] {Frontend} ++(1,3) coordinate (cursor); \draw[-latex] ($ (cursor) + (0,-1.5) $) -- ++(1,0); \draw[fill=green!10] ($ (cursor) + (1,-3) $) rectangle node[rotate=90] {Pass} ++(1,3) coordinate (cursor); \draw[-latex] ($ (cursor) + (0,-1.5) $) -- ++(1,0); \draw[fill=green!10] ($ (cursor) + (1,-3) $) rectangle node[rotate=90] {Pass} ++(1,3) coordinate (cursor); \draw[-latex] ($ (cursor) + (0,-1.5) $) -- ++(1,0); \draw[fill=green!10] ($ (cursor) + (1,-3) $) rectangle node[rotate=90] {Pass} ++(1,3) coordinate (cursor); \draw[-latex] ($ (cursor) + (0,-1.5) $) -- ++(1,0); \draw[fill=orange!10] ($ (cursor) + (1,-3) $) rectangle node[rotate=90] {Backend} ++(1,3) coordinate (cursor); \draw[-latex] ($ (cursor) + (0,-1.5) $) -- ++(1,0); \path (-3,-0.5) coordinate (cursor); \draw (cursor) -- node[below] {HDL} ++(3,0) coordinate (cursor); \draw[|-|] (cursor) -- node[below] {Internal Format (RTLIL)} ++(8,0) coordinate (cursor); \draw (cursor) -- node[below] {Netlist} ++(3,0); \path (-3,3.5) coordinate (cursor); \draw[-] (cursor) -- node[above] {High-Level} ++(3,0) coordinate (cursor); \draw[-] (cursor) -- ++(8,0) coordinate (cursor); \draw[->] (cursor) -- node[above] {Low-Level} ++(3,0); \end{tikzpicture} \end{center} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Program Components and Data Formats} \begin{frame}{\subsecname} \begin{center} \begin{tikzpicture}[scale=0.6, every node/.style={transform shape}] \tikzstyle{process} = [draw, fill=green!10, rectangle, minimum height=3em, minimum width=10em, node distance=15em] \tikzstyle{data} = [draw, fill=blue!10, ellipse, minimum height=3em, minimum width=7em, node distance=15em] \node[process] (vlog) {Verilog Frontend}; \node[process, dashed, fill=green!5] (vhdl) [right of=vlog] {VHDL Frontend}; \node[process] (ilang) [right of=vhdl] {Other Frontends}; \node[data] (ast) [below of=vlog, node distance=5em, xshift=7.5em] {AST}; \node[process] (astfe) [below of=ast, node distance=5em] {AST Frontend}; \node[data] (rtlil) [below of=astfe, node distance=5em, xshift=7.5em] {RTLIL}; \node[process] (pass) [right of=rtlil, node distance=5em, xshift=7.5em] {Passes}; \node[process] (vlbe) [below of=rtlil, node distance=7em, xshift=-13em] {Verilog Backend}; \node[process] (ilangbe) [below of=rtlil, node distance=7em, xshift=0em] {ILANG Backend}; \node[process, fill=green!5] (otherbe) [below of=rtlil, node distance=7em, xshift=+13em] {Other Backends}; \draw[-latex] (vlog) -- (ast); \draw[-latex] (vhdl) -- (ast); \draw[-latex] (ast) -- (astfe); \draw[-latex] (astfe) -- (rtlil); \draw[-latex] (ilang) -- (rtlil); \draw[latex-latex] (rtlil) -- (pass); \draw[-latex] (rtlil) -- (vlbe); \draw[-latex] (rtlil) -- (ilangbe); \draw[-latex] (rtlil) -- (otherbe); \end{tikzpicture} \end{center} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Example Synthesis Script} \begin{frame}[t]{\subsecname} \setbeamercolor{alerted text}{fg=white,bg=red} \begin{minipage}[t]{6cm} \tt\scriptsize \# read design\\ \boxalert<1>{read\_verilog mydesign.v}\\ \boxalert<2>{hierarchy -check -top mytop} \medskip \# the high-level stuff\\ \boxalert<3>{proc}; \boxalert<4>{opt}; \boxalert<5>{memory}; \boxalert<6>{opt}; \boxalert<7>{fsm}; \boxalert<8>{opt} \medskip \# mapping to internal cell library\\ \boxalert<9>{techmap}; \boxalert<10>{opt} \bigskip \it continued\dots \end{minipage} \begin{minipage}[t]{5cm} \tt\scriptsize \# mapping flip-flops to mycells.lib\\ \boxalert<11>{dfflibmap -liberty mycells.lib} \medskip \# mapping logic to mycells.lib\\ \boxalert<12>{abc -liberty mycells.lib} \medskip \# cleanup\\ \boxalert<13>{clean} \medskip \# write synthesized design\\ \boxalert<14>{write\_verilog synth.v} \end{minipage} \vskip1cm \begin{block}{Command: \tt \only<1>{read\_verilog mydesign.v}% \only<2>{hierarchy -check -top mytop}% \only<3>{proc}% \only<4>{opt}% \only<5>{memory}% \only<6>{opt}% \only<7>{fsm}% \only<8>{opt}% \only<9>{techmap}% \only<10>{opt}% \only<11>{dfflibmap -liberty mycells.lib}% \only<12>{abc -liberty mycells.lib}% \only<13>{clean}% \only<14>{write\_verilog synth.v}} \only<1>{ TBD }% \only<2>{ TBD }% \only<3>{ TBD }% \only<4>{ TBD }% \only<5>{ TBD }% \only<6>{ TBD }% \only<7>{ TBD }% \only<8>{ TBD }% \only<9>{ TBD }% \only<10>{ TBD }% \only<11>{ TBD }% \only<12>{ TBD }% \only<13>{ TBD }% \only<14>{ TBD }% \end{block} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Running the Synthesis Script} \begin{frame}[fragile]{\subsecname{} -- Verilog Source: \tt counter.v} \lstinputlisting[xleftmargin=1cm, language=Verilog]{PRESENTATION_Intro/counter.v} \end{frame} \begin{frame}[fragile]{\subsecname{} -- Cell Library: \tt mycells.lib} \begin{columns} \column[t]{5cm} \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=liberty, lastline=20]{PRESENTATION_Intro/mycells.lib} \column[t]{5cm} \lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=liberty, firstline=21]{PRESENTATION_Intro/mycells.lib} \end{columns} \end{frame} \begin{frame}[t, fragile]{\subsecname{} -- Step 1/4} \begin{verbatim} read_verilog counter.v hierarchy -check -top counter \end{verbatim} \vfill \includegraphics[width=\linewidth,trim=0 0cm 0 0cm]{PRESENTATION_Intro/counter_00.pdf} \end{frame} \begin{frame}[t, fragile]{\subsecname{} -- Step 2/4} \begin{verbatim} proc; opt; memory; opt; fsm; opt \end{verbatim} \vfill \includegraphics[width=\linewidth,trim=0 0cm 0 0cm]{PRESENTATION_Intro/counter_01.pdf} \end{frame} \begin{frame}[t, fragile]{\subsecname{} -- Step 3/4} \begin{verbatim} techmap; opt \end{verbatim} \vfill \includegraphics[width=\linewidth,trim=0 0cm 0 0cm]{PRESENTATION_Intro/counter_02.pdf} \end{frame} \begin{frame}[t, fragile]{\subsecname{} -- Step 4/4} \begin{verbatim} dfflibmap -liberty mycells.lib abc -liberty mycells.lib clean \end{verbatim} \vfill \includegraphics[width=\linewidth,trim=0 0cm 0 0cm]{PRESENTATION_Intro/counter_03.pdf} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{More Yosys Commands} \begin{frame}[fragile]{\subsecname{} 1/3} Command reference: \begin{itemize} \item Use ``{\tt help}'' for a command list and ``{\tt help \it command}'' for details. \item Or run ``{\tt yosys -H}'' and ``{\tt yosys -h \it command}''. \item Or go to \url{http://www.clifford.at/yosys/documentation.html}. \end{itemize} \bigskip Commands for design navigation and investigation: \begin{lstlisting}[xleftmargin=1cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont] cd a shortcut for 'select -module ' ls list modules or objects in modules dump print parts of the design in ilang format show generate schematics using graphviz select modify and view the list of selected objects \end{lstlisting} \bigskip Commands for executing scripts or entering interactive mode: \begin{lstlisting}[xleftmargin=1cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont] shell enter interactive command mode history show last interactive commands script execute commands from script file tcl execute a TCL script file \end{lstlisting} \end{frame} \begin{frame}[fragile]{\subsecname{} 2/3} Commands for reading and elaborating the design: \begin{lstlisting}[xleftmargin=1cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont] read_ilang read modules from ilang file read_verilog read modules from verilog file hierarchy check, expand and clean up design hierarchy \end{lstlisting} \bigskip Commands for high-level synthesis: \begin{lstlisting}[xleftmargin=1cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont] proc translate processes to netlists fsm extract and optimize finite state machines memory translate memories to basic cells opt perform simple optimizations \end{lstlisting} \bigskip Commands for technology mapping: \begin{lstlisting}[xleftmargin=1cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont] techmap simple technology mapper abc use ABC for technology mapping dfflibmap technology mapping of flip-flops hilomap technology mapping of constant hi- and/or lo-drivers iopadmap technology mapping of i/o pads (or buffers) flatten flatten design \end{lstlisting} \end{frame} \begin{frame}[fragile]{\subsecname{} 3/3} Commands for writing the results: \begin{lstlisting}[xleftmargin=1cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont] write_blif write design to BLIF file write_btor write design to BTOR file write_edif write design to EDIF netlist file write_ilang write design to ilang file write_spice write design to SPICE netlist file write_verilog write design to verilog file \end{lstlisting} \bigskip Script-Commands for standard synthesis tasks: \begin{lstlisting}[xleftmargin=1cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont] synth_xilinx synthesis for Xilinx FPGAs \end{lstlisting} \bigskip ... and many many more. \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{More Verilog Examples} \begin{frame}[fragile]{\subsecname{} 1/3} \begin{lstlisting}[xleftmargin=1cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=Verilog] module detectprime(a, y); input [4:0] a; output y; integer i, j; reg [31:0] lut; initial begin for (i = 0; i < 32; i = i+1) begin lut[i] = i > 1; for (j = 2; j*j <= i; j = j+1) if (i % j == 0) lut[i] = 0; end end assign y = lut[a]; endmodule \end{lstlisting} \end{frame} \begin{frame}[fragile]{\subsecname{} 2/3} \begin{lstlisting}[xleftmargin=1cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=Verilog] module carryadd(a, b, y); parameter WIDTH = 8; input [WIDTH-1:0] a, b; output [WIDTH-1:0] y; genvar i; generate for (i = 0; i < WIDTH; i = i+1) begin:STAGE wire IN1 = a[i], IN2 = b[i]; wire C, Y; if (i == 0) assign C = IN1 & IN2, Y = IN1 ^ IN2; else assign C = (IN1 & IN2) | ((IN1 | IN2) & STAGE[i-1].C), Y = IN1 ^ IN2 ^ STAGE[i-1].C; assign y[i] = Y; end endgenerate endmodule \end{lstlisting} \end{frame} \begin{frame}[fragile]{\subsecname{} 3/3} \begin{lstlisting}[xleftmargin=1cm, basicstyle=\ttfamily\fontsize{7pt}{8.5pt}\selectfont, language=Verilog] module cam(clk, wr_enable, wr_addr, wr_data, rd_data, rd_addr, rd_match); parameter WIDTH = 8; parameter DEPTH = 16; localparam ADDR_BITS = $clog2(DEPTH); input clk, wr_enable; input [ADDR_BITS-1:0] wr_addr; input [WIDTH-1:0] wr_data, rd_data; output reg [ADDR_BITS-1:0] rd_addr; output reg rd_match; integer i; reg [WIDTH-1:0] mem [0:DEPTH-1]; always @(posedge clk) begin rd_addr <= 'bx; rd_match <= 0; for (i = 0; i < DEPTH; i = i+1) if (mem[i] == rd_data) begin rd_addr <= i; rd_match <= 1; end if (wr_enable) mem[wr_addr] <= wr_data; end endmodule \end{lstlisting} \end{frame} \subsection{Verification} \begin{frame}{\subsecname} Contiously checking the correctness of Yosys and making sure that new features do not break old ones is a high priority in Yosys. \bigskip There are two external test suites build for Yosys: VlogHammer and yosys-bigsim (see next slides) \bigskip In addition to that, yosys comes with $\approx\!200$ test cases used in ``{\tt make test}''. \bigskip A debug build of Yosys also contains a lot of asserts and checks the integrity of the internal state after each command. \end{frame} \begin{frame}[fragile]{\subsecname{} -- VlogHammer} VlogHammer is a Verilog regression test suite developed to test the different subsystems in Yosys by comparing them to each other and the implementations generated by some proprietary tools (Xilinx Vivado, Xilinx XST, Altera Quartus II, ...). \bigskip Yosys Subsystems tested: Verilog frontend, const folding, const eval, technology mapping, simulation models, SAT models. \bigskip Thousands of auto-generated test cases containing code such as: \begin{lstlisting}[xleftmargin=1cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=Verilog] assign y9 = $signed(((+$signed((^(6'd2 ** a2))))<$unsigned($unsigned(((+a3)))))); assign y10 = (-((+((+{2{(~^p13)}})))^~(!{{b5,b1,a0},(a1&p12),(a4+a3)}))); assign y11 = (~&(-{(-3'sd3),($unsigned($signed($unsigned({p0,b4,b1}))))})); \end{lstlisting} \bigskip Some bugs in Yosys where found and fixed thanks to VlogHammer. Over 20 bugs in the proprietary tools used as external reference where found and reported. \end{frame} \begin{frame}{\subsecname{} -- yosys-bigsim} yosys-bigsim is a collection of real-world open-source Verilog designs and test benches. yosys-bigsim compares the testbench outpus of simulations of the original Verilog code and synthesis results. \bigskip The following designs are part of yosys-bigsim: \begin{itemize} \item {\tt openmsp430} -- an MSP430 compatible 16 bit CPU \item {\tt aes\_5cycle\_2stage} -- an AES encryption core \item {\tt softusb\_navre} -- an AVR compatible 8 bit CPU \item {\tt amber23} -- an ARMv2 compatible 32 bit CPU \item {\tt lm32} -- another 32 bit CPU from Lattice Semiconductor \item {\tt verilog-pong} -- a hardware pong game with VGA output \item {\tt elliptic\_curve\_group} -- ECG point-add and point-scalar-mul core \item {\tt reed\_solomon\_decoder} -- a Reed-Solomon Error Correction Decoder \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Benefits of Open Source HDL Synthesis} \begin{frame}{\subsecname{} -- 1/3} \begin{itemize} \item Cost (also applies to ``free as in free beer'' solutions): \smallskip\par Today the cost for a mask set in $\unit[180]{nm}$ technology is far less than the cost for the design tools needed to design the mask layouts. Open Source ASIC flows are an important enabler for ASIC-level Open Source Hardware. \bigskip \item Availablity and Reproducability: \smallskip\par If you are a researcher who is publishing, you want to use tools that everyone else can also use. Even if most universities have access to all major commercial tools, you usually do not have easy access to the version that was used in a research project a couple of years ago. With Open Source tools you can even release the source code of the tool you have used alongside your data. \end{itemize} \end{frame} \begin{frame}{\subsecname{} -- 2/3} \begin{itemize} \item Framework: \smallskip\par Yosys is not only a tool. It is a framework that can be used as basis for other developments, so researchers and hackers alike do not need to re-invent the basic functionality. Extensibility was one of Yosys' design goals. \bigskip \item All-in-one: \smallskip\par Because of the framework characterisitcs of Yosys, an increasing number of features become available in one tool. Yosys not only can be used for circuit synthesis but also for formal equivialence checking, SAT solving, and for circuit analysis, to name just a few other application domains. With propritaery software one needs to learn a new tool for each of this applications. \end{itemize} \end{frame} \begin{frame}{\subsecname{} -- 3/3} \begin{itemize} \item Educational Tool: \smallskip\par Propritaery synthesis tools are at times where secretive about their inner workings. They often are ``black boxes'' where a design goes in and synthesis results come out. Yosys is very open about its internals and it is easy to observe the different steps of synthesis. \end{itemize} \bigskip \begin{block}{BTW: Yosys is licensed under the ISC license:} Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. \end{block} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%