/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * 2019 Eddie Hung * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ // https://stackoverflow.com/a/46137633 #ifdef _MSC_VER #include #define bswap32 _byteswap_ulong #elif defined(__APPLE__) #include #define bswap32 OSSwapInt32 #elif defined(__GNUC__) #define bswap32 __builtin_bswap32 #else #include inline static uint32_t bswap32(uint32_t x) { // https://stackoverflow.com/a/27796212 register uint32_t value = number_to_be_reversed; uint8_t lolo = (value >> 0) & 0xFF; uint8_t lohi = (value >> 8) & 0xFF; uint8_t hilo = (value >> 16) & 0xFF; uint8_t hihi = (value >> 24) & 0xFF; return (hihi << 24) | (hilo << 16) | (lohi << 8) | (lolo << 0); } #endif #include "kernel/yosys.h" #include "kernel/sigtools.h" #include "kernel/utils.h" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN inline int32_t to_big_endian(int32_t i32) { #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ return bswap32(i32); #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ return i32; #else #error "Unknown endianness" #endif } void aiger_encode(std::ostream &f, int x) { log_assert(x >= 0); while (x & ~0x7f) { f.put((x & 0x7f) | 0x80); x = x >> 7; } f.put(x); } struct XAigerWriter { Module *module; SigMap sigmap; pool input_bits, output_bits; dict not_map, alias_map; dict> and_map; vector ci_bits, co_bits; dict ff_bits; dict arrival_times; vector> aig_gates; vector aig_outputs; int aig_m = 0, aig_i = 0, aig_l = 0, aig_o = 0, aig_a = 0; dict aig_map; dict ordered_outputs; vector box_list; int mkgate(int a0, int a1) { aig_m++, aig_a++; aig_gates.push_back(a0 > a1 ? make_pair(a0, a1) : make_pair(a1, a0)); return 2*aig_m; } int bit2aig(SigBit bit) { auto it = aig_map.find(bit); if (it != aig_map.end()) { log_assert(it->second >= 0); return it->second; } // NB: Cannot use iterator returned from aig_map.insert() // since this function is called recursively int a = -1; if (not_map.count(bit)) { a = bit2aig(not_map.at(bit)) ^ 1; } else if (and_map.count(bit)) { auto args = and_map.at(bit); int a0 = bit2aig(args.first); int a1 = bit2aig(args.second); a = mkgate(a0, a1); } else if (alias_map.count(bit)) { a = bit2aig(alias_map.at(bit)); } if (bit == State::Sx || bit == State::Sz) { log_debug("Design contains 'x' or 'z' bits. Treating as 1'b0.\n"); a = aig_map.at(State::S0); } log_assert(a >= 0); aig_map[bit] = a; return a; } XAigerWriter(Module *module, bool holes_mode=false) : module(module), sigmap(module) { pool undriven_bits; pool unused_bits; // promote public wires for (auto wire : module->wires()) if (wire->name[0] == '\\') sigmap.add(wire); // promote input wires for (auto wire : module->wires()) if (wire->port_input) sigmap.add(wire); // promote keep wires for (auto wire : module->wires()) if (wire->get_bool_attribute(ID::keep)) sigmap.add(wire); for (auto wire : module->wires()) for (int i = 0; i < GetSize(wire); i++) { SigBit wirebit(wire, i); SigBit bit = sigmap(wirebit); if (bit.wire == nullptr) { if (wire->port_output) { aig_map[wirebit] = (bit == State::S1) ? 1 : 0; output_bits.insert(wirebit); } continue; } undriven_bits.insert(bit); unused_bits.insert(bit); bool keep = wire->get_bool_attribute(ID::keep); if (wire->port_input || keep) input_bits.insert(bit); if (wire->port_output || keep) { if (bit != wirebit) alias_map[wirebit] = bit; output_bits.insert(wirebit); } } dict> arrival_cache; for (auto cell : module->cells()) { RTLIL::Module* inst_module = module->design->module(cell->type); if (!cell->has_keep_attr()) { if (cell->type == "$_NOT_") { SigBit A = sigmap(cell->getPort("\\A").as_bit()); SigBit Y = sigmap(cell->getPort("\\Y").as_bit()); unused_bits.erase(A); undriven_bits.erase(Y); not_map[Y] = A; continue; } if (cell->type == "$_AND_") { SigBit A = sigmap(cell->getPort("\\A").as_bit()); SigBit B = sigmap(cell->getPort("\\B").as_bit()); SigBit Y = sigmap(cell->getPort("\\Y").as_bit()); unused_bits.erase(A); unused_bits.erase(B); undriven_bits.erase(Y); and_map[Y] = make_pair(A, B); continue; } if (cell->type == "$__ABC9_FF_" && // The presence of an abc9_mergeability attribute indicates // that we do want to pass this flop to ABC cell->attributes.count("\\abc9_mergeability")) { SigBit D = sigmap(cell->getPort("\\D").as_bit()); SigBit Q = sigmap(cell->getPort("\\Q").as_bit()); unused_bits.erase(D); undriven_bits.erase(Q); alias_map[Q] = D; auto r YS_ATTRIBUTE(unused) = ff_bits.insert(std::make_pair(D, cell)); log_assert(r.second); continue; } if (inst_module) { auto it = cell->attributes.find("\\abc9_box_seq"); if (it != cell->attributes.end()) { int abc9_box_seq = it->second.as_int(); if (GetSize(box_list) <= abc9_box_seq) box_list.resize(abc9_box_seq+1); box_list[abc9_box_seq] = cell; // Only flop boxes may have arrival times if (!inst_module->get_bool_attribute("\\abc9_flop")) continue; } auto &cell_arrivals = arrival_cache[cell->type]; for (const auto &conn : cell->connections()) { auto r = cell_arrivals.insert(conn.first); auto &arrival = r.first->second; if (r.second) { auto port_wire = inst_module->wire(conn.first); if (port_wire->port_output) { auto it = port_wire->attributes.find("\\abc9_arrival"); if (it != port_wire->attributes.end()) { if (it->second.flags != 0) log_error("Attribute 'abc9_arrival' on port '%s' of module '%s' is not an integer.\n", log_id(port_wire), log_id(cell->type)); arrival = it->second.as_int(); } } } if (arrival) for (auto bit : sigmap(conn.second)) arrival_times[bit] = arrival; } } } bool cell_known = inst_module || cell->known(); for (const auto &c : cell->connections()) { if (c.second.is_fully_const()) continue; auto port_wire = inst_module ? inst_module->wire(c.first) : nullptr; auto is_input = (port_wire && port_wire->port_input) || !cell_known || cell->input(c.first); auto is_output = (port_wire && port_wire->port_output) || !cell_known || cell->output(c.first); if (!is_input && !is_output) log_error("Connection '%s' on cell '%s' (type '%s') not recognised!\n", log_id(c.first), log_id(cell), log_id(cell->type)); if (is_input) for (auto b : c.second) { Wire *w = b.wire; if (!w) continue; // Do not add as PO if bit is already a PI if (input_bits.count(b)) continue; if (!w->port_output || !cell_known) { SigBit I = sigmap(b); if (I != b) alias_map[b] = I; output_bits.insert(b); } } } //log_warning("Unsupported cell type: %s (%s)\n", log_id(cell->type), log_id(cell)); } dict> box_ports; for (auto cell : box_list) { log_assert(cell); RTLIL::Module* box_module = module->design->module(cell->type); log_assert(box_module); log_assert(box_module->attributes.count("\\abc9_box_id")); auto r = box_ports.insert(cell->type); if (r.second) { // Make carry in the last PI, and carry out the last PO // since ABC requires it this way IdString carry_in, carry_out; for (const auto &port_name : box_module->ports) { auto w = box_module->wire(port_name); log_assert(w); if (w->get_bool_attribute("\\abc9_carry")) { if (w->port_input) { if (carry_in != IdString()) log_error("Module '%s' contains more than one 'abc9_carry' input port.\n", log_id(box_module)); carry_in = port_name; } if (w->port_output) { if (carry_out != IdString()) log_error("Module '%s' contains more than one 'abc9_carry' output port.\n", log_id(box_module)); carry_out = port_name; } } else r.first->second.push_back(port_name); } if (carry_in != IdString() && carry_out == IdString()) log_error("Module '%s' contains an 'abc9_carry' input port but no output port.\n", log_id(box_module)); if (carry_in == IdString() && carry_out != IdString()) log_error("Module '%s' contains an 'abc9_carry' output port but no input port.\n", log_id(box_module)); if (carry_in != IdString()) { r.first->second.push_back(carry_in); r.first->second.push_back(carry_out); } } for (auto port_name : r.first->second) { auto w = box_module->wire(port_name); log_assert(w); auto rhs = cell->connections_.at(port_name, SigSpec()); rhs.append(Const(State::Sx, GetSize(w)-GetSize(rhs))); if (w->port_input) for (auto b : rhs) { SigBit I = sigmap(b); if (b == RTLIL::Sx) b = State::S0; else if (I != b) { if (I == RTLIL::Sx) alias_map[b] = State::S0; else alias_map[b] = I; } co_bits.emplace_back(b); unused_bits.erase(I); } if (w->port_output) for (const auto &b : rhs.bits()) { SigBit O = sigmap(b); if (O != b) alias_map[O] = b; ci_bits.emplace_back(b); undriven_bits.erase(O); // If PI and CI, then must be a (* keep *) wire if (input_bits.erase(O)) { log_assert(output_bits.count(O)); log_assert(O.wire->get_bool_attribute(ID::keep)); } } } // Connect .abc9_ff.Q (inserted by abc9_map.v) as the last input to the flop box if (box_module->get_bool_attribute("\\abc9_flop")) { SigSpec rhs = module->wire(stringf("%s.abc9_ff.Q", cell->name.c_str())); if (rhs.empty()) log_error("'%s.abc9_ff.Q' is not a wire present in module '%s'.\n", log_id(cell), log_id(module)); for (auto b : rhs) { SigBit I = sigmap(b); if (b == RTLIL::Sx) b = State::S0; else if (I != b) { if (I == RTLIL::Sx) alias_map[b] = State::S0; else alias_map[b] = I; } co_bits.emplace_back(b); unused_bits.erase(I); } } } for (auto bit : input_bits) undriven_bits.erase(bit); for (auto bit : output_bits) unused_bits.erase(sigmap(bit)); for (auto bit : unused_bits) undriven_bits.erase(bit); // Make all undriven bits a primary input for (auto bit : undriven_bits) { input_bits.insert(bit); undriven_bits.erase(bit); } if (holes_mode) { struct sort_by_port_id { bool operator()(const RTLIL::SigBit& a, const RTLIL::SigBit& b) const { return a.wire->port_id < b.wire->port_id || (a.wire->port_id == b.wire->port_id && a.offset < b.offset); } }; input_bits.sort(sort_by_port_id()); output_bits.sort(sort_by_port_id()); } aig_map[State::S0] = 0; aig_map[State::S1] = 1; for (const auto &bit : input_bits) { aig_m++, aig_i++; log_assert(!aig_map.count(bit)); aig_map[bit] = 2*aig_m; } for (const auto &i : ff_bits) { const Cell *cell = i.second; const SigBit &q = sigmap(cell->getPort("\\Q")); aig_m++, aig_i++; log_assert(!aig_map.count(q)); aig_map[q] = 2*aig_m; } for (auto &bit : ci_bits) { aig_m++, aig_i++; // 1'bx may exist here due to a box output // that has been padded to its full width if (bit == State::Sx) continue; log_assert(!aig_map.count(bit)); aig_map[bit] = 2*aig_m; } for (auto bit : co_bits) { ordered_outputs[bit] = aig_o++; aig_outputs.push_back(bit2aig(bit)); } for (const auto &bit : output_bits) { ordered_outputs[bit] = aig_o++; int aig; // Unlike bit2aig() which checks aig_map first, for // inout/keep bits, since aig_map will point to // the PI, first attempt to find the NOT/AND driver // before resorting to an aig_map lookup (which // could be another PO) if (input_bits.count(bit)) { if (not_map.count(bit)) { aig = bit2aig(not_map.at(bit)) ^ 1; } else if (and_map.count(bit)) { auto args = and_map.at(bit); int a0 = bit2aig(args.first); int a1 = bit2aig(args.second); aig = mkgate(a0, a1); } else aig = aig_map.at(bit); } else aig = bit2aig(bit); aig_outputs.push_back(aig); } for (auto &i : ff_bits) { const SigBit &d = i.first; aig_o++; aig_outputs.push_back(aig_map.at(d)); } } void write_aiger(std::ostream &f, bool ascii_mode) { int aig_obc = aig_o; int aig_obcj = aig_obc; int aig_obcjf = aig_obcj; log_assert(aig_m == aig_i + aig_l + aig_a); log_assert(aig_obcjf == GetSize(aig_outputs)); f << stringf("%s %d %d %d %d %d", ascii_mode ? "aag" : "aig", aig_m, aig_i, aig_l, aig_o, aig_a); f << stringf("\n"); if (ascii_mode) { for (int i = 0; i < aig_i; i++) f << stringf("%d\n", 2*i+2); for (int i = 0; i < aig_obc; i++) f << stringf("%d\n", aig_outputs.at(i)); for (int i = aig_obc; i < aig_obcj; i++) f << stringf("1\n"); for (int i = aig_obc; i < aig_obcj; i++) f << stringf("%d\n", aig_outputs.at(i)); for (int i = aig_obcj; i < aig_obcjf; i++) f << stringf("%d\n", aig_outputs.at(i)); for (int i = 0; i < aig_a; i++) f << stringf("%d %d %d\n", 2*(aig_i+aig_l+i)+2, aig_gates.at(i).first, aig_gates.at(i).second); } else { for (int i = 0; i < aig_obc; i++) f << stringf("%d\n", aig_outputs.at(i)); for (int i = aig_obc; i < aig_obcj; i++) f << stringf("1\n"); for (int i = aig_obc; i < aig_obcj; i++) f << stringf("%d\n", aig_outputs.at(i)); for (int i = aig_obcj; i < aig_obcjf; i++) f << stringf("%d\n", aig_outputs.at(i)); for (int i = 0; i < aig_a; i++) { int lhs = 2*(aig_i+aig_l+i)+2; int rhs0 = aig_gates.at(i).first; int rhs1 = aig_gates.at(i).second; int delta0 = lhs - rhs0; int delta1 = rhs0 - rhs1; aiger_encode(f, delta0); aiger_encode(f, delta1); } } f << "c"; auto write_buffer = [](std::stringstream &buffer, int i32) { int32_t i32_be = to_big_endian(i32); buffer.write(reinterpret_cast(&i32_be), sizeof(i32_be)); }; std::stringstream h_buffer; auto write_h_buffer = std::bind(write_buffer, std::ref(h_buffer), std::placeholders::_1); write_h_buffer(1); log_debug("ciNum = %d\n", GetSize(input_bits) + GetSize(ff_bits) + GetSize(ci_bits)); write_h_buffer(input_bits.size() + ff_bits.size() + ci_bits.size()); log_debug("coNum = %d\n", GetSize(output_bits) + GetSize(ff_bits) + GetSize(co_bits)); write_h_buffer(output_bits.size() + GetSize(ff_bits) + GetSize(co_bits)); log_debug("piNum = %d\n", GetSize(input_bits) + GetSize(ff_bits)); write_h_buffer(input_bits.size() + ff_bits.size()); log_debug("poNum = %d\n", GetSize(output_bits) + GetSize(ff_bits)); write_h_buffer(output_bits.size() + ff_bits.size()); log_debug("boxNum = %d\n", GetSize(box_list)); write_h_buffer(box_list.size()); auto write_buffer_float = [](std::stringstream &buffer, float f32) { buffer.write(reinterpret_cast(&f32), sizeof(f32)); }; std::stringstream i_buffer; auto write_i_buffer = std::bind(write_buffer_float, std::ref(i_buffer), std::placeholders::_1); for (auto bit : input_bits) write_i_buffer(arrival_times.at(bit, 0)); //std::stringstream o_buffer; //auto write_o_buffer = std::bind(write_buffer_float, std::ref(o_buffer), std::placeholders::_1); //for (auto bit : output_bits) // write_o_buffer(0); if (!box_list.empty() || !ff_bits.empty()) { RTLIL::Module *holes_module = module->design->module(stringf("%s$holes", module->name.c_str())); log_assert(holes_module); dict> cell_cache; int box_count = 0; for (auto cell : box_list) { log_assert(cell); RTLIL::Module* box_module = module->design->module(cell->type); log_assert(box_module); auto r = cell_cache.insert(cell->type); auto &v = r.first->second; if (r.second) { int box_inputs = 0, box_outputs = 0; for (auto port_name : box_module->ports) { RTLIL::Wire *w = box_module->wire(port_name); log_assert(w); if (w->port_input) box_inputs += GetSize(w); if (w->port_output) box_outputs += GetSize(w); } // For flops only, create an extra 1-bit input that drives a new wire // called ".abc9_ff.Q" that is used below if (box_module->get_bool_attribute("\\abc9_flop")) box_inputs++; std::get<0>(v) = box_inputs; std::get<1>(v) = box_outputs; std::get<2>(v) = box_module->attributes.at("\\abc9_box_id").as_int(); } write_h_buffer(std::get<0>(v)); write_h_buffer(std::get<1>(v)); write_h_buffer(std::get<2>(v)); write_h_buffer(box_count++); } std::stringstream r_buffer; auto write_r_buffer = std::bind(write_buffer, std::ref(r_buffer), std::placeholders::_1); log_debug("flopNum = %d\n", GetSize(ff_bits)); write_r_buffer(ff_bits.size()); std::stringstream s_buffer; auto write_s_buffer = std::bind(write_buffer, std::ref(s_buffer), std::placeholders::_1); write_s_buffer(ff_bits.size()); for (const auto &i : ff_bits) { const SigBit &d = i.first; const Cell *cell = i.second; int mergeability = cell->attributes.at(ID(abc9_mergeability)).as_int(); log_assert(mergeability > 0); write_r_buffer(mergeability); Const init = cell->attributes.at(ID(abc9_init)); log_assert(GetSize(init) == 1); if (init == State::S1) write_s_buffer(1); else if (init == State::S0) write_s_buffer(0); else { log_assert(init == State::Sx); write_s_buffer(0); } write_i_buffer(arrival_times.at(d, 0)); //write_o_buffer(0); } f << "r"; std::string buffer_str = r_buffer.str(); int32_t buffer_size_be = to_big_endian(buffer_str.size()); f.write(reinterpret_cast(&buffer_size_be), sizeof(buffer_size_be)); f.write(buffer_str.data(), buffer_str.size()); f << "s"; buffer_str = s_buffer.str(); buffer_size_be = to_big_endian(buffer_str.size()); f.write(reinterpret_cast(&buffer_size_be), sizeof(buffer_size_be)); f.write(buffer_str.data(), buffer_str.size()); if (holes_module) { std::stringstream a_buffer; XAigerWriter writer(holes_module, true /* holes_mode */); writer.write_aiger(a_buffer, false /*ascii_mode*/); f << "a"; std::string buffer_str = a_buffer.str(); int32_t buffer_size_be = to_big_endian(buffer_str.size()); f.write(reinterpret_cast(&buffer_size_be), sizeof(buffer_size_be)); f.write(buffer_str.data(), buffer_str.size()); } } f << "h"; std::string buffer_str = h_buffer.str(); int32_t buffer_size_be = to_big_endian(buffer_str.size()); f.write(reinterpret_cast(&buffer_size_be), sizeof(buffer_size_be)); f.write(buffer_str.data(), buffer_str.size()); f << "i"; buffer_str = i_buffer.str(); buffer_size_be = to_big_endian(buffer_str.size()); f.write(reinterpret_cast(&buffer_size_be), sizeof(buffer_size_be)); f.write(buffer_str.data(), buffer_str.size()); //f << "o"; //buffer_str = o_buffer.str(); //buffer_size_be = to_big_endian(buffer_str.size()); //f.write(reinterpret_cast(&buffer_size_be), sizeof(buffer_size_be)); //f.write(buffer_str.data(), buffer_str.size()); f << stringf("Generated by %s\n", yosys_version_str); module->design->scratchpad_set_int("write_xaiger.num_ands", and_map.size()); module->design->scratchpad_set_int("write_xaiger.num_wires", aig_map.size()); module->design->scratchpad_set_int("write_xaiger.num_inputs", input_bits.size()); module->design->scratchpad_set_int("write_xaiger.num_outputs", output_bits.size()); } void write_map(std::ostream &f) { dict input_lines; dict output_lines; for (auto wire : module->wires()) { SigSpec sig = sigmap(wire); for (int i = 0; i < GetSize(wire); i++) { RTLIL::SigBit b(wire, i); if (input_bits.count(b)) { int a = aig_map.at(b); log_assert((a & 1) == 0); input_lines[a] += stringf("input %d %d %s\n", (a >> 1)-1, i, log_id(wire)); } if (output_bits.count(b)) { int o = ordered_outputs.at(b); int init = 2; output_lines[o] += stringf("output %d %d %s %d\n", o - GetSize(co_bits), i, log_id(wire), init); continue; } } } input_lines.sort(); for (auto &it : input_lines) f << it.second; log_assert(input_lines.size() == input_bits.size()); int box_count = 0; for (auto cell : box_list) f << stringf("box %d %d %s\n", box_count++, 0, log_id(cell->name)); output_lines.sort(); for (auto &it : output_lines) f << it.second; log_assert(output_lines.size() == output_bits.size()); } }; struct XAigerBackend : public Backend { XAigerBackend() : Backend("xaiger", "write design to XAIGER file") { } void help() YS_OVERRIDE { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" write_xaiger [options] [filename]\n"); log("\n"); log("Write the top module (according to the (* top *) attribute or if only one module\n"); log("is currently selected) to an XAIGER file. Any non $_NOT_, $_AND_, $_ABC9_FF_, or"); log("non (* abc9_box_id *) cells will be converted into psuedo-inputs and\n"); log("pseudo-outputs. Whitebox contents will be taken from the '$holes'\n"); log("module, if it exists.\n"); log("\n"); log(" -ascii\n"); log(" write ASCII version of AIGER format\n"); log("\n"); log(" -map \n"); log(" write an extra file with port and box symbols\n"); log("\n"); } void execute(std::ostream *&f, std::string filename, std::vector args, RTLIL::Design *design) YS_OVERRIDE { bool ascii_mode = false; std::string map_filename; log_header(design, "Executing XAIGER backend.\n"); size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-ascii") { ascii_mode = true; continue; } if (map_filename.empty() && args[argidx] == "-map" && argidx+1 < args.size()) { map_filename = args[++argidx]; continue; } break; } extra_args(f, filename, args, argidx, !ascii_mode); Module *top_module = design->top_module(); if (top_module == nullptr) log_error("Can't find top module in current design!\n"); if (!design->selected_whole_module(top_module)) log_cmd_error("Can't handle partially selected module %s!\n", log_id(top_module)); if (!top_module->processes.empty()) log_error("Found unmapped processes in module %s: unmapped processes are not supported in XAIGER backend!\n", log_id(top_module)); if (!top_module->memories.empty()) log_error("Found unmapped memories in module %s: unmapped memories are not supported in XAIGER backend!\n", log_id(top_module)); XAigerWriter writer(top_module); writer.write_aiger(*f, ascii_mode); if (!map_filename.empty()) { std::ofstream mapf; mapf.open(map_filename.c_str(), std::ofstream::trunc); if (mapf.fail()) log_error("Can't open file `%s' for writing: %s\n", map_filename.c_str(), strerror(errno)); writer.write_map(mapf); } } } XAigerBackend; PRIVATE_NAMESPACE_END