#include "kernel/celltypes.h" #include "kernel/register.h" #include "kernel/rtlil.h" #include "kernel/sigtools.h" #include "kernel/consteval.h" #include "kernel/utils.h" #include USING_YOSYS_NAMESPACE YOSYS_NAMESPACE_BEGIN // return module's inputs in canonical order SigSpec module_inputs(Module *m) { SigSpec ret; for (auto port : m->ports) { Wire *w = m->wire(port); if (!w->port_input) continue; if (w->width != 1) log_error("Unsupported wide port (%s) of non-unit width found in module %s.\n", log_id(w), log_id(m)); ret.append(w); } return ret; } // return module's outputs in canonical order SigSpec module_outputs(Module *m) { SigSpec ret; for (auto port : m->ports) { Wire *w = m->wire(port); if (!w->port_output) continue; if (w->width != 1) log_error("Unsupported wide port (%s) of non-unit width found in module %s.\n", log_id(w), log_id(m)); ret.append(w); } return ret; } // Permute the inputs of a single-output k-LUT according to varmap uint64_t permute_lut(uint64_t lut, const std::vector &varmap) { int k = varmap.size(); uint64_t ret = 0; // Index j iterates over all bits in lut. // When (j & 1 << n) is true, // (lut & 1 << j) represents an output value where input var n is set. // We use this fact to permute the LUT such that // every variable n is remapped to varmap[n]. for (int j = 0; j < 1 << k; j++) { int m = 0; for (int l = 0; l < k; l++) if (j & 1 << l) m |= 1 << varmap[l]; if (lut & 1 << m) ret |= 1 << j; } return ret; } // Find the LUT with the minimum integer representation // such that it is a permutation of the given lut. // The resulting LUT becomes the "fingerprint" of the "permutation class". // This function checks all possible input permutations. uint64_t p_class(int k, uint64_t lut) { std::vector map; for (int j = 0; j < k; j++) map.push_back(j); uint64_t repr = ~(uint64_t) 0; std::vector repr_vars; while (true) { uint64_t perm = permute_lut(lut, map); if (perm <= repr) { repr = perm; repr_vars = map; } if (!std::next_permutation(map.begin(), map.end())) break; } return repr; } // Represent module m as N single-output k-LUTs // where k is the number of module inputs, // and N is the number of module outputs. bool derive_module_luts(Module *m, std::vector &luts) { CellTypes ff_types; ff_types.setup_stdcells_mem(); for (auto cell : m->cells()) { if (ff_types.cell_known(cell->type)) { log("Ignoring module '%s' which isn't purely combinational.\n", log_id(m)); return false; } } SigSpec inputs = module_inputs(m); SigSpec outputs = module_outputs(m); int ninputs = inputs.size(), noutputs = outputs.size(); if (ninputs > 6) { log_warning("Skipping module %s with more than 6 inputs bits.\n", log_id(m)); return false; } luts.clear(); luts.resize(noutputs); ConstEval ceval(m); for (int i = 0; i < 1 << ninputs; i++) { ceval.clear(); for (int j = 0; j < ninputs; j++) ceval.set(inputs[j], (i & (1 << j)) ? State::S1 : State::S0); for (int j = 0; j < noutputs; j++) { SigSpec bit = outputs[j]; if (!ceval.eval(bit)) { log("Failed to evaluate output '%s' in module '%s'.\n", log_signal(outputs[j]), log_id(m)); return false; } log_assert(ceval.eval(bit)); if (bit[0] == State::S1) luts[j] |= 1 << i; } } return true; } struct CellmatchPass : Pass { CellmatchPass() : Pass("cellmatch", "match cells to their targets in cell library") {} void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" cellmatch -lib [module selection]\n"); log("\n"); log("This pass identifies functionally equivalent counterparts between each of the\n"); log("selected modules and a module from the secondary design . For every such\n"); log("correspondence found, a techmap rule is generated for mapping instances of the\n"); log("former to instances of the latter. This techmap rule is saved in yet another\n"); log("design called '$cellmatch', which is created if non-existent.\n"); log("\n"); log("This pass restricts itself to combinational modules. Modules are functionally\n"); log("equivalent as long as their truth tables are identical upto a permutation of\n"); log("inputs and outputs. The supported number of inputs is limited to 6.\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *d) override { log_header(d, "Executing CELLMATCH pass. (match cells)\n"); size_t argidx; bool lut_attrs = false; Design *lib = NULL; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-lut_attrs") { // an undocumented debugging option lut_attrs = true; } else if (args[argidx] == "-lib" && argidx + 1 < args.size()) { if (!saved_designs.count(args[++argidx])) log_cmd_error("No design '%s' found!\n", args[argidx].c_str()); lib = saved_designs.at(args[argidx]); } else { break; } } extra_args(args, argidx, d); if (!lib && !lut_attrs) log_cmd_error("Missing required -lib option.\n"); struct Target { Module *module; std::vector luts; }; dict, std::vector> targets; if (lib) for (auto m : lib->modules()) { pool p_classes; // produce a fingerprint in p_classes int ninputs = module_inputs(m).size(); std::vector luts; if (!derive_module_luts(m, luts)) continue; for (auto lut : luts) p_classes.insert(p_class(ninputs, lut)); log_debug("Registered %s\n", log_id(m)); // save as a viable target targets[p_classes].push_back(Target{m, luts}); } auto r = saved_designs.emplace("$cellmatch", nullptr); if (r.second) r.first->second = new Design; Design *map_design = r.first->second; for (auto m : d->selected_whole_modules_warn()) { std::vector luts; if (!derive_module_luts(m, luts)) continue; SigSpec inputs = module_inputs(m); SigSpec outputs = module_outputs(m); if (lut_attrs) { int no = 0; for (auto bit : outputs) { log_assert(bit.is_wire()); bit.wire->attributes[ID(p_class)] = p_class(inputs.size(), luts[no]); bit.wire->attributes[ID(lut)] = luts[no++]; } } // fingerprint pool p_classes; for (auto lut : luts) p_classes.insert(p_class(inputs.size(), lut)); for (auto target : targets[p_classes]) { log_debug("Candidate %s for matching to %s\n", log_id(target.module), log_id(m)); SigSpec target_inputs = module_inputs(target.module); SigSpec target_outputs = module_outputs(target.module); if (target_inputs.size() != inputs.size()) continue; if (target_outputs.size() != outputs.size()) continue; std::vector input_map; for (int i = 0; i < inputs.size(); i++) input_map.push_back(i); bool found_match = false; // For each input_map while (!found_match) { std::vector output_map; for (int i = 0; i < outputs.size(); i++) output_map.push_back(i); // For each output_map while (!found_match) { int out_no = 0; bool match = true; for (auto lut : luts) { if (permute_lut(target.luts[output_map[out_no++]], input_map) != lut) { match = false; break; } } if (match) { log("Module %s matches %s\n", log_id(m), log_id(target.module)); // Add target.module to map_design ("$cellmatch") // as a techmap rule to match m and replace it with target.module Module *map = map_design->addModule(stringf("\\_60_%s_%s", log_id(m), log_id(target.module))); Cell *cell = map->addCell(ID::_TECHMAP_REPLACE_, target.module->name); map->attributes[ID(techmap_celltype)] = m->name.str(); for (int i = 0; i < outputs.size(); i++) { log_assert(outputs[i].is_wire()); Wire *w = map->addWire(outputs[i].wire->name, 1); w->port_id = outputs[i].wire->port_id; w->port_output = true; log_assert(target_outputs[output_map[i]].is_wire()); cell->setPort(target_outputs[output_map[i]].wire->name, w); } for (int i = 0; i < inputs.size(); i++) { log_assert(inputs[i].is_wire()); Wire *w = map->addWire(inputs[i].wire->name, 1); w->port_id = inputs[i].wire->port_id; w->port_input = true; log_assert(target_inputs[input_map[i]].is_wire()); cell->setPort(target_inputs[input_map[i]].wire->name, w); } map->fixup_ports(); found_match = true; } if (!std::next_permutation(output_map.begin(), output_map.end())) break; } if (!std::next_permutation(input_map.begin(), input_map.end())) break; } } } } } CellmatchPass; YOSYS_NAMESPACE_END