/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2022 Jannis Harder <jix@yosyshq.com> <me@jix.one> * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/celltypes.h" #include "kernel/ffinit.h" #include "kernel/ff.h" #include "kernel/modtools.h" #include "kernel/sigtools.h" #include "kernel/utils.h" #include "kernel/yosys.h" #include <deque> USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN struct XpropOptions { bool split_inputs = false; bool split_outputs = false; bool split_public = false; bool assume_encoding = false; bool assert_encoding = false; bool assume_def_inputs = false; bool required = false; bool formal = false; bool debug_asserts = false; }; struct XpropWorker { struct EncodedBit { SigBit is_0, is_1, is_x; bool driven; }; struct EncodedSig { SigSpec is_0, is_1, is_x; Module *module; void invert() { std::swap(is_0, is_1); } void auto_0() { connect_0(module->Not(NEW_ID, module->Or(NEW_ID, is_1, is_x))); } void auto_1() { connect_1(module->Not(NEW_ID, module->Or(NEW_ID, is_0, is_x))); } void auto_x() { connect_x(module->Not(NEW_ID, module->Or(NEW_ID, is_0, is_1))); } void connect_0(SigSpec sig) { module->connect(is_0, sig); } void connect_1(SigSpec sig) { module->connect(is_1, sig); } void connect_x(SigSpec sig) { module->connect(is_x, sig); } void connect_1_under_x(SigSpec sig) { connect_1(module->And(NEW_ID, sig, module->Not(NEW_ID, is_x))); } void connect_0_under_x(SigSpec sig) { connect_0(module->And(NEW_ID, sig, module->Not(NEW_ID, is_x))); } void connect_x_under_0(SigSpec sig) { connect_x(module->And(NEW_ID, sig, module->Not(NEW_ID, is_0))); } void connect_as_bool() { int width = GetSize(is_0); if (width <= 1) return; module->connect(is_0.extract(1, width - 1), Const(State::S1, width - 1)); module->connect(is_1.extract(1, width - 1), Const(State::S0, width - 1)); module->connect(is_x.extract(1, width - 1), Const(State::S0, width - 1)); is_0 = is_0[0]; is_1 = is_1[0]; is_x = is_x[0]; } int size() const { return is_0.size(); } }; Module *module; XpropOptions options; ModWalker modwalker; SigMap &sigmap; FfInitVals initvals; pool<SigBit> maybe_x_bits; dict<SigBit, EncodedBit> encoded_bits; pool<Cell *> pending_cells; std::deque<Cell *> pending_cell_queue; XpropWorker(Module *module, XpropOptions options) : module(module), options(options), modwalker(module->design), sigmap(modwalker.sigmap) { modwalker.setup(module); initvals.set(&modwalker.sigmap, module); maybe_x_bits.insert(State::Sx); for (auto cell : module->cells()) { pending_cells.insert(cell); pending_cell_queue.push_back(cell); } if (!options.assume_def_inputs) { for (auto port : module->ports) { auto wire = module->wire(port); if (wire->port_input) mark_maybe_x(SigSpec(wire)); } } } bool maybe_x(SigBit bit) { return maybe_x_bits.count(sigmap(bit)); } bool maybe_x(const SigSpec &sig) { for (auto bit : sig) if (maybe_x(bit)) return true; return false; } bool ports_maybe_x(Cell *cell) { for (auto &conn : cell->connections()) if (maybe_x(conn.second)) return true; return false; } bool inputs_maybe_x(Cell *cell) { for (auto &conn : cell->connections()) if (cell->input(conn.first) && maybe_x(conn.second)) return true; return false; } void mark_maybe_x(SigBit bit) { sigmap.apply(bit); if (!maybe_x_bits.insert(bit).second) return; auto it = modwalker.signal_consumers.find(bit); if (it == modwalker.signal_consumers.end()) return; for (auto &consumer : it->second) if (pending_cells.insert(consumer.cell).second) pending_cell_queue.push_back(consumer.cell); } void mark_maybe_x(const SigSpec &sig) { for (auto bit : sig) mark_maybe_x(bit); } void mark_outputs_maybe_x(Cell *cell) { for (auto &conn : cell->connections()) if (cell->output(conn.first)) mark_maybe_x(conn.second); } EncodedSig encoded(SigSpec sig, bool driving = false) { EncodedSig result; SigSpec invert; if (driving) result.module = module; int new_bits = 0; sigmap.apply(sig); for (auto bit : sig) { if (!bit.is_wire()) continue; else if (!maybe_x(bit) && !driving) invert.append(bit); else if (!encoded_bits.count(bit)) { new_bits += 1; encoded_bits.emplace(bit, { State::Sm, State::Sm, State::Sm, false }); } } if (!invert.empty() && !driving) invert = module->Not(NEW_ID, invert); EncodedSig new_sigs; if (new_bits > 0) { new_sigs.is_0 = module->addWire(NEW_ID, new_bits); new_sigs.is_1 = module->addWire(NEW_ID, new_bits); new_sigs.is_x = module->addWire(NEW_ID, new_bits); } int invert_pos = 0; int new_pos = 0; SigSpec driven_orig; EncodedSig driven_enc; SigSig driven_never_x; for (auto bit : sig) { if (!bit.is_wire()) { result.is_0.append(bit == State::S0 ? State::S1 : State::S0); result.is_1.append(bit == State::S1 ? State::S1 : State::S0); result.is_x.append(bit == State::Sx ? State::S1 : State::S0); continue; } else if (!maybe_x(bit) && !driving) { result.is_0.append(invert[invert_pos++]); result.is_1.append(bit); result.is_x.append(State::S0); continue; } auto &enc = encoded_bits.at(bit); if (enc.is_0 == State::Sm) { enc.is_0 = new_sigs.is_0[new_pos]; enc.is_1 = new_sigs.is_1[new_pos]; enc.is_x = new_sigs.is_x[new_pos]; new_pos++; } if (driving) { log_assert(!enc.driven); enc.driven = true; if (maybe_x(bit)) { driven_orig.append(bit); driven_enc.is_0.append(enc.is_0); driven_enc.is_1.append(enc.is_1); driven_enc.is_x.append(enc.is_x); } else { driven_never_x.first.append(bit); driven_never_x.second.append(enc.is_1); } } result.is_0.append(enc.is_0); result.is_1.append(enc.is_1); result.is_x.append(enc.is_x); } if (!driven_orig.empty()) { auto decoder = module->addBwmux(NEW_ID, driven_enc.is_1, Const(State::Sx, GetSize(driven_orig)), driven_enc.is_x, driven_orig); decoder->set_bool_attribute(ID::xprop_decoder); } if (!driven_never_x.first.empty()) { module->connect(driven_never_x); } if (driving && (options.assert_encoding || options.assume_encoding)) { auto not_0 = module->Not(NEW_ID, result.is_0); auto not_1 = module->Not(NEW_ID, result.is_1); auto not_x = module->Not(NEW_ID, result.is_x); auto valid = module->ReduceAnd(NEW_ID, { module->Eq(NEW_ID, result.is_0, module->And(NEW_ID, not_1, not_x)), module->Eq(NEW_ID, result.is_1, module->And(NEW_ID, not_0, not_x)), module->Eq(NEW_ID, result.is_x, module->And(NEW_ID, not_0, not_1)), }); if (options.assert_encoding) module->addAssert(NEW_ID_SUFFIX("xprop_enc"), valid, State::S1); else module->addAssume(NEW_ID_SUFFIX("xprop_enc"), valid, State::S1); if (options.debug_asserts) { auto bad_bits = module->Bweqx(NEW_ID, {result.is_0, result.is_1, result.is_x}, Const(State::Sx, GetSize(result) * 3)); module->addAssert(NEW_ID_SUFFIX("xprop_debug"), module->LogicNot(NEW_ID, bad_bits), State::S1); } } return result; } void mark_all_maybe_x() { while (!pending_cell_queue.empty()) { Cell *cell = pending_cell_queue.front(); pending_cell_queue.pop_front(); pending_cells.erase(cell); mark_maybe_x(cell); } } void mark_maybe_x(Cell *cell) { if (cell->type.in(ID($bweqx), ID($eqx), ID($nex), ID($initstate), ID($assert), ID($assume), ID($cover), ID($anyseq), ID($anyconst))) return; if (cell->type.in(ID($pmux))) { mark_outputs_maybe_x(cell); return; } if (RTLIL::builtin_ff_cell_types().count(cell->type) || cell->type == ID($anyinit)) { FfData ff(&initvals, cell); if (cell->type != ID($anyinit)) for (int i = 0; i < ff.width; i++) if (ff.val_init[i] == State::Sx) mark_maybe_x(ff.sig_q[i]); for (int i = 0; i < ff.width; i++) if (maybe_x(ff.sig_d[i])) mark_maybe_x(ff.sig_q[i]); if ((ff.has_clk || ff.has_gclk) && !ff.has_ce && !ff.has_aload && !ff.has_srst && !ff.has_arst && !ff.has_sr) return; } if (cell->type == ID($not)) { auto &sig_y = cell->getPort(ID::Y); auto sig_a = cell->getPort(ID::A); sig_a.extend_u0(GetSize(sig_y), cell->getParam(ID::A_SIGNED).as_bool()); for (int i = 0; i < GetSize(sig_y); i++) if (maybe_x(sig_a[i])) mark_maybe_x(sig_y[i]); return; } if (cell->type.in(ID($and), ID($or), ID($xor), ID($xnor))) { auto &sig_y = cell->getPort(ID::Y); auto sig_a = cell->getPort(ID::A); sig_a.extend_u0(GetSize(sig_y), cell->getParam(ID::A_SIGNED).as_bool()); auto sig_b = cell->getPort(ID::B); sig_b.extend_u0(GetSize(sig_y), cell->getParam(ID::B_SIGNED).as_bool()); for (int i = 0; i < GetSize(sig_y); i++) if (maybe_x(sig_a[i]) || maybe_x(sig_b[i])) mark_maybe_x(sig_y[i]); return; } if (cell->type.in(ID($bwmux))) { auto &sig_y = cell->getPort(ID::Y); auto &sig_a = cell->getPort(ID::A); auto &sig_b = cell->getPort(ID::B); auto &sig_s = cell->getPort(ID::S); for (int i = 0; i < GetSize(sig_y); i++) if (maybe_x(sig_a[i]) || maybe_x(sig_b[i]) || maybe_x(sig_s[i])) mark_maybe_x(sig_y[i]); return; } if (cell->type.in(ID($_MUX_), ID($mux), ID($bmux))) { auto &sig_y = cell->getPort(ID::Y); auto &sig_a = cell->getPort(ID::A); auto &sig_b = cell->getPort(ID::B); auto &sig_s = cell->getPort(ID::S); if (maybe_x(sig_s)) { mark_maybe_x(sig_y); return; } for (int i = 0; i < GetSize(sig_y); i++) { if (maybe_x(sig_a[i])) { mark_maybe_x(sig_y[i]); continue; } for (int j = i; j < GetSize(sig_b); j += GetSize(sig_y)) { if (maybe_x(sig_b[j])) { mark_maybe_x(sig_y[i]); break; } } } return; } if (cell->type.in(ID($demux))) { auto &sig_y = cell->getPort(ID::Y); auto &sig_a = cell->getPort(ID::A); auto &sig_s = cell->getPort(ID::S); if (maybe_x(sig_s)) { mark_maybe_x(sig_y); return; } for (int i = 0; i < GetSize(sig_a); i++) if (maybe_x(sig_a[i])) for (int j = i; j < GetSize(sig_y); j += GetSize(sig_a)) mark_maybe_x(sig_y[j]); return; } if (cell->type.in(ID($shl), ID($shr), ID($sshl), ID($sshr), ID($shift))) { auto &sig_b = cell->getPort(ID::B); auto &sig_y = cell->getPort(ID::Y); if (maybe_x(sig_b)) { mark_maybe_x(sig_y); return; } auto &sig_a = cell->getPort(ID::A); if (maybe_x(sig_a)) { // We could be more precise for shifts, but that's not required // for correctness, so let's keep it simple mark_maybe_x(sig_y); return; } return; } if (cell->type.in(ID($shiftx))) { auto &sig_b = cell->getPort(ID::B); auto &sig_y = cell->getPort(ID::Y); if (cell->getParam(ID::B_SIGNED).as_bool() || GetSize(sig_b) >= 30) { mark_maybe_x(sig_y); } else { int max_shift = (1 << GetSize(sig_b)) - 1; auto &sig_a = cell->getPort(ID::A); for (int i = 0; i < GetSize(sig_y); i++) if (i + max_shift >= GetSize(sig_a)) mark_maybe_x(sig_y[i]); } if (maybe_x(sig_b)) { mark_maybe_x(sig_y); return; } auto &sig_a = cell->getPort(ID::A); if (maybe_x(sig_a)) { // We could be more precise for shifts, but that's not required // for correctness, so let's keep it simple mark_maybe_x(sig_y); return; } return; } if (cell->type.in(ID($add), ID($sub), ID($mul), ID($neg))) { if (inputs_maybe_x(cell)) mark_outputs_maybe_x(cell); return; } if (cell->type.in(ID($div), ID($mod), ID($divfloor), ID($modfloor))) { mark_outputs_maybe_x(cell); return; } if (cell->type.in( ID($le), ID($lt), ID($ge), ID($gt), ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool), ID($logic_not), ID($logic_or), ID($logic_and), ID($eq), ID($ne), ID($_NOT_), ID($_AND_), ID($_NAND_), ID($_ANDNOT_), ID($_OR_), ID($_NOR_), ID($_ORNOT_), ID($_XOR_), ID($_XNOR_) )) { auto &sig_y = cell->getPort(ID::Y); if (inputs_maybe_x(cell)) mark_maybe_x(sig_y[0]); return; } log_warning("Unhandled cell %s (%s) during maybe-x marking\n", log_id(cell), log_id(cell->type)); mark_outputs_maybe_x(cell); } void process_cells() { for (auto cell : module->selected_cells()) process_cell(cell); } void process_cell(Cell *cell) { if (!ports_maybe_x(cell)) { if (cell->type == ID($bweq)) { auto sig_y = cell->getPort(ID::Y); auto sig_a = cell->getPort(ID::A); auto sig_b = cell->getPort(ID::B); auto name = cell->name; module->remove(cell); module->addXnor(name, sig_a, sig_b, sig_y); return; } if (cell->type.in(ID($nex), ID($eqx))) { auto sig_y = cell->getPort(ID::Y); auto sig_a = cell->getPort(ID::A); auto sig_b = cell->getPort(ID::B); auto name = cell->name; auto type = cell->type; module->remove(cell); if (type == ID($eqx)) module->addEq(name, sig_a, sig_b, sig_y); else module->addNe(name, sig_a, sig_b, sig_y); return; } return; } if (cell->type.in(ID($not), ID($_NOT_))) { auto &sig_y = cell->getPort(ID::Y); auto sig_a = cell->getPort(ID::A); if (cell->type == ID($not)) sig_a.extend_u0(GetSize(sig_y), cell->getParam(ID::A_SIGNED).as_bool()); auto enc_a = encoded(sig_a); auto enc_y = encoded(sig_y, true); enc_y.connect_x(enc_a.is_x); enc_y.connect_0(enc_a.is_1); enc_y.connect_1(enc_a.is_0); module->remove(cell); return; } if (cell->type.in(ID($and), ID($or), ID($_AND_), ID($_OR_), ID($_NAND_), ID($_NOR_), ID($_ANDNOT_), ID($_ORNOT_))) { auto &sig_y = cell->getPort(ID::Y); auto sig_a = cell->getPort(ID::A); auto sig_b = cell->getPort(ID::B); if (cell->type.in(ID($and), ID($or))) { sig_a.extend_u0(GetSize(sig_y), cell->getParam(ID::A_SIGNED).as_bool()); sig_b.extend_u0(GetSize(sig_y), cell->getParam(ID::B_SIGNED).as_bool()); } auto enc_a = encoded(sig_a); auto enc_b = encoded(sig_b); auto enc_y = encoded(sig_y, true); if (cell->type.in(ID($or), ID($_OR_), ID($_NOR_), ID($_ORNOT_))) enc_a.invert(), enc_b.invert(), enc_y.invert(); if (cell->type.in(ID($_NAND_), ID($_NOR_))) enc_y.invert(); if (cell->type.in(ID($_ANDNOT_), ID($_ORNOT_))) enc_b.invert(); enc_y.connect_0(module->Or(NEW_ID, enc_a.is_0, enc_b.is_0)); enc_y.connect_1(module->And(NEW_ID, enc_a.is_1, enc_b.is_1)); enc_y.auto_x(); module->remove(cell); return; } if (cell->type.in(ID($reduce_and), ID($reduce_or), ID($reduce_bool), ID($logic_not))) { auto &sig_y = cell->getPort(ID::Y); auto &sig_a = cell->getPort(ID::A); auto enc_a = encoded(sig_a); auto enc_y = encoded(sig_y, true); enc_y.connect_as_bool(); if (cell->type.in(ID($reduce_or), ID($reduce_bool))) enc_a.invert(), enc_y.invert(); if (cell->type == ID($logic_not)) enc_a.invert(); enc_y.connect_0(module->ReduceOr(NEW_ID, enc_a.is_0)); enc_y.connect_1(module->ReduceAnd(NEW_ID, enc_a.is_1)); enc_y.auto_x(); module->remove(cell); return; } if (cell->type.in(ID($reduce_xor), ID($reduce_xnor))) { auto &sig_y = cell->getPort(ID::Y); auto &sig_a = cell->getPort(ID::A); auto enc_a = encoded(sig_a); auto enc_y = encoded(sig_y, true); enc_y.connect_as_bool(); if (cell->type == ID($reduce_xnor)) enc_y.invert(); enc_y.connect_x(module->ReduceOr(NEW_ID, enc_a.is_x)); enc_y.connect_1_under_x(module->ReduceXor(NEW_ID, enc_a.is_1)); enc_y.auto_0(); module->remove(cell); return; } if (cell->type.in(ID($logic_and), ID($logic_or))) { auto &sig_y = cell->getPort(ID::Y); auto &sig_a = cell->getPort(ID::A); auto &sig_b = cell->getPort(ID::B); auto enc_a = encoded(sig_a); auto enc_b = encoded(sig_b); auto enc_y = encoded(sig_y, true); enc_y.connect_as_bool(); auto a_is_1 = module->ReduceOr(NEW_ID, enc_a.is_1); auto a_is_0 = module->ReduceAnd(NEW_ID, enc_a.is_0); auto b_is_1 = module->ReduceOr(NEW_ID, enc_b.is_1); auto b_is_0 = module->ReduceAnd(NEW_ID, enc_b.is_0); if (cell->type == ID($logic_or)) enc_y.invert(), std::swap(a_is_0, a_is_1), std::swap(b_is_0, b_is_1); enc_y.connect_0(module->Or(NEW_ID, a_is_0, b_is_0)); enc_y.connect_1(module->And(NEW_ID, a_is_1, b_is_1)); enc_y.auto_x(); module->remove(cell); return; } if (cell->type.in(ID($xor), ID($xnor), ID($_XOR_), ID($_XNOR_))) { auto &sig_y = cell->getPort(ID::Y); auto sig_a = cell->getPort(ID::A); auto sig_b = cell->getPort(ID::B); if (cell->type.in(ID($xor), ID($xnor))) { sig_a.extend_u0(GetSize(sig_y), cell->getParam(ID::A_SIGNED).as_bool()); sig_b.extend_u0(GetSize(sig_y), cell->getParam(ID::B_SIGNED).as_bool()); } auto enc_a = encoded(sig_a); auto enc_b = encoded(sig_b); auto enc_y = encoded(sig_y, true); if (cell->type.in(ID($xnor), ID($_XNOR_))) enc_y.invert(); enc_y.connect_x(module->Or(NEW_ID, enc_a.is_x, enc_b.is_x)); enc_y.connect_1_under_x(module->Xor(NEW_ID, enc_a.is_1, enc_b.is_1)); enc_y.auto_0(); module->remove(cell); return; } if (cell->type.in(ID($eq), ID($ne))) { auto &sig_y = cell->getPort(ID::Y); auto sig_a = cell->getPort(ID::A); auto sig_b = cell->getPort(ID::B); int width = std::max(GetSize(sig_a), GetSize(sig_b)); sig_a.extend_u0(width, cell->getParam(ID::A_SIGNED).as_bool()); sig_b.extend_u0(width, cell->getParam(ID::B_SIGNED).as_bool()); auto enc_a = encoded(sig_a); auto enc_b = encoded(sig_b); auto enc_y = encoded(sig_y, true); enc_y.connect_as_bool(); if (cell->type == ID($ne)) enc_y.invert(); auto delta = module->Xor(NEW_ID, enc_a.is_1, enc_b.is_1); auto xpos = module->Or(NEW_ID, enc_a.is_x, enc_b.is_x); enc_y.connect_0(module->ReduceOr(NEW_ID, module->And(NEW_ID, delta, module->Not(NEW_ID, xpos)))); enc_y.connect_x_under_0(module->ReduceOr(NEW_ID, xpos)); enc_y.auto_1(); module->remove(cell); return; } if (cell->type.in(ID($eqx), ID($nex))) { auto &sig_y = cell->getPort(ID::Y); auto sig_a = cell->getPort(ID::A); auto sig_b = cell->getPort(ID::B); int width = std::max(GetSize(sig_a), GetSize(sig_b)); sig_a.extend_u0(width, cell->getParam(ID::A_SIGNED).as_bool()); sig_b.extend_u0(width, cell->getParam(ID::B_SIGNED).as_bool()); auto enc_a = encoded(sig_a); auto enc_b = encoded(sig_b); auto delta_0 = module->Xnor(NEW_ID, enc_a.is_0, enc_b.is_0); auto delta_1 = module->Xnor(NEW_ID, enc_a.is_1, enc_b.is_1); auto eq = module->ReduceAnd(NEW_ID, {delta_0, delta_1}); auto res = cell->type == ID($nex) ? module->Not(NEW_ID, eq) : eq; module->connect(sig_y[0], res); if (GetSize(sig_y) > 1) module->connect(sig_y.extract(1, GetSize(sig_y) - 1), Const(State::S0, GetSize(sig_y) - 1)); module->remove(cell); return; } if (cell->type.in(ID($bweqx))) { auto &sig_y = cell->getPort(ID::Y); auto &sig_a = cell->getPort(ID::A); auto &sig_b = cell->getPort(ID::B); auto enc_a = encoded(sig_a); auto enc_b = encoded(sig_b); auto delta_0 = module->Xnor(NEW_ID, enc_a.is_0, enc_b.is_0); auto delta_1 = module->Xnor(NEW_ID, enc_a.is_1, enc_b.is_1); module->addAnd(NEW_ID, delta_0, delta_1, sig_y); module->remove(cell); return; } if (cell->type.in(ID($_MUX_), ID($mux), ID($bwmux))) { auto &sig_y = cell->getPort(ID::Y); auto &sig_a = cell->getPort(ID::A); auto &sig_b = cell->getPort(ID::B); auto sig_s = cell->getPort(ID::S); if (cell->type == ID($mux)) sig_s = SigSpec(sig_s[0], GetSize(sig_y)); auto enc_a = encoded(sig_a); auto enc_b = encoded(sig_b); auto enc_s = encoded(sig_s); auto enc_y = encoded(sig_y, true); enc_y.connect_1(module->And(NEW_ID, module->Or(NEW_ID, enc_a.is_1, enc_s.is_1), module->Or(NEW_ID, enc_b.is_1, enc_s.is_0))); enc_y.connect_0(module->And(NEW_ID, module->Or(NEW_ID, enc_a.is_0, enc_s.is_1), module->Or(NEW_ID, enc_b.is_0, enc_s.is_0))); enc_y.auto_x(); module->remove(cell); return; } if (cell->type.in(ID($pmux))) { auto &sig_y = cell->getPort(ID::Y); auto &sig_a = cell->getPort(ID::A); auto &sig_b = cell->getPort(ID::B); auto &sig_s = cell->getPort(ID::S); auto enc_a = encoded(sig_a); auto enc_b = encoded(sig_b); auto enc_s = encoded(sig_s); auto enc_y = encoded(sig_y, true); int width = GetSize(enc_y); auto all_x = module->ReduceOr(NEW_ID, { enc_s.is_x, module->And(NEW_ID, enc_s.is_1, module->Sub(NEW_ID, enc_s.is_1, Const(1, width))) }); auto selected = enc_a; for (int i = 0; i < GetSize(enc_s); i++) { auto sel_bit = enc_s.is_1[i]; selected.is_0 = module->Mux(NEW_ID, selected.is_0, enc_b.is_0.extract(i * width, width), sel_bit); selected.is_1 = module->Mux(NEW_ID, selected.is_1, enc_b.is_1.extract(i * width, width), sel_bit); selected.is_x = module->Mux(NEW_ID, selected.is_x, enc_b.is_x.extract(i * width, width), sel_bit); } enc_y.connect_0(module->Mux(NEW_ID, selected.is_0, Const(State::S0, width), all_x)); enc_y.connect_1(module->Mux(NEW_ID, selected.is_1, Const(State::S0, width), all_x)); enc_y.connect_x(module->Mux(NEW_ID, selected.is_x, Const(State::S1, width), all_x)); module->remove(cell); return; } if (cell->type.in(ID($shl), ID($shr), ID($sshl), ID($sshr), ID($shift), ID($shiftx))) { auto &sig_y = cell->getPort(ID::Y); auto &sig_a = cell->getPort(ID::A); auto &sig_b = cell->getPort(ID::B); auto enc_a = encoded(sig_a); auto enc_b = encoded(sig_b); auto enc_y = encoded(sig_y, true); auto all_x = module->ReduceOr(NEW_ID, enc_b.is_x)[0]; auto not_all_x = module->Not(NEW_ID, all_x)[0]; SigSpec y_not_0 = module->addWire(NEW_ID, GetSize(sig_y)); SigSpec y_1 = module->addWire(NEW_ID, GetSize(sig_y)); SigSpec y_x = module->addWire(NEW_ID, GetSize(sig_y)); auto encoded_type = cell->type == ID($shiftx) ? ID($shift) : cell->type; if (cell->type == ID($shiftx)) { std::swap(enc_a.is_0, enc_a.is_x); } auto shift_0 = module->addCell(NEW_ID, encoded_type); shift_0->parameters = cell->parameters; shift_0->setPort(ID::A, module->Not(NEW_ID, enc_a.is_0)); shift_0->setPort(ID::B, enc_b.is_1); shift_0->setPort(ID::Y, y_not_0); auto shift_1 = module->addCell(NEW_ID, encoded_type); shift_1->parameters = cell->parameters; shift_1->setPort(ID::A, enc_a.is_1); shift_1->setPort(ID::B, enc_b.is_1); shift_1->setPort(ID::Y, y_1); auto shift_x = module->addCell(NEW_ID, encoded_type); shift_x->parameters = cell->parameters; shift_x->setPort(ID::A, enc_a.is_x); shift_x->setPort(ID::B, enc_b.is_1); shift_x->setPort(ID::Y, y_x); SigSpec y_0 = module->Not(NEW_ID, y_not_0); if (cell->type == ID($shiftx)) std::swap(y_0, y_x); enc_y.connect_0(module->And(NEW_ID, y_0, SigSpec(not_all_x, GetSize(sig_y)))); enc_y.connect_1(module->And(NEW_ID, y_1, SigSpec(not_all_x, GetSize(sig_y)))); enc_y.connect_x(module->Or(NEW_ID, y_x, SigSpec(all_x, GetSize(sig_y)))); module->remove(cell); return; } if (cell->type.in(ID($ff))) { auto &sig_d = cell->getPort(ID::D); auto &sig_q = cell->getPort(ID::Q); auto init_q = initvals(sig_q); auto init_q_is_1 = init_q; auto init_q_is_x = init_q; for (auto &bit : init_q_is_1.bits()) bit = bit == State::S1 ? State::S1 : State::S0; for (auto &bit : init_q_is_x.bits()) bit = bit == State::Sx ? State::S1 : State::S0; initvals.remove_init(sig_q); auto enc_d = encoded(sig_d); auto enc_q = encoded(sig_q, true); auto data_q = module->addWire(NEW_ID, GetSize(sig_q)); module->addFf(NEW_ID, enc_d.is_1, data_q); module->addFf(NEW_ID, enc_d.is_x, enc_q.is_x); initvals.set_init(data_q, init_q_is_1); initvals.set_init(enc_q.is_x, init_q_is_x); enc_q.connect_1_under_x(data_q); enc_q.auto_0(); module->remove(cell); return; } if (RTLIL::builtin_ff_cell_types().count(cell->type) || cell->type == ID($anyinit)) { FfData ff(&initvals, cell); if ((ff.has_clk || ff.has_gclk) && !ff.has_ce && !ff.has_aload && !ff.has_srst && !ff.has_arst && !ff.has_sr) { if (ff.has_clk && maybe_x(ff.sig_clk)) { log_warning("Only non-x CLK inputs are currently supported for %s (%s)\n", log_id(cell), log_id(cell->type)); } else { auto init_q = ff.val_init; auto init_q_is_1 = init_q; auto init_q_is_x = init_q; if (ff.is_anyinit) { for (auto &bit : init_q_is_1.bits()) bit = State::Sx; for (auto &bit : init_q_is_x.bits()) bit = State::S0; } else { for (auto &bit : init_q_is_1.bits()) bit = bit == State::S1 ? State::S1 : State::S0; for (auto &bit : init_q_is_x.bits()) bit = bit == State::Sx ? State::S1 : State::S0; } ff.remove(); auto enc_d = encoded(ff.sig_d); auto enc_q = encoded(ff.sig_q, true); auto data_q = module->addWire(NEW_ID, GetSize(ff.sig_q)); ff.sig_d = enc_d.is_1; ff.sig_q = data_q; ff.val_init = init_q_is_1; ff.emit(); ff.name = NEW_ID; ff.cell = nullptr; ff.sig_d = enc_d.is_x; ff.sig_q = enc_q.is_x; ff.is_anyinit = false; ff.val_init = init_q_is_x; ff.emit(); enc_q.connect_1_under_x(data_q); enc_q.auto_0(); return; } } else { log_warning("Unhandled FF-cell %s (%s), consider running clk2fflogic, async2sync and/or dffunmap\n", log_id(cell), log_id(cell->type)); } } // Celltypes where any input x bit makes the whole output x if (cell->type.in( ID($neg), ID($le), ID($lt), ID($ge), ID($gt), ID($add), ID($sub), ID($mul), ID($div), ID($mod), ID($divfloor), ID($modfloor) )) { SigSpec inbits_x; for (auto &conn : cell->connections()) { if (cell->input(conn.first)) { auto enc_port = encoded(conn.second); inbits_x.append(enc_port.is_x); cell->setPort(conn.first, enc_port.is_1); } } if (cell->type.in(ID($div), ID($mod), ID($divfloor), ID($modfloor))) { auto sig_b = cell->getPort(ID::B); auto invalid = module->LogicNot(NEW_ID, sig_b); inbits_x.append(invalid); sig_b[0] = module->Or(NEW_ID, sig_b[0], invalid); cell->setPort(ID::B, sig_b); } SigBit outbits_x = (GetSize(inbits_x) == 1 ? inbits_x : module->ReduceOr(NEW_ID, inbits_x)); bool bool_out = cell->type.in(ID($le), ID($lt), ID($ge), ID($gt)); for (auto &conn : cell->connections()) { if (cell->output(conn.first)) { auto enc_port = encoded(conn.second, true); if (bool_out) enc_port.connect_as_bool(); SigSpec new_output = module->addWire(NEW_ID, GetSize(conn.second)); enc_port.connect_1_under_x(bool_out ? new_output.extract(0) : new_output); enc_port.connect_x(SigSpec(outbits_x, GetSize(enc_port))); enc_port.auto_0(); cell->setPort(conn.first, new_output); } } return; } if (cell->type == ID($bmux)) // TODO might want to support bmux natively anyway log("Running 'bmuxmap' preserves x-propagation and can be run before 'xprop'.\n"); if (cell->type == ID($demux)) // TODO might want to support demux natively anyway log("Running 'demuxmap' preserves x-propagation and can be run before 'xprop'.\n"); if (options.required) log_error("Unhandled cell %s (%s)\n", log_id(cell), log_id(cell->type)); else log_warning("Unhandled cell %s (%s)\n", log_id(cell), log_id(cell->type)); } void split_ports() { if (!options.split_inputs && !options.split_outputs) return; int port_id = 1; for (auto port : module->ports) { auto wire = module->wire(port); if (module->design->selected(module, wire)) { if (wire->port_input == wire->port_output) { log_warning("Port %s not an input or an output port which is not supported by xprop\n", log_id(wire)); } else if ((options.split_inputs && !options.assume_def_inputs && wire->port_input) || (options.split_outputs && wire->port_output)) { auto port_d = module->uniquify(stringf("%s_d", port.c_str())); auto port_x = module->uniquify(stringf("%s_x", port.c_str())); auto wire_d = module->addWire(port_d, GetSize(wire)); auto wire_x = module->addWire(port_x, GetSize(wire)); wire_d->port_input = wire->port_input; wire_d->port_output = wire->port_output; wire_d->port_id = port_id++; wire_x->port_input = wire->port_input; wire_x->port_output = wire->port_output; wire_x->port_id = port_id++; if (wire->port_output) { auto enc = encoded(wire); module->connect(wire_d, enc.is_1); module->connect(wire_x, enc.is_x); if (options.split_public) { // Need to hide the original wire so split_public doesn't try to split it again module->rename(wire, NEW_ID_SUFFIX(wire->name.c_str())); } } else { auto enc = encoded(wire, true); enc.connect_x(wire_x); enc.connect_1_under_x(wire_d); enc.auto_0(); } wire->port_input = wire->port_output = false; wire->port_id = 0; continue; } } wire->port_id = port_id++; } module->fixup_ports(); } void split_public() { if (!options.split_public) return; for (auto wire : module->selected_wires()) { if (wire->port_input || wire->port_output || !wire->name.isPublic()) continue; int index_d = 0; int index_x = 0; auto name_d = module->uniquify(stringf("%s_d", wire->name.c_str()), index_d); auto name_x = module->uniquify(stringf("%s_x", wire->name.c_str()), index_x); auto hdlname = wire->get_hdlname_attribute(); auto wire_d = module->addWire(name_d, GetSize(wire)); auto wire_x = module->addWire(name_x, GetSize(wire)); if (!hdlname.empty()) { auto hdlname_d = hdlname; auto hdlname_x = hdlname; hdlname_d.back() += index_d ? stringf("_d_%d", index_d) : "_d"; hdlname_x.back() += index_x ? stringf("_x_%d", index_x) : "_x"; wire_d->set_hdlname_attribute(hdlname_d); wire_x->set_hdlname_attribute(hdlname_x); } auto enc = encoded(wire); module->connect(wire_d, enc.is_1); module->connect(wire_x, enc.is_x); module->rename(wire, NEW_ID_SUFFIX(wire->name.c_str())); } } void encode_remaining() { pool<Wire *> enc_undriven_wires; for (auto &enc_bit : encoded_bits) { if (!enc_bit.second.driven) { log_assert(enc_bit.first.is_wire()); enc_undriven_wires.insert(enc_bit.first.wire); } } if (options.formal && !enc_undriven_wires.empty()) { for (auto &bit : enc_undriven_wires) log_warning("Found encoded wire %s having a non-encoded driver\n", log_signal(bit)); log_error("Found encoded wires having a non-encoded driver, not allowed in -formal mode\n"); } for (auto wire : enc_undriven_wires) { SigSpec sig(sigmap(wire)); SigSpec orig; EncodedSig enc; for (auto bit : sig) { auto it = encoded_bits.find(bit); if (it == encoded_bits.end() || it->second.driven) continue; orig.append(bit); enc.is_0.append(it->second.is_0); enc.is_1.append(it->second.is_1); enc.is_x.append(it->second.is_x); it->second.driven = true; } module->addBweqx(NEW_ID, orig, Const(State::S0, GetSize(orig)), enc.is_0); module->addBweqx(NEW_ID, orig, Const(State::S1, GetSize(orig)), enc.is_1); module->addBweqx(NEW_ID, orig, Const(State::Sx, GetSize(orig)), enc.is_x); } } }; struct XpropPass : public Pass { XpropPass() : Pass("xprop", "formal x propagation") {} void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" xprop [options] [selection]\n"); log("\n"); log("This pass transforms the circuit into an equivalent circuit that explicitly\n"); log("encodes the propagation of x values using purely 2-valued logic. On the\n"); log("interface between xprop-transformed and non-transformed parts of the design,\n"); log("appropriate conversions are inserted automatically.\n"); log("\n"); log(" -split-inputs\n"); log(" -split-outputs\n"); log(" -split-ports\n"); log(" Replace each input/output/port with two new ports, one carrying the\n"); log(" defined values (named <portname>_d) and one carrying the mask of which\n"); log(" bits are x (named <portname>_x). When a bit in the <portname>_x is set\n"); log(" the corresponding bit in <portname>_d is ignored for inputs and\n"); log(" guaranteed to be 0 for outputs.\n"); log("\n"); log(" -split-public\n"); log(" Replace each public non-port wire with two new wires, one carrying the\n"); log(" defined values (named <wirename>_d) and one carrying the mask of which\n"); log(" bits are x (named <wirename>_x). When a bit in the <portname>_x is set\n"); log(" the corresponding bit in <wirename>_d is guaranteed to be 0 for\n"); log(" outputs.\n"); log("\n"); log(" -assume-encoding\n"); log(" Add encoding invariants as assumptions. This can speed up formal\n"); log(" verification tasks.\n"); log("\n"); log(" -assert-encoding\n"); log(" Add encoding invariants as assertions. Used for testing the xprop\n"); log(" pass itself.\n"); log("\n"); log(" -assume-def-inputs\n"); log(" Assume all inputs are fully defined. This adds corresponding\n"); log(" assumptions to the design and uses these assumptions to optimize the\n"); log(" xprop encoding.\n"); log("\n"); log(" -required\n"); log(" Produce a runtime error if any encountered cell could not be encoded.\n"); log("\n"); log(" -formal\n"); log(" Produce a runtime error if any encoded cell uses a signal that is\n"); log(" neither known to be non-x nor driven by another encoded cell.\n"); log("\n"); log(" -debug-asserts\n"); log(" Add assertions checking that the encoding used by this pass never\n"); log(" produces x values within the encoded signals.\n"); log("\n"); } void execute(std::vector<std::string> args, RTLIL::Design *design) override { XpropOptions options; log_header(design, "Executing XPROP pass.\n"); size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-split-ports") { options.split_inputs = true; options.split_outputs = true; continue; } if (args[argidx] == "-split-inputs") { options.split_inputs = true; continue; } if (args[argidx] == "-split-outputs") { options.split_outputs = true; continue; } if (args[argidx] == "-split-public") { options.split_public = true; continue; } if (args[argidx] == "-assume-encoding") { options.assume_encoding = true; continue; } if (args[argidx] == "-assert-encoding") { options.assert_encoding = true; continue; } if (args[argidx] == "-assume-def-inputs") { options.assume_def_inputs = true; continue; } if (args[argidx] == "-required") { options.required = true; // TODO check more continue; } if (args[argidx] == "-formal") { options.formal = true; options.required = true; continue; } if (args[argidx] == "-debug-asserts") { // TODO documented options.debug_asserts = true; options.assert_encoding = true; continue; } break; } if (options.assert_encoding && options.assume_encoding) log_cmd_error("The options -assert-encoding and -assume-encoding are exclusive.\n"); extra_args(args, argidx, design); log_push(); Pass::call(design, "bmuxmap"); Pass::call(design, "demuxmap"); log_pop(); for (auto module : design->selected_modules()) { if (options.assume_def_inputs) { for (auto port : module->ports) { auto wire = module->wire(port); if (!module->design->selected(module, wire)) continue; if (wire->port_input) { module->addAssume(NEW_ID, module->Not(NEW_ID, module->ReduceOr(NEW_ID, module->Bweqx(NEW_ID, wire, Const(State::Sx, GetSize(wire))))), State::S1); } } } XpropWorker worker(module, options); log_debug("Marking all x-bits.\n"); worker.mark_all_maybe_x(); log_debug("Repalcing cells.\n"); worker.process_cells(); log_debug("Splitting ports.\n"); worker.split_ports(); log_debug("Splitting public signals.\n"); worker.split_public(); log_debug("Encode remaining signals.\n"); worker.encode_remaining(); } } } XpropPass; PRIVATE_NAMESPACE_END