`timescale 1ns/1ps module GP_2LUT(input IN0, IN1, output OUT); parameter [3:0] INIT = 0; assign OUT = INIT[{IN1, IN0}]; endmodule module GP_3LUT(input IN0, IN1, IN2, output OUT); parameter [7:0] INIT = 0; assign OUT = INIT[{IN2, IN1, IN0}]; endmodule module GP_4LUT(input IN0, IN1, IN2, IN3, output OUT); parameter [15:0] INIT = 0; assign OUT = INIT[{IN3, IN2, IN1, IN0}]; endmodule module GP_ABUF(input wire IN, output wire OUT); assign OUT = IN; //must be 1, 5, 20, 50 //values >1 only available with Vdd > 2.7V parameter BANDWIDTH_KHZ = 1; //cannot simulate mixed signal IP endmodule module GP_ACMP(input wire PWREN, input wire VIN, input wire VREF, output reg OUT); parameter BANDWIDTH = "HIGH"; parameter VIN_ATTEN = 1; parameter VIN_ISRC_EN = 0; parameter HYSTERESIS = 0; initial OUT = 0; //cannot simulate mixed signal IP endmodule module GP_BANDGAP(output reg OK); parameter AUTO_PWRDN = 1; parameter CHOPPER_EN = 1; parameter OUT_DELAY = 100; //cannot simulate mixed signal IP endmodule module GP_CLKBUF(input wire IN, output wire OUT); assign OUT = IN; endmodule module GP_COUNT8(input CLK, input wire RST, output reg OUT, output reg[7:0] POUT); parameter RESET_MODE = "RISING"; parameter COUNT_TO = 8'h1; parameter CLKIN_DIVIDE = 1; //more complex hard IP blocks are not supported for simulation yet reg[7:0] count = COUNT_TO; //Combinatorially output whenever we wrap low always @(*) begin OUT <= (count == 8'h0); OUT <= count; end //POR or SYSRST reset value is COUNT_TO. Datasheet is unclear but conversations w/ Silego confirm. //Runtime reset value is clearly 0 except in count/FSM cells where it's configurable but we leave at 0 for now. //Datasheet seems to indicate that reset is asynchronous, but for now we model as sync due to Yosys issues... always @(posedge CLK) begin count <= count - 1'd1; if(count == 0) count <= COUNT_TO; /* if((RESET_MODE == "RISING") && RST) count <= 0; if((RESET_MODE == "FALLING") && !RST) count <= 0; if((RESET_MODE == "BOTH") && RST) count <= 0; */ end endmodule module GP_COUNT14(input CLK, input wire RST, output reg OUT); parameter RESET_MODE = "RISING"; parameter COUNT_TO = 14'h1; parameter CLKIN_DIVIDE = 1; //more complex hard IP blocks are not supported for simulation yet endmodule module GP_COUNT8_ADV(input CLK, input RST, output reg OUT, input UP, input KEEP, output reg[7:0] POUT); parameter RESET_MODE = "RISING"; parameter RESET_VALUE = "ZERO"; parameter COUNT_TO = 8'h1; parameter CLKIN_DIVIDE = 1; //more complex hard IP blocks are not supported for simulation yet endmodule module GP_COUNT14_ADV(input CLK, input RST, output reg OUT, input UP, input KEEP, output reg[7:0] POUT); parameter RESET_MODE = "RISING"; parameter RESET_VALUE = "ZERO"; parameter COUNT_TO = 14'h1; parameter CLKIN_DIVIDE = 1; //more complex hard IP blocks are not supported for simulation yet endmodule module GP_DAC(input[7:0] DIN, input wire VREF, output reg VOUT); initial VOUT = 0; //analog hard IP is not supported for simulation endmodule module GP_DCMP(input[7:0] INP, input[7:0] INN, input CLK, input PWRDN, output reg GREATER, output reg EQUAL); parameter PWRDN_SYNC = 1'b0; parameter CLK_EDGE = "RISING"; parameter GREATER_OR_EQUAL = 1'b0; //TODO implement power-down mode initial GREATER = 0; initial EQUAL = 0; wire clk_minv = (CLK_EDGE == "RISING") ? CLK : ~CLK; always @(posedge clk_minv) begin if(GREATER_OR_EQUAL) GREATER <= (INP >= INN); else GREATER <= (INP > INN); EQUAL <= (INP == INN); end endmodule module GP_DCMPREF(output reg[7:0]OUT); parameter[7:0] REF_VAL = 8'h00; initial OUT = REF_VAL; endmodule module GP_DCMPMUX(input[1:0] SEL, input[7:0] IN0, input[7:0] IN1, input[7:0] IN2, input[7:0] IN3, output reg[7:0] OUTA, output reg[7:0] OUTB); always @(*) begin case(SEL) 2'd00: begin OUTA <= IN0; OUTB <= IN3; end 2'd01: begin OUTA <= IN1; OUTB <= IN2; end 2'd02: begin OUTA <= IN2; OUTB <= IN1; end 2'd03: begin OUTA <= IN3; OUTB <= IN0; end endcase end endmodule module GP_DELAY(input IN, output reg OUT); parameter DELAY_STEPS = 1; parameter GLITCH_FILTER = 0; initial OUT = 0; generate //TODO: These delays are PTV dependent! For now, hard code 3v3 timing //Change simulation-mode delay depending on global Vdd range (how to specify this?) always @(*) begin case(DELAY_STEPS) 1: #166 OUT = IN; 2: #318 OUT = IN; 2: #471 OUT = IN; 3: #622 OUT = IN; default: begin $display("ERROR: GP_DELAY must have DELAY_STEPS in range [1,4]"); $finish; end endcase end endgenerate endmodule module GP_DFF(input D, CLK, output reg Q); parameter [0:0] INIT = 1'bx; initial Q = INIT; always @(posedge CLK) begin Q <= D; end endmodule module GP_DFFI(input D, CLK, output reg nQ); parameter [0:0] INIT = 1'bx; initial nQ = INIT; always @(posedge CLK) begin nQ <= ~D; end endmodule module GP_DFFR(input D, CLK, nRST, output reg Q); parameter [0:0] INIT = 1'bx; initial Q = INIT; always @(posedge CLK, negedge nRST) begin if (!nRST) Q <= 1'b0; else Q <= D; end endmodule module GP_DFFRI(input D, CLK, nRST, output reg nQ); parameter [0:0] INIT = 1'bx; initial nQ = INIT; always @(posedge CLK, negedge nRST) begin if (!nRST) nQ <= 1'b1; else nQ <= ~D; end endmodule module GP_DFFS(input D, CLK, nSET, output reg Q); parameter [0:0] INIT = 1'bx; initial Q = INIT; always @(posedge CLK, negedge nSET) begin if (!nSET) Q <= 1'b1; else Q <= D; end endmodule module GP_DFFSI(input D, CLK, nSET, output reg nQ); parameter [0:0] INIT = 1'bx; initial nQ = INIT; always @(posedge CLK, negedge nSET) begin if (!nSET) nQ <= 1'b0; else nQ <= ~D; end endmodule module GP_DFFSR(input D, CLK, nSR, output reg Q); parameter [0:0] INIT = 1'bx; parameter [0:0] SRMODE = 1'bx; initial Q = INIT; always @(posedge CLK, negedge nSR) begin if (!nSR) Q <= SRMODE; else Q <= D; end endmodule module GP_DFFSRI(input D, CLK, nSR, output reg nQ); parameter [0:0] INIT = 1'bx; parameter [0:0] SRMODE = 1'bx; initial nQ = INIT; always @(posedge CLK, negedge nSR) begin if (!nSR) nQ <= ~SRMODE; else nQ <= ~D; end endmodule module GP_DLATCH(input D, input nCLK, output reg Q); parameter [0:0] INIT = 1'bx; initial Q = INIT; always @(*) begin if(!nCLK) Q <= D; end endmodule module GP_DLATCHI(input D, input nCLK, output reg nQ); parameter [0:0] INIT = 1'bx; initial nQ = INIT; always @(*) begin if(!nCLK) nQ <= ~D; end endmodule module GP_DLATCHR(input D, input nCLK, input nRST, output reg Q); parameter [0:0] INIT = 1'bx; initial Q = INIT; always @(*) begin if(!nRST) Q <= 1'b0; else if(!nCLK) Q <= D; end endmodule module GP_DLATCHRI(input D, input nCLK, input nRST, output reg nQ); parameter [0:0] INIT = 1'bx; initial nQ = INIT; always @(*) begin if(!nRST) nQ <= 1'b1; else if(!nCLK) nQ <= ~D; end endmodule module GP_DLATCHS(input D, input nCLK, input nSET, output reg Q); parameter [0:0] INIT = 1'bx; initial Q = INIT; always @(*) begin if(!nSET) Q <= 1'b1; else if(!nCLK) Q <= D; end endmodule module GP_DLATCHSI(input D, input nCLK, input nSET, output reg nQ); parameter [0:0] INIT = 1'bx; initial nQ = INIT; always @(*) begin if(!nSET) nQ <= 1'b0; else if(!nCLK) nQ <= ~D; end endmodule module GP_DLATCHSR(input D, input nCLK, input nSR, output reg Q); parameter [0:0] INIT = 1'bx; parameter[0:0] SRMODE = 1'bx; initial Q = INIT; always @(*) begin if(!nSR) Q <= SRMODE; else if(!nCLK) Q <= D; end endmodule module GP_DLATCHSRI(input D, input nCLK, input nSR, output reg nQ); parameter [0:0] INIT = 1'bx; parameter[0:0] SRMODE = 1'bx; initial nQ = INIT; always @(*) begin if(!nSR) nQ <= ~SRMODE; else if(!nCLK) nQ <= ~D; end endmodule module GP_EDGEDET(input IN, output reg OUT); parameter EDGE_DIRECTION = "RISING"; parameter DELAY_STEPS = 1; parameter GLITCH_FILTER = 0; //not implemented for simulation endmodule module GP_IBUF(input IN, output OUT); assign OUT = IN; endmodule module GP_IOBUF(input IN, input OE, output OUT, inout IO); assign OUT = IO; assign IO = OE ? IN : 1'bz; endmodule module GP_INV(input IN, output OUT); assign OUT = ~IN; endmodule module GP_LFOSC(input PWRDN, output reg CLKOUT); parameter PWRDN_EN = 0; parameter AUTO_PWRDN = 0; parameter OUT_DIV = 1; initial CLKOUT = 0; //auto powerdown not implemented for simulation //output dividers not implemented for simulation always begin if(PWRDN) CLKOUT = 0; else begin //half period of 1730 Hz #289017; CLKOUT = ~CLKOUT; end end endmodule module GP_OBUF(input IN, output OUT); assign OUT = IN; endmodule module GP_OBUFT(input IN, input OE, output OUT); assign OUT = OE ? IN : 1'bz; endmodule module GP_PGA(input wire VIN_P, input wire VIN_N, input wire VIN_SEL, output reg VOUT); parameter GAIN = 1; parameter INPUT_MODE = "SINGLE"; initial VOUT = 0; //cannot simulate mixed signal IP endmodule module GP_PGEN(input wire nRST, input wire CLK, output reg OUT); initial OUT = 0; parameter PATTERN_DATA = 16'h0; parameter PATTERN_LEN = 5'd16; reg[3:0] count = 0; always @(posedge CLK) begin if(!nRST) OUT <= PATTERN_DATA[0]; else begin count <= count + 1; OUT <= PATTERN_DATA[count]; if( (count + 1) == PATTERN_LEN) count <= 0; end end endmodule module GP_PWRDET(output reg VDD_LOW); initial VDD_LOW = 0; endmodule module GP_POR(output reg RST_DONE); parameter POR_TIME = 500; initial begin RST_DONE = 0; if(POR_TIME == 4) #4000; else if(POR_TIME == 500) #500000; else begin $display("ERROR: bad POR_TIME for GP_POR cell"); $finish; end RST_DONE = 1; end endmodule module GP_RCOSC(input PWRDN, output reg CLKOUT_HARDIP, output reg CLKOUT_FABRIC); parameter PWRDN_EN = 0; parameter AUTO_PWRDN = 0; parameter HARDIP_DIV = 1; parameter FABRIC_DIV = 1; parameter OSC_FREQ = "25k"; initial CLKOUT_HARDIP = 0; initial CLKOUT_FABRIC = 0; //output dividers not implemented for simulation //auto powerdown not implemented for simulation always begin if(PWRDN) begin CLKOUT_HARDIP = 0; CLKOUT_FABRIC = 0; end else begin if(OSC_FREQ == "25k") begin //half period of 25 kHz #20000; end else begin //half period of 2 MHz #250; end CLKOUT_HARDIP = ~CLKOUT_HARDIP; CLKOUT_FABRIC = ~CLKOUT_FABRIC; end end endmodule module GP_RINGOSC(input PWRDN, output reg CLKOUT_HARDIP, output reg CLKOUT_FABRIC); parameter PWRDN_EN = 0; parameter AUTO_PWRDN = 0; parameter HARDIP_DIV = 1; parameter FABRIC_DIV = 1; initial CLKOUT_HARDIP = 0; initial CLKOUT_FABRIC = 0; //output dividers not implemented for simulation //auto powerdown not implemented for simulation always begin if(PWRDN) begin CLKOUT_HARDIP = 0; CLKOUT_FABRIC = 0; end else begin //half period of 27 MHz #18.518; CLKOUT_HARDIP = ~CLKOUT_HARDIP; CLKOUT_FABRIC = ~CLKOUT_FABRIC; end end endmodule module GP_SHREG(input nRST, input CLK, input IN, output OUTA, output OUTB); parameter OUTA_TAP = 1; parameter OUTA_INVERT = 0; parameter OUTB_TAP = 1; reg[15:0] shreg = 0; always @(posedge CLK, negedge nRST) begin if(!nRST) shreg = 0; else shreg <= {shreg[14:0], IN}; end assign OUTA = (OUTA_INVERT) ? ~shreg[OUTA_TAP - 1] : shreg[OUTA_TAP - 1]; assign OUTB = shreg[OUTB_TAP - 1]; endmodule module GP_SPI( input SCK, inout SDAT, input CSN, input[7:0] TXD_HIGH, input[7:0] TXD_LOW, output reg[7:0] RXD_HIGH, output reg[7:0] RXD_LOW, output reg INT); initial DOUT_HIGH = 0; initial DOUT_LOW = 0; initial INT = 0; parameter DATA_WIDTH = 8; //byte or word width parameter SPI_CPHA = 0; //SPI clock phase parameter SPI_CPOL = 0; //SPI clock polarity parameter DIRECTION = "INPUT"; //SPI data direction (either input to chip or output to host) //parallel output to fabric not yet implemented //TODO: write sim model //TODO: SPI SDIO control... can we use ADC output while SPI is input?? //TODO: clock sync endmodule //keep constraint needed to prevent optimization since we have no outputs (* keep *) module GP_SYSRESET(input RST); parameter RESET_MODE = "EDGE"; parameter EDGE_SPEED = 4; //cannot simulate whole system reset endmodule module GP_VDD(output OUT); assign OUT = 1; endmodule module GP_VREF(input VIN, output reg VOUT); parameter VIN_DIV = 1; parameter VREF = 0; //cannot simulate mixed signal IP endmodule module GP_VSS(output OUT); assign OUT = 0; endmodule