/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Claire Xenia Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/yosys.h" #include "kernel/sigtools.h" #include "kernel/celltypes.h" #include "kernel/mem.h" #include "kernel/fstdata.h" #include "kernel/ff.h" #include "kernel/yw.h" #include "kernel/json.h" #include "kernel/fmt.h" #include USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN enum class SimulationMode { sim, cmp, gold, gate, }; static const std::map g_units = { { "", -9 }, // default is ns { "s", 0 }, { "ms", -3 }, { "us", -6 }, { "ns", -9 }, { "ps", -12 }, { "fs", -15 }, { "as", -18 }, { "zs", -21 }, }; static double stringToTime(std::string str) { if (str=="END") return -1; char *endptr; long value = strtol(str.c_str(), &endptr, 10); if (g_units.find(endptr)==g_units.end()) log_error("Cannot parse '%s', bad unit '%s'\n", str.c_str(), endptr); if (value < 0) log_error("Time value '%s' must be positive\n", str.c_str()); return value * pow(10.0, g_units.at(endptr)); } struct SimWorker; struct OutputWriter { OutputWriter(SimWorker *w) { worker = w;}; virtual ~OutputWriter() {}; virtual void write(std::map &use_signal) = 0; SimWorker *worker; }; struct SimInstance; struct TriggeredAssertion { int step; SimInstance *instance; Cell *cell; TriggeredAssertion(int step, SimInstance *instance, Cell *cell) : step(step), instance(instance), cell(cell) { } }; struct DisplayOutput { int step; SimInstance *instance; Cell *cell; std::string output; DisplayOutput(int step, SimInstance *instance, Cell *cell, std::string output) : step(step), instance(instance), cell(cell), output(output) { } }; struct SimShared { bool debug = false; bool verbose = true; bool hide_internal = true; bool writeback = false; bool zinit = false; bool hdlname = false; int rstlen = 1; FstData *fst = nullptr; double start_time = 0; double stop_time = -1; SimulationMode sim_mode = SimulationMode::sim; bool cycles_set = false; std::vector> outputfiles; std::vector>> output_data; bool ignore_x = false; bool date = false; bool multiclock = false; int next_output_id = 0; int step = 0; std::vector triggered_assertions; std::vector display_output; bool serious_asserts = false; bool fst_noinit = false; bool initstate = true; }; void zinit(State &v) { if (v != State::S1) v = State::S0; } void zinit(Const &v) { for (auto &bit : v.bits) zinit(bit); } struct SimInstance { SimShared *shared; std::string scope; Module *module; Cell *instance; SimInstance *parent; dict children; SigMap sigmap; dict state_nets; dict> upd_cells; dict> upd_outports; dict in_parent_drivers; dict clk2fflogic_drivers; pool dirty_bits; pool dirty_cells; pool dirty_memories; pool dirty_children; struct ff_state_t { Const past_d; Const past_ad; State past_clk; State past_ce; State past_srst; FfData data; }; struct mem_state_t { Mem *mem; std::vector past_wr_clk; std::vector past_wr_en; std::vector past_wr_addr; std::vector past_wr_data; Const data; }; struct print_state_t { bool initial_done; Const past_trg; Const past_en; Const past_args; Cell *cell; Fmt fmt; std::tuple _sort_label() const { return std::make_tuple( cell->getParam(ID::TRG_ENABLE).as_bool(), // Group by trigger cell->getPort(ID::TRG), cell->getParam(ID::TRG_POLARITY), -cell->getParam(ID::PRIORITY).as_int(), // Then sort by descending PRIORITY cell ); } bool operator<(const print_state_t &other) const { return _sort_label() < other._sort_label(); } }; dict ff_database; dict mem_database; pool formal_database; pool initstate_database; dict mem_cells; std::vector print_database; std::vector memories; dict> signal_database; dict>> trace_mem_database; dict, Const> trace_mem_init_database; dict fst_handles; dict fst_inputs; dict> fst_memories; SimInstance(SimShared *shared, std::string scope, Module *module, Cell *instance = nullptr, SimInstance *parent = nullptr) : shared(shared), scope(scope), module(module), instance(instance), parent(parent), sigmap(module) { log_assert(module); if (module->get_blackbox_attribute(true)) log_error("Cannot simulate blackbox module %s (instantiated at %s).\n", log_id(module->name), hiername().c_str()); if (module->has_processes()) log_error("Found processes in simulation hierarchy (in module %s at %s). Run 'proc' first.\n", log_id(module), hiername().c_str()); if (parent) { log_assert(parent->children.count(instance) == 0); parent->children[instance] = this; } for (auto wire : module->wires()) { SigSpec sig = sigmap(wire); for (int i = 0; i < GetSize(sig); i++) { if (state_nets.count(sig[i]) == 0) state_nets[sig[i]] = State::Sx; if (wire->port_output) { upd_outports[sig[i]].insert(wire); dirty_bits.insert(sig[i]); } } if ((shared->fst) && !(shared->hide_internal && wire->name[0] == '$')) { fstHandle id = shared->fst->getHandle(scope + "." + RTLIL::unescape_id(wire->name)); if (id==0 && wire->name.isPublic()) log_warning("Unable to find wire %s in input file.\n", (scope + "." + RTLIL::unescape_id(wire->name)).c_str()); fst_handles[wire] = id; } if (wire->attributes.count(ID::init)) { Const initval = wire->attributes.at(ID::init); for (int i = 0; i < GetSize(sig) && i < GetSize(initval); i++) if (initval[i] == State::S0 || initval[i] == State::S1) { state_nets[sig[i]] = initval[i]; dirty_bits.insert(sig[i]); } } if (wire->port_input && instance != nullptr && parent != nullptr) { for (int i = 0; i < GetSize(sig); i++) { if (instance->hasPort(wire->name)) in_parent_drivers.emplace(sig[i], parent->sigmap(instance->getPort(wire->name)[i])); } } } memories = Mem::get_all_memories(module); for (auto &mem : memories) { auto &mdb = mem_database[mem.memid]; mdb.mem = &mem; for (auto &port : mem.wr_ports) { mdb.past_wr_clk.push_back(Const(State::Sx)); mdb.past_wr_en.push_back(Const(State::Sx, GetSize(port.en))); mdb.past_wr_addr.push_back(Const(State::Sx, GetSize(port.addr))); mdb.past_wr_data.push_back(Const(State::Sx, GetSize(port.data))); } mdb.data = mem.get_init_data(); } for (auto cell : module->cells()) { Module *mod = module->design->module(cell->type); if (mod != nullptr) { dirty_children.insert(new SimInstance(shared, scope + "." + RTLIL::unescape_id(cell->name), mod, cell, this)); } for (auto &port : cell->connections()) { if (cell->input(port.first)) for (auto bit : sigmap(port.second)) { upd_cells[bit].insert(cell); // Make sure cell inputs connected to constants are updated in the first cycle if (bit.wire == nullptr) dirty_bits.insert(bit); } } if (RTLIL::builtin_ff_cell_types().count(cell->type) || cell->type == ID($anyinit)) { FfData ff_data(nullptr, cell); ff_state_t ff; ff.past_d = Const(State::Sx, ff_data.width); ff.past_ad = Const(State::Sx, ff_data.width); ff.past_clk = State::Sx; ff.past_ce = State::Sx; ff.past_srst = State::Sx; ff.data = ff_data; ff_database[cell] = ff; if (cell->get_bool_attribute(ID(clk2fflogic))) { for (int i = 0; i < ff_data.width; i++) clk2fflogic_drivers.emplace(sigmap(ff_data.sig_d[i]), sigmap(ff_data.sig_q[i])); } } if (cell->is_mem_cell()) { std::string name = cell->parameters.at(ID::MEMID).decode_string(); mem_cells[cell] = name; if (shared->fst) fst_memories[name] = shared->fst->getMemoryHandles(scope + "." + RTLIL::unescape_id(name)); } if (cell->type.in(ID($assert), ID($cover), ID($assume))) formal_database.insert(cell); if (cell->type == ID($initstate)) initstate_database.insert(cell); if (cell->type == ID($print)) { print_database.emplace_back(); auto &print = print_database.back(); print.cell = cell; print.fmt.parse_rtlil(cell); print.past_trg = Const(State::Sx, cell->getPort(ID::TRG).size()); print.past_args = Const(State::Sx, cell->getPort(ID::ARGS).size()); print.past_en = State::Sx; print.initial_done = false; } } std::sort(print_database.begin(), print_database.end()); if (shared->zinit) { for (auto &it : ff_database) { ff_state_t &ff = it.second; zinit(ff.past_d); zinit(ff.past_ad); SigSpec qsig = it.second.data.sig_q; Const qdata = get_state(qsig); zinit(qdata); set_state(qsig, qdata); } for (auto &it : mem_database) { mem_state_t &mem = it.second; for (auto &val : mem.past_wr_en) zinit(val); zinit(mem.data); } } } ~SimInstance() { for (auto child : children) delete child.second; } IdString name() const { if (instance != nullptr) return instance->name; return module->name; } std::string hiername() const { if (instance != nullptr) return parent->hiername() + "." + log_id(instance->name); return log_id(module->name); } vector witness_full_path() const { if (instance != nullptr) return parent->witness_full_path(instance); return vector(); } vector witness_full_path(Cell *cell) const { auto result = witness_full_path(); auto cell_path = witness_path(cell); result.insert(result.end(), cell_path.begin(), cell_path.end()); return result; } Const get_state(SigSpec sig) { Const value; for (auto bit : sigmap(sig)) if (bit.wire == nullptr) value.bits.push_back(bit.data); else if (state_nets.count(bit)) value.bits.push_back(state_nets.at(bit)); else value.bits.push_back(State::Sz); if (shared->debug) log("[%s] get %s: %s\n", hiername().c_str(), log_signal(sig), log_signal(value)); return value; } bool set_state(SigSpec sig, Const value) { bool did_something = false; sig = sigmap(sig); log_assert(GetSize(sig) <= GetSize(value)); for (int i = 0; i < GetSize(sig); i++) if (value[i] != State::Sa && state_nets.at(sig[i]) != value[i]) { state_nets.at(sig[i]) = value[i]; dirty_bits.insert(sig[i]); did_something = true; } if (shared->debug) log("[%s] set %s: %s\n", hiername().c_str(), log_signal(sig), log_signal(value)); return did_something; } void set_state_parent_drivers(SigSpec sig, Const value) { sigmap.apply(sig); for (int i = 0; i < GetSize(sig); i++) { auto sigbit = sig[i]; auto sigval = value[i]; auto clk2fflogic_driver = clk2fflogic_drivers.find(sigbit); if (clk2fflogic_driver != clk2fflogic_drivers.end()) sigbit = clk2fflogic_driver->second; auto in_parent_driver = in_parent_drivers.find(sigbit); if (in_parent_driver == in_parent_drivers.end()) set_state(sigbit, sigval); else parent->set_state_parent_drivers(in_parent_driver->second, sigval); } } void set_memory_state(IdString memid, Const addr, Const data) { set_memory_state(memid, addr.as_int(), data); } void set_memory_state(IdString memid, int addr, Const data) { auto &state = mem_database[memid]; bool dirty = false; int offset = (addr - state.mem->start_offset) * state.mem->width; for (int i = 0; i < GetSize(data); i++) if (0 <= i+offset && i+offset < state.mem->size * state.mem->width && data.bits[i] != State::Sa) if (state.data.bits[i+offset] != data.bits[i]) dirty = true, state.data.bits[i+offset] = data.bits[i]; if (dirty) dirty_memories.insert(memid); } void set_memory_state_bit(IdString memid, int offset, State data) { auto &state = mem_database[memid]; if (offset >= state.mem->size * state.mem->width) log_error("Addressing out of bounds bit %d/%d of memory %s\n", offset, state.mem->size * state.mem->width, log_id(memid)); if (state.data.bits[offset] != data) { state.data.bits[offset] = data; dirty_memories.insert(memid); } } void update_cell(Cell *cell) { if (ff_database.count(cell)) return; if (formal_database.count(cell)) return; if (mem_cells.count(cell)) { dirty_memories.insert(mem_cells[cell]); return; } if (children.count(cell)) { auto child = children.at(cell); for (auto &conn: cell->connections()) if (cell->input(conn.first) && GetSize(conn.second)) { Const value = get_state(conn.second); child->set_state(child->module->wire(conn.first), value); } dirty_children.insert(child); return; } if (yosys_celltypes.cell_evaluable(cell->type)) { RTLIL::SigSpec sig_a, sig_b, sig_c, sig_d, sig_s, sig_y; bool has_a, has_b, has_c, has_d, has_s, has_y; has_a = cell->hasPort(ID::A); has_b = cell->hasPort(ID::B); has_c = cell->hasPort(ID::C); has_d = cell->hasPort(ID::D); has_s = cell->hasPort(ID::S); has_y = cell->hasPort(ID::Y); if (has_a) sig_a = cell->getPort(ID::A); if (has_b) sig_b = cell->getPort(ID::B); if (has_c) sig_c = cell->getPort(ID::C); if (has_d) sig_d = cell->getPort(ID::D); if (has_s) sig_s = cell->getPort(ID::S); if (has_y) sig_y = cell->getPort(ID::Y); if (shared->debug) log("[%s] eval %s (%s)\n", hiername().c_str(), log_id(cell), log_id(cell->type)); // Simple (A -> Y) and (A,B -> Y) cells if (has_a && !has_c && !has_d && !has_s && has_y) { set_state(sig_y, CellTypes::eval(cell, get_state(sig_a), get_state(sig_b))); return; } // (A,B,C -> Y) cells if (has_a && has_b && has_c && !has_d && !has_s && has_y) { set_state(sig_y, CellTypes::eval(cell, get_state(sig_a), get_state(sig_b), get_state(sig_c))); return; } // (A,S -> Y) cells if (has_a && !has_b && !has_c && !has_d && has_s && has_y) { set_state(sig_y, CellTypes::eval(cell, get_state(sig_a), get_state(sig_s))); return; } // (A,B,S -> Y) cells if (has_a && has_b && !has_c && !has_d && has_s && has_y) { set_state(sig_y, CellTypes::eval(cell, get_state(sig_a), get_state(sig_b), get_state(sig_s))); return; } log_warning("Unsupported evaluable cell type: %s (%s.%s)\n", log_id(cell->type), log_id(module), log_id(cell)); return; } if (cell->type == ID($print)) return; log_error("Unsupported cell type: %s (%s.%s)\n", log_id(cell->type), log_id(module), log_id(cell)); } void update_memory(IdString id) { auto &mdb = mem_database[id]; auto &mem = *mdb.mem; for (int port_idx = 0; port_idx < GetSize(mem.rd_ports); port_idx++) { auto &port = mem.rd_ports[port_idx]; Const addr = get_state(port.addr); Const data = Const(State::Sx, mem.width << port.wide_log2); if (port.clk_enable) log_error("Memory %s.%s has clocked read ports. Run 'memory_nordff' to transform the circuit to remove those.\n", log_id(module), log_id(mem.memid)); if (addr.is_fully_def()) { int addr_int = addr.as_int(); int index = addr_int - mem.start_offset; if (index >= 0 && index < mem.size) data = mdb.data.extract(index*mem.width, mem.width << port.wide_log2); for (int offset = 0; offset < 1 << port.wide_log2; offset++) { register_memory_addr(id, addr_int + offset); } } set_state(port.data, data); } } void update_ph1() { pool queue_cells; pool queue_outports; queue_cells.swap(dirty_cells); while (1) { for (auto bit : dirty_bits) { if (upd_cells.count(bit)) for (auto cell : upd_cells.at(bit)) queue_cells.insert(cell); if (upd_outports.count(bit) && parent != nullptr) for (auto wire : upd_outports.at(bit)) queue_outports.insert(wire); } dirty_bits.clear(); if (!queue_cells.empty()) { for (auto cell : queue_cells) update_cell(cell); queue_cells.clear(); continue; } for (auto &memid : dirty_memories) update_memory(memid); dirty_memories.clear(); for (auto wire : queue_outports) if (instance->hasPort(wire->name)) { Const value = get_state(wire); parent->set_state(instance->getPort(wire->name), value); } queue_outports.clear(); for (auto child : dirty_children) child->update_ph1(); dirty_children.clear(); if (dirty_bits.empty()) break; } } bool update_ph2(bool gclk, bool stable_past_update = false) { bool did_something = false; for (auto &it : ff_database) { ff_state_t &ff = it.second; FfData &ff_data = ff.data; Const current_q = get_state(ff.data.sig_q); if (ff_data.has_clk && !stable_past_update) { // flip-flops State current_clk = get_state(ff_data.sig_clk)[0]; if (ff_data.pol_clk ? (ff.past_clk == State::S0 && current_clk != State::S0) : (ff.past_clk == State::S1 && current_clk != State::S1)) { bool ce = ff.past_ce == (ff_data.pol_ce ? State::S1 : State::S0); // set if no ce, or ce is enabled if (!ff_data.has_ce || (ff_data.has_ce && ce)) { current_q = ff.past_d; } // override if sync reset if ((ff_data.has_srst) && (ff.past_srst == (ff_data.pol_srst ? State::S1 : State::S0)) && ((!ff_data.ce_over_srst) || (ff_data.ce_over_srst && ce))) { current_q = ff_data.val_srst; } } } // async load if (ff_data.has_aload) { State current_aload = get_state(ff_data.sig_aload)[0]; if (current_aload == (ff_data.pol_aload ? State::S1 : State::S0)) { current_q = ff_data.has_clk && !stable_past_update ? ff.past_ad : get_state(ff.data.sig_ad); } } // async reset if (ff_data.has_arst) { State current_arst = get_state(ff_data.sig_arst)[0]; if (current_arst == (ff_data.pol_arst ? State::S1 : State::S0)) { current_q = ff_data.val_arst; } } // handle set/reset if (ff.data.has_sr) { Const current_clr = get_state(ff.data.sig_clr); Const current_set = get_state(ff.data.sig_set); for(int i=0;i= 0 && index < mem.size) for (int i = 0; i < (mem.width << port.wide_log2); i++) if (enable[i] == State::S1 && mdb.data.bits.at(index*mem.width+i) != data[i]) { mdb.data.bits.at(index*mem.width+i) = data[i]; dirty_memories.insert(mem.memid); did_something = true; } for (int i = 0; i < 1 << port.wide_log2; i++) register_memory_addr(it.first, addr_int + i); } } } for (auto it : children) if (it.second->update_ph2(gclk, stable_past_update)) { dirty_children.insert(it.second); did_something = true; } return did_something; } static void log_source(RTLIL::AttrObject *src) { for (auto src : src->get_strpool_attribute(ID::src)) log(" %s\n", src.c_str()); } void log_cell_w_hierarchy(std::string opening_verbiage, RTLIL::Cell *cell) { log_assert(cell->module == module); bool has_src = cell->has_attribute(ID::src); log("%s %s%s\n", opening_verbiage.c_str(), log_id(cell), has_src ? " at" : ""); log_source(cell); struct SimInstance *sim = this; while (sim->instance) { has_src = sim->instance->has_attribute(ID::src); log(" in instance %s of module %s%s\n", log_id(sim->instance), log_id(sim->instance->type), has_src ? " at" : ""); log_source(sim->instance); sim = sim->parent; } } void update_ph3(bool gclk_trigger) { for (auto &it : ff_database) { ff_state_t &ff = it.second; if (ff.data.has_aload) ff.past_ad = get_state(ff.data.sig_ad); if (ff.data.has_clk || ff.data.has_gclk) ff.past_d = get_state(ff.data.sig_d); if (ff.data.has_clk) ff.past_clk = get_state(ff.data.sig_clk)[0]; if (ff.data.has_ce) ff.past_ce = get_state(ff.data.sig_ce)[0]; if (ff.data.has_srst) ff.past_srst = get_state(ff.data.sig_srst)[0]; } for (auto &it : mem_database) { mem_state_t &mem = it.second; for (int i = 0; i < GetSize(mem.mem->wr_ports); i++) { auto &port = mem.mem->wr_ports[i]; mem.past_wr_clk[i] = get_state(port.clk); mem.past_wr_en[i] = get_state(port.en); mem.past_wr_addr[i] = get_state(port.addr); mem.past_wr_data[i] = get_state(port.data); } } // Do prints *before* assertions for (auto &print : print_database) { Cell *cell = print.cell; bool triggered = false; Const trg = get_state(cell->getPort(ID::TRG)); bool trg_en = cell->getParam(ID::TRG_ENABLE).as_bool(); Const en = get_state(cell->getPort(ID::EN)); Const args = get_state(cell->getPort(ID::ARGS)); bool sampled = trg_en && trg.size() > 0; if (sampled ? print.past_en.as_bool() : en.as_bool()) { if (sampled) { sampled = true; Const trg_pol = cell->getParam(ID::TRG_POLARITY); for (int i = 0; i < trg.size(); i++) { bool pol = trg_pol[i] == State::S1; State curr = trg[i], past = print.past_trg[i]; if (pol && curr == State::S1 && past == State::S0) triggered = true; if (!pol && curr == State::S0 && past == State::S1) triggered = true; } } else if (trg_en) { // initial $print (TRG width = 0, TRG_ENABLE = true) if (!print.initial_done && en != print.past_en) triggered = true; } else if (cell->get_bool_attribute(ID(trg_on_gclk))) { // unified $print for cycle based FV semantics triggered = gclk_trigger; } else { // always @(*) $print if (args != print.past_args || en != print.past_en) triggered = true; } if (triggered) { int pos = 0; for (auto &part : print.fmt.parts) { part.sig = (sampled ? print.past_args : args).extract(pos, part.sig.size()); pos += part.sig.size(); } std::string rendered = print.fmt.render(); log("%s", rendered.c_str()); shared->display_output.emplace_back(shared->step, this, cell, rendered); } } print.past_trg = trg; print.past_en = en; print.past_args = args; print.initial_done = true; } if (gclk_trigger) { for (auto cell : formal_database) { string label = log_id(cell); if (cell->attributes.count(ID::src)) label = cell->attributes.at(ID::src).decode_string(); State a = get_state(cell->getPort(ID::A))[0]; State en = get_state(cell->getPort(ID::EN))[0]; if (en == State::S1 && (cell->type == ID($cover) ? a == State::S1 : a != State::S1)) { shared->triggered_assertions.emplace_back(shared->step, this, cell); } if (cell->type == ID($cover) && en == State::S1 && a == State::S1) log("Cover %s.%s (%s) reached.\n", hiername().c_str(), log_id(cell), label.c_str()); if (cell->type == ID($assume) && en == State::S1 && a != State::S1) log("Assumption %s.%s (%s) failed.\n", hiername().c_str(), log_id(cell), label.c_str()); if (cell->type == ID($assert) && en == State::S1 && a != State::S1) { log_cell_w_hierarchy("Failed assertion", cell); if (shared->serious_asserts) log_error("Assertion %s.%s (%s) failed.\n", hiername().c_str(), log_id(cell), label.c_str()); else log_warning("Assertion %s.%s (%s) failed.\n", hiername().c_str(), log_id(cell), label.c_str()); } } } for (auto it : children) it.second->update_ph3(gclk_trigger); } void set_initstate_outputs(State state) { for (auto cell : initstate_database) set_state(cell->getPort(ID::Y), state); for (auto child : children) child.second->set_initstate_outputs(state); } void writeback(pool &wbmods) { if (!ff_database.empty() || !mem_database.empty()) { if (wbmods.count(module)) log_error("Instance %s of module %s is not unique: Writeback not possible. (Fix by running 'uniquify'.)\n", hiername().c_str(), log_id(module)); wbmods.insert(module); } for (auto wire : module->wires()) wire->attributes.erase(ID::init); for (auto &it : ff_database) { SigSpec sig_q = it.second.data.sig_q; Const initval = get_state(sig_q); for (int i = 0; i < GetSize(sig_q); i++) { Wire *w = sig_q[i].wire; if (w->attributes.count(ID::init) == 0) w->attributes[ID::init] = Const(State::Sx, GetSize(w)); w->attributes[ID::init][sig_q[i].offset] = initval[i]; } } for (auto &it : mem_database) { mem_state_t &mem = it.second; mem.mem->clear_inits(); MemInit minit; minit.addr = mem.mem->start_offset; minit.data = mem.data; minit.en = Const(State::S1, mem.mem->width); mem.mem->inits.push_back(minit); mem.mem->emit(); } for (auto it : children) it.second->writeback(wbmods); } void register_signals(int &id) { for (auto wire : module->wires()) { if (shared->hide_internal && wire->name[0] == '$') continue; signal_database[wire] = make_pair(id, Const()); id++; } for (auto child : children) child.second->register_signals(id); } void write_output_header(std::function enter_scope, std::function exit_scope, std::function register_signal) { int exit_scopes = 1; if (shared->hdlname && instance != nullptr && instance->name.isPublic() && instance->has_attribute(ID::hdlname)) { auto hdlname = instance->get_hdlname_attribute(); log_assert(!hdlname.empty()); for (auto name : hdlname) enter_scope("\\" + name); exit_scopes = hdlname.size(); } else enter_scope(name()); dict registers; for (auto cell : module->cells()) { if (RTLIL::builtin_ff_cell_types().count(cell->type)) { FfData ff_data(nullptr, cell); SigSpec q = sigmap(ff_data.sig_q); if (q.is_wire() && signal_database.count(q.as_wire()) != 0) { registers[q.as_wire()] = true; } } } for (auto signal : signal_database) { if (shared->hdlname && signal.first->name.isPublic() && signal.first->has_attribute(ID::hdlname)) { auto hdlname = signal.first->get_hdlname_attribute(); log_assert(!hdlname.empty()); auto signal_name = std::move(hdlname.back()); hdlname.pop_back(); for (auto name : hdlname) enter_scope("\\" + name); register_signal(signal_name.c_str(), GetSize(signal.first), signal.first, signal.second.first, registers.count(signal.first)!=0); for (auto name : hdlname) exit_scope(); } else register_signal(log_id(signal.first->name), GetSize(signal.first), signal.first, signal.second.first, registers.count(signal.first)!=0); } for (auto &trace_mem : trace_mem_database) { auto memid = trace_mem.first; auto &mdb = mem_database.at(memid); Cell *cell = mdb.mem->cell; std::vector hdlname; std::string signal_name; bool has_hdlname = shared->hdlname && cell != nullptr && cell->name.isPublic() && cell->has_attribute(ID::hdlname); if (has_hdlname) { hdlname = cell->get_hdlname_attribute(); log_assert(!hdlname.empty()); signal_name = std::move(hdlname.back()); hdlname.pop_back(); for (auto name : hdlname) enter_scope("\\" + name); } else { signal_name = log_id(memid); } for (auto &trace_index : trace_mem.second) { int output_id = trace_index.second.first; int index = trace_index.first; register_signal( stringf("%s[%d]", signal_name.c_str(), (index + mdb.mem->start_offset)).c_str(), mdb.mem->width, nullptr, output_id, true); } if (has_hdlname) for (auto name : hdlname) exit_scope(); } for (auto child : children) child.second->write_output_header(enter_scope, exit_scope, register_signal); for (int i = 0; i < exit_scopes; i++) exit_scope(); } void register_memory_addr(IdString memid, int addr) { auto &mdb = mem_database.at(memid); auto &mem = *mdb.mem; int index = addr - mem.start_offset; if (index < 0 || index >= mem.size) return; auto it = trace_mem_database.find(memid); if (it != trace_mem_database.end() && it->second.count(index)) return; int output_id = shared->next_output_id++; Const data; if (!shared->output_data.empty()) { auto init_it = trace_mem_init_database.find(std::make_pair(memid, addr)); if (init_it != trace_mem_init_database.end()) data = init_it->second; else data = mem.get_init_data().extract(index * mem.width, mem.width); shared->output_data.front().second.emplace(output_id, data); } trace_mem_database[memid].emplace(index, make_pair(output_id, data)); } void register_output_step_values(std::map *data) { for (auto &it : signal_database) { Wire *wire = it.first; Const value = get_state(wire); int id = it.second.first; if (it.second.second == value) continue; it.second.second = value; data->emplace(id, value); } for (auto &trace_mem : trace_mem_database) { auto memid = trace_mem.first; auto &mdb = mem_database.at(memid); auto &mem = *mdb.mem; for (auto &trace_index : trace_mem.second) { int output_id = trace_index.second.first; int index = trace_index.first; auto value = mdb.data.extract(index * mem.width, mem.width); if (trace_index.second.second == value) continue; trace_index.second.second = value; data->emplace(output_id, value); } } for (auto child : children) child.second->register_output_step_values(data); } bool setInitState() { bool did_something = false; for(auto &item : fst_handles) { if (item.second==0) continue; // Ignore signals not found std::string v = shared->fst->valueOf(item.second); did_something |= set_state(item.first, Const::from_string(v)); } for (auto cell : module->cells()) { if (cell->is_mem_cell()) { std::string memid = cell->parameters.at(ID::MEMID).decode_string(); for (auto &data : fst_memories[memid]) { std::string v = shared->fst->valueOf(data.second); set_memory_state(memid, Const(data.first), Const::from_string(v)); } } } for (auto child : children) did_something |= child.second->setInitState(); return did_something; } void addAdditionalInputs() { for (auto cell : module->cells()) { if (cell->type.in(ID($anyseq))) { SigSpec sig_y = sigmap(cell->getPort(ID::Y)); if (sig_y.is_wire()) { bool found = false; for(auto &item : fst_handles) { if (item.second==0) continue; // Ignore signals not found if (sig_y == sigmap(item.first)) { fst_inputs[sig_y.as_wire()] = item.second; found = true; break; } } if (!found) log_error("Unable to find required '%s' signal in file\n",(scope + "." + RTLIL::unescape_id(sig_y.as_wire()->name)).c_str()); } } } for (auto child : children) child.second->addAdditionalInputs(); } bool setInputs() { bool did_something = false; for(auto &item : fst_inputs) { std::string v = shared->fst->valueOf(item.second); did_something |= set_state(item.first, Const::from_string(v)); } for (auto child : children) did_something |= child.second->setInputs(); return did_something; } void setState(dict> bits, std::string values) { for(auto bit : bits) { if (bit.first >= GetSize(values)) log_error("Too few input data bits in file.\n"); switch(values.at(bit.first)) { case '0': set_state(bit.second.first, bit.second.second ? State::S1 : State::S0); break; case '1': set_state(bit.second.first, bit.second.second ? State::S0 : State::S1); break; default: set_state(bit.second.first, State::Sx); break; } } } void setMemState(dict> bits, std::string values) { for(auto bit : bits) { if (bit.first >= GetSize(values)) log_error("Too few input data bits in file.\n"); switch(values.at(bit.first)) { case '0': set_memory_state_bit(bit.second.first, bit.second.second, State::S0); break; case '1': set_memory_state_bit(bit.second.first, bit.second.second, State::S1); break; default: set_memory_state_bit(bit.second.first, bit.second.second, State::Sx); break; } } } bool checkSignals() { bool retVal = false; for(auto &item : fst_handles) { if (item.second==0) continue; // Ignore signals not found Const fst_val = Const::from_string(shared->fst->valueOf(item.second)); Const sim_val = get_state(item.first); if (sim_val.size()!=fst_val.size()) { log_warning("Signal '%s.%s' size is different in gold and gate.\n", scope.c_str(), log_id(item.first)); continue; } if (shared->sim_mode == SimulationMode::sim) { // No checks performed when using stimulus } else if (shared->sim_mode == SimulationMode::gate && !fst_val.is_fully_def()) { // FST data contains X for(int i=0;isim_mode == SimulationMode::gold && !sim_val.is_fully_def()) { // sim data contains X for(int i=0;icheckSignals(); return retVal; } }; struct SimWorker : SimShared { SimInstance *top = nullptr; pool clock, clockn, reset, resetn; std::string timescale; std::string sim_filename; std::string map_filename; std::string summary_filename; std::string scope; ~SimWorker() { outputfiles.clear(); delete top; } void register_signals() { next_output_id = 1; top->register_signals(top->shared->next_output_id); } void register_output_step(int t) { std::map data; top->register_output_step_values(&data); output_data.emplace_back(t, data); } void write_output_files() { std::map use_signal; bool first = ignore_x; for(auto& d : output_data) { if (first) { for (auto &data : d.second) use_signal[data.first] = !data.second.is_fully_undef(); first = false; } else { for (auto &data : d.second) use_signal[data.first] = true; } if (!ignore_x) break; } for(auto& writer : outputfiles) writer->write(use_signal); if (writeback) { pool wbmods; top->writeback(wbmods); } } void update(bool gclk) { if (gclk) step += 1; while (1) { if (debug) log("\n-- ph1 --\n"); top->update_ph1(); if (debug) log("\n-- ph2 --\n"); if (!top->update_ph2(gclk)) break; } if (debug) log("\n-- ph3 --\n"); top->update_ph3(gclk); } void initialize_stable_past() { while (1) { if (debug) log("\n-- ph1 (initialize) --\n"); top->update_ph1(); if (debug) log("\n-- ph2 (initialize) --\n"); if (!top->update_ph2(false, true)) break; } if (debug) log("\n-- ph3 (initialize) --\n"); top->update_ph3(true); } void set_inports(pool ports, State value) { for (auto portname : ports) { Wire *w = top->module->wire(portname); if (w == nullptr) log_error("Can't find port %s on module %s.\n", log_id(portname), log_id(top->module)); top->set_state(w, value); } } void run(Module *topmod, int numcycles) { log_assert(top == nullptr); top = new SimInstance(this, scope, topmod); register_signals(); if (debug) log("\n===== 0 =====\n"); else if (verbose) log("Simulating cycle 0.\n"); set_inports(reset, State::S1); set_inports(resetn, State::S0); set_inports(clock, State::Sx); set_inports(clockn, State::Sx); top->set_initstate_outputs(initstate ? State::S1 : State::S0); update(false); register_output_step(0); for (int cycle = 0; cycle < numcycles; cycle++) { if (debug) log("\n===== %d =====\n", 10*cycle + 5); else if (verbose) log("Simulating cycle %d.\n", (cycle*2)+1); set_inports(clock, State::S0); set_inports(clockn, State::S1); update(true); register_output_step(10*cycle + 5); if (cycle == 0) top->set_initstate_outputs(State::S0); if (debug) log("\n===== %d =====\n", 10*cycle + 10); else if (verbose) log("Simulating cycle %d.\n", (cycle*2)+2); set_inports(clock, State::S1); set_inports(clockn, State::S0); if (cycle+1 == rstlen) { set_inports(reset, State::S0); set_inports(resetn, State::S1); } update(true); register_output_step(10*cycle + 10); } register_output_step(10*numcycles + 2); write_output_files(); } void run_cosim_fst(Module *topmod, int numcycles) { log_assert(top == nullptr); fst = new FstData(sim_filename); if (scope.empty()) log_error("Scope must be defined for co-simulation.\n"); top = new SimInstance(this, scope, topmod); register_signals(); std::vector fst_clock; for (auto portname : clock) { Wire *w = topmod->wire(portname); if (!w) log_error("Can't find port %s on module %s.\n", log_id(portname), log_id(top->module)); if (!w->port_input) log_error("Clock port %s on module %s is not input.\n", log_id(portname), log_id(top->module)); fstHandle id = fst->getHandle(scope + "." + RTLIL::unescape_id(portname)); if (id==0) log_error("Can't find port %s.%s in FST.\n", scope.c_str(), log_id(portname)); fst_clock.push_back(id); } for (auto portname : clockn) { Wire *w = topmod->wire(portname); if (!w) log_error("Can't find port %s on module %s.\n", log_id(portname), log_id(top->module)); if (!w->port_input) log_error("Clock port %s on module %s is not input.\n", log_id(portname), log_id(top->module)); fstHandle id = fst->getHandle(scope + "." + RTLIL::unescape_id(portname)); if (id==0) log_error("Can't find port %s.%s in FST.\n", scope.c_str(), log_id(portname)); fst_clock.push_back(id); } SigMap sigmap(topmod); for (auto wire : topmod->wires()) { if (wire->port_input) { fstHandle id = fst->getHandle(scope + "." + RTLIL::unescape_id(wire->name)); if (id==0) log_error("Unable to find required '%s' signal in file\n",(scope + "." + RTLIL::unescape_id(wire->name)).c_str()); top->fst_inputs[wire] = id; } } top->addAdditionalInputs(); uint64_t startCount = 0; uint64_t stopCount = 0; if (start_time==0) { if (start_time < fst->getStartTime()) log_warning("Start time is before simulation file start time\n"); startCount = fst->getStartTime(); } else if (start_time==-1) startCount = fst->getEndTime(); else { startCount = start_time / fst->getTimescale(); if (startCount > fst->getEndTime()) { startCount = fst->getEndTime(); log_warning("Start time is after simulation file end time\n"); } } if (stop_time==0) { if (stop_time < fst->getStartTime()) log_warning("Stop time is before simulation file start time\n"); stopCount = fst->getStartTime(); } else if (stop_time==-1) stopCount = fst->getEndTime(); else { stopCount = stop_time / fst->getTimescale(); if (stopCount > fst->getEndTime()) { stopCount = fst->getEndTime(); log_warning("Stop time is after simulation file end time\n"); } } if (stopCountgetTimescaleString(), (unsigned long)stopCount, fst->getTimescaleString()); if (cycles_set) log(" for %d clock cycle(s)",numcycles); log("\n"); bool all_samples = fst_clock.empty(); try { fst->reconstructAllAtTimes(fst_clock, startCount, stopCount, [&](uint64_t time) { if (verbose) log("Co-simulating %s %d [%lu%s].\n", (all_samples ? "sample" : "cycle"), cycle, (unsigned long)time, fst->getTimescaleString()); bool did_something = top->setInputs(); if (initial) { if (!fst_noinit) did_something |= top->setInitState(); initialize_stable_past(); initial = false; } if (did_something) update(true); register_output_step(time); bool status = top->checkSignals(); if (status) log_error("Signal difference\n"); cycle++; // Limit to number of cycles if provided if (cycles_set && cycle > numcycles *2) throw fst_end_of_data_exception(); if (time==stopCount) throw fst_end_of_data_exception(); }); } catch(fst_end_of_data_exception) { // end of data detected } write_output_files(); delete fst; } std::string cell_name(std::string const & name) { size_t pos = name.find_last_of("["); if (pos!=std::string::npos) return name.substr(0, pos); return name; } int mem_cell_addr(std::string const & name) { size_t pos = name.find_last_of("["); return atoi(name.substr(pos+1).c_str()); } void run_cosim_aiger_witness(Module *topmod) { log_assert(top == nullptr); if (!multiclock && (clock.size()+clockn.size())==0) log_error("Clock signal must be specified.\n"); if (multiclock && (clock.size()+clockn.size())>0) log_error("For multiclock witness there should be no clock signal.\n"); top = new SimInstance(this, scope, topmod); register_signals(); std::ifstream mf(map_filename); std::string type, symbol; int variable, index; dict> inputs, inits, latches; dict> mem_inits, mem_latches; if (mf.fail()) log_cmd_error("Not able to read AIGER witness map file.\n"); while (mf >> type >> variable >> index >> symbol) { RTLIL::IdString escaped_s = RTLIL::escape_id(symbol); Wire *w = topmod->wire(escaped_s); if (!w) { escaped_s = RTLIL::escape_id(cell_name(symbol)); Cell *c = topmod->cell(escaped_s); if (!c) log_warning("Wire/cell %s not present in module %s\n",symbol.c_str(),log_id(topmod)); if (c->is_mem_cell()) { std::string memid = c->parameters.at(ID::MEMID).decode_string(); auto &state = top->mem_database[memid]; int offset = (mem_cell_addr(symbol) - state.mem->start_offset) * state.mem->width + index; if (type == "init") mem_inits[variable] = { memid, offset }; else if (type == "latch") mem_latches[variable] = { memid, offset }; else log_error("Map file addressing cell %s as type %s\n", symbol.c_str(), type.c_str()); } else { log_error("Cell %s in map file is not memory cell\n", symbol.c_str()); } } else { if (index < w->start_offset || index > w->start_offset + w->width) log_error("Index %d for wire %s is out of range\n", index, log_signal(w)); if (type == "input") { inputs[variable] = {SigBit(w,index-w->start_offset), false}; } else if (type == "init") { inits[variable] = {SigBit(w,index-w->start_offset), false}; } else if (type == "latch") { latches[variable] = {SigBit(w,index-w->start_offset), false}; } else if (type == "invlatch") { latches[variable] = {SigBit(w,index-w->start_offset), true}; } } } std::ifstream f; f.open(sim_filename.c_str()); if (f.fail() || GetSize(sim_filename) == 0) log_error("Can not open file `%s`\n", sim_filename.c_str()); int state = 0; std::string status; int cycle = 0; while (!f.eof()) { std::string line; std::getline(f, line); if (line.size()==0 || line[0]=='#' || line[0]=='c' || line[0]=='f' || line[0]=='u') continue; if (line[0]=='.') break; if (state==0 && line.size()!=1) { // old format detected, latch data state = 2; } if (state==1 && line[0]!='b' && line[0]!='j') { // was old format but with 1 bit latch top->setState(latches, status); state = 3; } switch(state) { case 0: status = line; state = 1; break; case 1: state = 2; break; case 2: top->setState(latches, line); top->setMemState(mem_latches, line); state = 3; break; default: if (verbose) log("Simulating cycle %d.\n", cycle); top->setState(inputs, line); if (cycle) { set_inports(clock, State::S1); set_inports(clockn, State::S0); } else { top->setState(inits, line); top->setMemState(mem_inits, line); set_inports(clock, State::S0); set_inports(clockn, State::S1); } update(true); register_output_step(10*cycle); if (!multiclock && cycle) { set_inports(clock, State::S0); set_inports(clockn, State::S1); update(true); register_output_step(10*cycle + 5); } cycle++; break; } } register_output_step(10*cycle); write_output_files(); } std::vector split(std::string text, const char *delim) { std::vector list; char *p = strdup(text.c_str()); char *t = strtok(p, delim); while (t != NULL) { list.push_back(t); t = strtok(NULL, delim); } free(p); return list; } std::string signal_name(std::string const & name) { size_t pos = name.find_first_of("@"); if (pos==std::string::npos) { pos = name.find_first_of("#"); if (pos==std::string::npos) log_error("Line does not contain proper signal name `%s`\n", name.c_str()); } return name.substr(0, pos); } void run_cosim_btor2_witness(Module *topmod) { log_assert(top == nullptr); if (!multiclock && (clock.size()+clockn.size())==0) log_error("Clock signal must be specified.\n"); if (multiclock && (clock.size()+clockn.size())>0) log_error("For multiclock witness there should be no clock signal.\n"); std::ifstream f; f.open(sim_filename.c_str()); if (f.fail() || GetSize(sim_filename) == 0) log_error("Can not open file `%s`\n", sim_filename.c_str()); int state = 0; int cycle = 0; top = new SimInstance(this, scope, topmod); register_signals(); int prev_cycle = 0; int curr_cycle = 0; std::vector parts; size_t len = 0; while (!f.eof()) { std::string line; std::getline(f, line); if (line.size()==0) continue; if (line[0]=='#' || line[0]=='@' || line[0]=='.') { if (line[0]!='.') curr_cycle = atoi(line.c_str()+1); else curr_cycle = -1; // force detect change if (curr_cycle != prev_cycle) { if (verbose) log("Simulating cycle %d.\n", cycle); set_inports(clock, State::S1); set_inports(clockn, State::S0); update(true); register_output_step(10*cycle+0); if (!multiclock) { set_inports(clock, State::S0); set_inports(clockn, State::S1); update(true); register_output_step(10*cycle+5); } cycle++; prev_cycle = curr_cycle; } if (line[0]=='.') break; continue; } switch(state) { case 0: if (line=="sat") state = 1; break; case 1: if (line[0]=='b' || line[0]=='j') state = 2; else log_error("Line does not contain property.\n"); break; default: // set state or inputs parts = split(line, " "); len = parts.size(); if (len<3 || len>4) log_error("Invalid set state line content.\n"); RTLIL::IdString escaped_s = RTLIL::escape_id(signal_name(parts[len-1])); if (len==3) { Wire *w = topmod->wire(escaped_s); if (!w) { Cell *c = topmod->cell(escaped_s); if (!c) log_warning("Wire/cell %s not present in module %s\n",log_id(escaped_s),log_id(topmod)); else if (c->type.in(ID($anyconst), ID($anyseq))) { SigSpec sig_y= c->getPort(ID::Y); if ((int)parts[1].size() != GetSize(sig_y)) log_error("Size of wire %s is different than provided data.\n", log_signal(sig_y)); top->set_state(sig_y, Const::from_string(parts[1])); } } else { if ((int)parts[1].size() != w->width) log_error("Size of wire %s is different than provided data.\n", log_signal(w)); top->set_state(w, Const::from_string(parts[1])); } } else { Cell *c = topmod->cell(escaped_s); if (!c) log_error("Cell %s not present in module %s\n",log_id(escaped_s),log_id(topmod)); if (!c->is_mem_cell()) log_error("Cell %s is not memory cell in module %s\n",log_id(escaped_s),log_id(topmod)); Const addr = Const::from_string(parts[1].substr(1,parts[1].size()-2)); Const data = Const::from_string(parts[2]); top->set_memory_state(c->parameters.at(ID::MEMID).decode_string(), addr, data); } break; } } register_output_step(10*cycle); write_output_files(); } struct FoundYWPath { SimInstance *instance; Wire *wire; IdString memid; int addr; }; struct YwHierarchy { dict paths; }; YwHierarchy prepare_yw_hierarchy(const ReadWitness &yw) { YwHierarchy hierarchy; pool paths; dict> mem_paths; for (auto &signal : yw.signals) paths.insert(signal.path); for (auto &clock : yw.clocks) paths.insert(clock.path); for (auto &path : paths) if (path.has_address()) mem_paths[path.prefix()].insert(path.back()); witness_hierarchy(top->module, top, [&](IdPath const &path, WitnessHierarchyItem item, SimInstance *instance) { if (item.cell != nullptr) return instance->children.at(item.cell); if (item.wire != nullptr) { if (paths.count(path)) { if (debug) log("witness hierarchy: found wire %s\n", path.str().c_str()); bool inserted = hierarchy.paths.emplace(path, {instance, item.wire, {}, INT_MIN}).second; if (!inserted) log_warning("Yosys witness path `%s` is ambiguous in this design\n", path.str().c_str()); } } else if (item.mem) { auto it = mem_paths.find(path); if (it != mem_paths.end()) { if (debug) log("witness hierarchy: found mem %s\n", path.str().c_str()); IdPath word_path = path; word_path.emplace_back(); for (auto addr_part : it->second) { word_path.back() = addr_part; int addr; word_path.get_address(addr); if (addr < item.mem->start_offset || (addr - item.mem->start_offset) >= item.mem->size) continue; bool inserted = hierarchy.paths.emplace(word_path, {instance, nullptr, item.mem->memid, addr}).second; if (!inserted) log_warning("Yosys witness path `%s` is ambiguous in this design\n", path.str().c_str()); } } } return instance; }); for (auto &path : paths) if (!hierarchy.paths.count(path)) log_warning("Yosys witness path `%s` was not found in this design, ignoring\n", path.str().c_str()); dict> clock_inputs; for (auto &clock : yw.clocks) { if (clock.is_negedge == clock.is_posedge) continue; clock_inputs[clock.path].emplace(clock.offset, clock.is_posedge); } for (auto &signal : yw.signals) { auto it = clock_inputs.find(signal.path); if (it == clock_inputs.end()) continue; for (auto &clock_input : it->second) { int offset = clock_input.first; if (offset >= signal.offset && (offset - signal.offset) < signal.width) { int clock_bits_offset = signal.bits_offset + (offset - signal.offset); State expected = clock_input.second ? State::S0 : State::S1; for (int t = 0; t < GetSize(yw.steps); t++) { if (yw.get_bits(t, clock_bits_offset, 1) != expected) log_warning("Yosys witness trace has an unexpected value for the clock input `%s` in step %d.\n", signal.path.str().c_str(), t); } } } } // TODO add checks and warnings for witness signals (toplevel inputs, $any*) not present in the witness file return hierarchy; } void set_yw_state(const ReadWitness &yw, const YwHierarchy &hierarchy, int t) { log_assert(t >= 0 && t < GetSize(yw.steps)); for (auto &signal : yw.signals) { if (signal.init_only && t >= 1) continue; auto found_path_it = hierarchy.paths.find(signal.path); if (found_path_it == hierarchy.paths.end()) continue; auto &found_path = found_path_it->second; Const value = yw.get_bits(t, signal.bits_offset, signal.width); if (debug) log("yw: set %s to %s\n", signal.path.str().c_str(), log_const(value)); if (found_path.wire != nullptr) { found_path.instance->set_state_parent_drivers( SigChunk(found_path.wire, signal.offset, signal.width), value); } else if (!found_path.memid.empty()) { if (t >= 1) found_path.instance->register_memory_addr(found_path.memid, found_path.addr); else found_path.instance->trace_mem_init_database.emplace(make_pair(found_path.memid, found_path.addr), value); found_path.instance->set_memory_state( found_path.memid, found_path.addr, value); } } } void set_yw_clocks(const ReadWitness &yw, const YwHierarchy &hierarchy, bool active_edge) { for (auto &clock : yw.clocks) { if (clock.is_negedge == clock.is_posedge) continue; auto found_path_it = hierarchy.paths.find(clock.path); if (found_path_it == hierarchy.paths.end()) continue; auto &found_path = found_path_it->second; if (found_path.wire != nullptr) { found_path.instance->set_state( SigChunk(found_path.wire, clock.offset, 1), active_edge == clock.is_posedge ? State::S1 : State::S0); } } } void run_cosim_yw_witness(Module *topmod, int append) { if (!clock.empty()) log_cmd_error("The -clock option is not required nor supported when reading a Yosys witness file.\n"); if (!reset.empty()) log_cmd_error("The -reset option is not required nor supported when reading a Yosys witness file.\n"); if (multiclock) log_warning("The -multiclock option is not required and ignored when reading a Yosys witness file.\n"); ReadWitness yw(sim_filename); top = new SimInstance(this, scope, topmod); register_signals(); YwHierarchy hierarchy = prepare_yw_hierarchy(yw); if (yw.steps.empty()) { log_warning("Yosys witness file `%s` contains no time steps\n", yw.filename.c_str()); } else { top->set_initstate_outputs(initstate ? State::S1 : State::S0); set_yw_state(yw, hierarchy, 0); set_yw_clocks(yw, hierarchy, true); initialize_stable_past(); register_output_step(0); if (!yw.clocks.empty()) { if (debug) log("Simulating non-active clock edge.\n"); set_yw_clocks(yw, hierarchy, false); update(false); register_output_step(5); } top->set_initstate_outputs(State::S0); } for (int cycle = 1; cycle < GetSize(yw.steps) + append; cycle++) { if (verbose) log("Simulating cycle %d.\n", cycle); if (cycle < GetSize(yw.steps)) set_yw_state(yw, hierarchy, cycle); set_yw_clocks(yw, hierarchy, true); update(true); register_output_step(10 * cycle); if (!yw.clocks.empty()) { if (debug) log("Simulating non-active clock edge.\n"); set_yw_clocks(yw, hierarchy, false); update(false); register_output_step(5 + 10 * cycle); } } register_output_step(10 * (GetSize(yw.steps) + append)); write_output_files(); } void write_summary() { if (summary_filename.empty()) return; PrettyJson json; if (!json.write_to_file(summary_filename)) log_error("Can't open file `%s' for writing: %s\n", summary_filename.c_str(), strerror(errno)); json.begin_object(); json.entry("version", "Yosys sim summary"); json.entry("generator", yosys_version_str); json.entry("steps", step); json.entry("top", log_id(top->module->name)); json.name("assertions"); json.begin_array(); for (auto &assertion : triggered_assertions) { json.begin_object(); json.entry("step", assertion.step); json.entry("type", log_id(assertion.cell->type)); json.entry("path", assertion.instance->witness_full_path(assertion.cell)); auto src = assertion.cell->get_string_attribute(ID::src); if (!src.empty()) { json.entry("src", src); } json.end_object(); } json.end_array(); json.name("display_output"); json.begin_array(); for (auto &output : display_output) { json.begin_object(); json.entry("step", output.step); json.entry("path", output.instance->witness_full_path(output.cell)); auto src = output.cell->get_string_attribute(ID::src); if (!src.empty()) { json.entry("src", src); } json.entry("output", output.output); json.end_object(); } json.end_array(); json.end_object(); } std::string define_signal(Wire *wire) { std::stringstream f; if (wire->width==1) f << stringf("%s", RTLIL::unescape_id(wire->name).c_str()); else if (wire->upto) f << stringf("[%d:%d] %s", wire->start_offset, wire->width - 1 + wire->start_offset, RTLIL::unescape_id(wire->name).c_str()); else f << stringf("[%d:%d] %s", wire->width - 1 + wire->start_offset, wire->start_offset, RTLIL::unescape_id(wire->name).c_str()); return f.str(); } std::string signal_list(std::map &signals) { std::stringstream f; for(auto item=signals.begin();item!=signals.end();item++) f << stringf("%c%s", (item==signals.begin() ? ' ' : ','), RTLIL::unescape_id(item->first->name).c_str()); return f.str(); } void generate_tb(Module *topmod, std::string tb_filename, int numcycles) { fst = new FstData(sim_filename); if (scope.empty()) log_error("Scope must be defined for co-simulation.\n"); if ((clock.size()+clockn.size())==0) log_error("Clock signal must be specified.\n"); std::vector fst_clock; std::map clocks; for (auto portname : clock) { Wire *w = topmod->wire(portname); if (!w) log_error("Can't find port %s on module %s.\n", log_id(portname), log_id(top->module)); if (!w->port_input) log_error("Clock port %s on module %s is not input.\n", log_id(portname), log_id(top->module)); fstHandle id = fst->getHandle(scope + "." + RTLIL::unescape_id(portname)); if (id==0) log_error("Can't find port %s.%s in FST.\n", scope.c_str(), log_id(portname)); fst_clock.push_back(id); clocks[w] = id; } for (auto portname : clockn) { Wire *w = topmod->wire(portname); if (!w) log_error("Can't find port %s on module %s.\n", log_id(portname), log_id(top->module)); if (!w->port_input) log_error("Clock port %s on module %s is not input.\n", log_id(portname), log_id(top->module)); fstHandle id = fst->getHandle(scope + "." + RTLIL::unescape_id(portname)); if (id==0) log_error("Can't find port %s.%s in FST.\n", scope.c_str(), log_id(portname)); fst_clock.push_back(id); clocks[w] = id; } SigMap sigmap(topmod); std::map inputs; std::map outputs; for (auto wire : topmod->wires()) { fstHandle id = fst->getHandle(scope + "." + RTLIL::unescape_id(wire->name)); if (id==0 && (wire->port_input || wire->port_output)) log_error("Unable to find required '%s' signal in file\n",(scope + "." + RTLIL::unescape_id(wire->name)).c_str()); if (wire->port_input) if (clocks.find(wire)==clocks.end()) inputs[wire] = id; if (wire->port_output) outputs[wire] = id; } uint64_t startCount = 0; uint64_t stopCount = 0; if (start_time==0) { if (start_time < fst->getStartTime()) log_warning("Start time is before simulation file start time\n"); startCount = fst->getStartTime(); } else if (start_time==-1) startCount = fst->getEndTime(); else { startCount = start_time / fst->getTimescale(); if (startCount > fst->getEndTime()) { startCount = fst->getEndTime(); log_warning("Start time is after simulation file end time\n"); } } if (stop_time==0) { if (stop_time < fst->getStartTime()) log_warning("Stop time is before simulation file start time\n"); stopCount = fst->getStartTime(); } else if (stop_time==-1) stopCount = fst->getEndTime(); else { stopCount = stop_time / fst->getTimescale(); if (stopCount > fst->getEndTime()) { stopCount = fst->getEndTime(); log_warning("Stop time is after simulation file end time\n"); } } if (stopCountgetTimescaleString(), (unsigned long)stopCount, fst->getTimescaleString()); if (cycles_set) log(" for %d clock cycle(s)",numcycles); log("\n"); std::stringstream f; f << stringf("`timescale 1%s/1%s\n", fst->getTimescaleString(),fst->getTimescaleString()); f << stringf("module %s();\n",tb_filename.c_str()); int clk_len = 0; int inputs_len = 0; int outputs_len = 0; for(auto &item : clocks) { clk_len += item.first->width; f << "\treg " << define_signal(item.first) << ";\n"; } for(auto &item : inputs) { inputs_len += item.first->width; f << "\treg " << define_signal(item.first) << ";\n"; } for(auto &item : outputs) { outputs_len += item.first->width; f << "\twire " << define_signal(item.first) << ";\n"; } int data_len = clk_len + inputs_len + outputs_len + 32; f << "\n"; f << stringf("\t%s uut(",RTLIL::unescape_id(topmod->name).c_str()); for(auto item=clocks.begin();item!=clocks.end();item++) f << stringf("%c.%s(%s)", (item==clocks.begin() ? ' ' : ','), RTLIL::unescape_id(item->first->name).c_str(), RTLIL::unescape_id(item->first->name).c_str()); for(auto &item : inputs) f << stringf(",.%s(%s)", RTLIL::unescape_id(item.first->name).c_str(), RTLIL::unescape_id(item.first->name).c_str()); for(auto &item : outputs) f << stringf(",.%s(%s)", RTLIL::unescape_id(item.first->name).c_str(), RTLIL::unescape_id(item.first->name).c_str()); f << ");\n"; f << "\n"; f << "\tinteger i;\n"; uint64_t prev_time = startCount; log("Writing data to `%s`\n", (tb_filename+".txt").c_str()); std::ofstream data_file(tb_filename+".txt"); std::stringstream initstate; try { fst->reconstructAllAtTimes(fst_clock, startCount, stopCount, [&](uint64_t time) { for(auto &item : clocks) data_file << stringf("%s",fst->valueOf(item.second).c_str()); for(auto &item : inputs) data_file << stringf("%s",fst->valueOf(item.second).c_str()); for(auto &item : outputs) data_file << stringf("%s",fst->valueOf(item.second).c_str()); data_file << stringf("%s\n",Const(time-prev_time).as_string().c_str()); if (time==startCount) { // initial state for(auto var : fst->getVars()) { if (var.is_reg && !Const::from_string(fst->valueOf(var.id).c_str()).is_fully_undef()) { if (var.scope == scope) { initstate << stringf("\t\tuut.%s = %d'b%s;\n", var.name.c_str(), var.width, fst->valueOf(var.id).c_str()); } else if (var.scope.find(scope+".")==0) { initstate << stringf("\t\tuut.%s.%s = %d'b%s;\n",var.scope.substr(scope.size()+1).c_str(), var.name.c_str(), var.width, fst->valueOf(var.id).c_str()); } } } } cycle++; prev_time = time; // Limit to number of cycles if provided if (cycles_set && cycle > numcycles *2) throw fst_end_of_data_exception(); if (time==stopCount) throw fst_end_of_data_exception(); }); } catch(fst_end_of_data_exception) { // end of data detected } f << stringf("\treg [0:%d] data [0:%d];\n", data_len-1, cycle-1); f << "\tinitial begin;\n"; f << stringf("\t\t$dumpfile(\"%s\");\n",tb_filename.c_str()); f << stringf("\t\t$dumpvars(0,%s);\n",tb_filename.c_str()); f << initstate.str(); f << stringf("\t\t$readmemb(\"%s.txt\", data);\n",tb_filename.c_str()); f << stringf("\t\t#(data[0][%d:%d]);\n", data_len-32, data_len-1); f << stringf("\t\t{%s } = data[0][%d:%d];\n", signal_list(clocks).c_str(), 0, clk_len-1); f << stringf("\t\t{%s } <= data[0][%d:%d];\n", signal_list(inputs).c_str(), clk_len, clk_len+inputs_len-1); f << stringf("\t\tfor (i = 1; i < %d; i++) begin\n",cycle); f << stringf("\t\t\t#(data[i][%d:%d]);\n", data_len-32, data_len-1); f << stringf("\t\t\t{%s } = data[i][%d:%d];\n", signal_list(clocks).c_str(), 0, clk_len-1); f << stringf("\t\t\t{%s } <= data[i][%d:%d];\n", signal_list(inputs).c_str(), clk_len, clk_len+inputs_len-1); f << stringf("\t\t\tif ({%s } != data[i-1][%d:%d]) begin\n", signal_list(outputs).c_str(), clk_len+inputs_len, clk_len+inputs_len+outputs_len-1); f << "\t\t\t\t$error(\"Signal difference detected\\n\");\n"; f << "\t\t\tend\n"; f << "\t\tend\n"; f << "\t\t$finish;\n"; f << "\tend\n"; f << "endmodule\n"; log("Writing testbench to `%s`\n", (tb_filename+".v").c_str()); std::ofstream tb_file(tb_filename+".v"); tb_file << f.str(); delete fst; } }; std::string form_vcd_name(const char *name, int size, Wire *w) { std::string full_name = name; bool have_bracket = strchr(name, '['); if (w) { if (have_bracket || !(w->start_offset==0 && w->width==1)) { full_name += stringf(" [%d:%d]", w->upto ? w->start_offset : w->start_offset + w->width - 1, w->upto ? w->start_offset + w->width - 1 : w->start_offset); } } else { // Special handling for memories full_name += have_bracket ? stringf(" [%d:0]", size - 1) : std::string(); } return full_name; } struct VCDWriter : public OutputWriter { VCDWriter(SimWorker *worker, std::string filename) : OutputWriter(worker) { vcdfile.open(filename.c_str()); } void write(std::map &use_signal) override { if (!vcdfile.is_open()) return; vcdfile << stringf("$version %s $end\n", worker->date ? yosys_version_str : "Yosys"); if (worker->date) { std::time_t t = std::time(nullptr); char mbstr[255]; if (std::strftime(mbstr, sizeof(mbstr), "%c", std::localtime(&t))) { vcdfile << stringf("$date ") << mbstr << stringf(" $end\n"); } } if (!worker->timescale.empty()) vcdfile << stringf("$timescale %s $end\n", worker->timescale.c_str()); worker->top->write_output_header( [this](IdString name) { vcdfile << stringf("$scope module %s $end\n", log_id(name)); }, [this]() { vcdfile << stringf("$upscope $end\n");}, [this,use_signal](const char *name, int size, Wire *w, int id, bool is_reg) { if (!use_signal.at(id)) return; // Works around gtkwave trying to parse everything past the last [ in a signal // name. While the emitted range doesn't necessarily match the wire's range, // this is consistent with the range gtkwave makes up if it doesn't find a // range std::string full_name = form_vcd_name(name, size, w); vcdfile << stringf("$var %s %d n%d %s%s $end\n", is_reg ? "reg" : "wire", size, id, name[0] == '$' ? "\\" : "", full_name.c_str()); } ); vcdfile << stringf("$enddefinitions $end\n"); for(auto& d : worker->output_data) { vcdfile << stringf("#%d\n", d.first); for (auto &data : d.second) { if (!use_signal.at(data.first)) continue; Const value = data.second; vcdfile << "b"; for (int i = GetSize(value)-1; i >= 0; i--) { switch (value[i]) { case State::S0: vcdfile << "0"; break; case State::S1: vcdfile << "1"; break; case State::Sx: vcdfile << "x"; break; default: vcdfile << "z"; } } vcdfile << stringf(" n%d\n", data.first); } } } std::ofstream vcdfile; }; struct FSTWriter : public OutputWriter { FSTWriter(SimWorker *worker, std::string filename) : OutputWriter(worker) { fstfile = (struct fstContext *)fstWriterCreate(filename.c_str(),1); } virtual ~FSTWriter() { fstWriterClose(fstfile); } void write(std::map &use_signal) override { if (!fstfile) return; std::time_t t = std::time(nullptr); fstWriterSetVersion(fstfile, worker->date ? yosys_version_str : "Yosys"); if (worker->date) fstWriterSetDate(fstfile, asctime(std::localtime(&t))); else fstWriterSetDate(fstfile, ""); if (!worker->timescale.empty()) fstWriterSetTimescaleFromString(fstfile, worker->timescale.c_str()); fstWriterSetPackType(fstfile, FST_WR_PT_FASTLZ); fstWriterSetRepackOnClose(fstfile, 1); worker->top->write_output_header( [this](IdString name) { fstWriterSetScope(fstfile, FST_ST_VCD_MODULE, stringf("%s",log_id(name)).c_str(), nullptr); }, [this]() { fstWriterSetUpscope(fstfile); }, [this,use_signal](const char *name, int size, Wire *w, int id, bool is_reg) { if (!use_signal.at(id)) return; std::string full_name = form_vcd_name(name, size, w); fstHandle fst_id = fstWriterCreateVar(fstfile, is_reg ? FST_VT_VCD_REG : FST_VT_VCD_WIRE, FST_VD_IMPLICIT, size, full_name.c_str(), 0); mapping.emplace(id, fst_id); } ); for(auto& d : worker->output_data) { fstWriterEmitTimeChange(fstfile, d.first); for (auto &data : d.second) { if (!use_signal.at(data.first)) continue; Const value = data.second; std::stringstream ss; for (int i = GetSize(value)-1; i >= 0; i--) { switch (value[i]) { case State::S0: ss << "0"; break; case State::S1: ss << "1"; break; case State::Sx: ss << "x"; break; default: ss << "z"; } } fstWriterEmitValueChange(fstfile, mapping[data.first], ss.str().c_str()); } } } struct fstContext *fstfile = nullptr; std::map mapping; }; struct AIWWriter : public OutputWriter { AIWWriter(SimWorker *worker, std::string filename) : OutputWriter(worker) { aiwfile.open(filename.c_str()); } virtual ~AIWWriter() { aiwfile << '.' << '\n'; } void write(std::map &) override { if (!aiwfile.is_open()) return; if (worker->map_filename.empty()) log_cmd_error("For AIGER witness file map parameter is mandatory.\n"); std::ifstream mf(worker->map_filename); std::string type, symbol; int variable, index; int max_input = 0; if (mf.fail()) log_cmd_error("Not able to read AIGER witness map file.\n"); while (mf >> type >> variable >> index >> symbol) { RTLIL::IdString escaped_s = RTLIL::escape_id(symbol); Wire *w = worker->top->module->wire(escaped_s); if (!w) log_error("Wire %s not present in module %s\n",log_id(escaped_s),log_id(worker->top->module)); if (index < w->start_offset || index > w->start_offset + w->width) log_error("Index %d for wire %s is out of range\n", index, log_signal(w)); if (type == "input") { aiw_inputs[variable] = SigBit(w,index-w->start_offset); if (worker->clock.count(escaped_s)) { clocks[variable] = true; } if (worker->clockn.count(escaped_s)) { clocks[variable] = false; } max_input = max(max_input,variable); } else if (type == "init") { aiw_inits[variable] = SigBit(w,index-w->start_offset); max_input = max(max_input,variable); } else if (type == "latch") { aiw_latches[variable] = {SigBit(w,index-w->start_offset), false}; } else if (type == "invlatch") { aiw_latches[variable] = {SigBit(w,index-w->start_offset), true}; } } worker->top->write_output_header( [](IdString) {}, []() {}, [this](const char */*name*/, int /*size*/, Wire *wire, int id, bool) { if (wire != nullptr) mapping[wire] = id; } ); std::map current; bool first = true; for (auto iter = worker->output_data.begin(); iter != std::prev(worker->output_data.end()); ++iter) { auto& d = *iter; for (auto &data : d.second) { current[data.first] = data.second; } if (first) { for (int i = 0;; i++) { if (aiw_latches.count(i)) { aiwfile << '0'; continue; } aiwfile << '\n'; break; } first = false; } bool skip = false; for (auto it : clocks) { auto val = it.second ? State::S1 : State::S0; SigBit bit = aiw_inputs.at(it.first); auto v = current[mapping[bit.wire]].bits.at(bit.offset); if (v == val) skip = true; } if (skip) continue; for (int i = 0; i <= max_input; i++) { if (aiw_inputs.count(i)) { SigBit bit = aiw_inputs.at(i); auto v = current[mapping[bit.wire]].bits.at(bit.offset); if (v == State::S1) aiwfile << '1'; else aiwfile << '0'; continue; } if (aiw_inits.count(i)) { SigBit bit = aiw_inits.at(i); auto v = current[mapping[bit.wire]].bits.at(bit.offset); if (v == State::S1) aiwfile << '1'; else aiwfile << '0'; continue; } aiwfile << '0'; } aiwfile << '\n'; } } std::ofstream aiwfile; dict> aiw_latches; dict aiw_inputs, aiw_inits; dict clocks; std::map mapping; }; struct SimPass : public Pass { SimPass() : Pass("sim", "simulate the circuit") { } void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" sim [options] [top-level]\n"); log("\n"); log("This command simulates the circuit using the given top-level module.\n"); log("\n"); log(" -vcd \n"); log(" write the simulation results to the given VCD file\n"); log("\n"); log(" -fst \n"); log(" write the simulation results to the given FST file\n"); log("\n"); log(" -aiw \n"); log(" write the simulation results to an AIGER witness file\n"); log(" (requires a *.aim file via -map)\n"); log("\n"); log(" -hdlname\n"); log(" use the hdlname attribute when writing simulation results\n"); log(" (preserves hierarchy in a flattened design)\n"); log("\n"); log(" -x\n"); log(" ignore constant x outputs in simulation file.\n"); log("\n"); log(" -date\n"); log(" include date and full version info in output.\n"); log("\n"); log(" -clock \n"); log(" name of top-level clock input\n"); log("\n"); log(" -clockn \n"); log(" name of top-level clock input (inverse polarity)\n"); log("\n"); log(" -multiclock\n"); log(" mark that witness file is multiclock.\n"); log("\n"); log(" -reset \n"); log(" name of top-level reset input (active high)\n"); log("\n"); log(" -resetn \n"); log(" name of top-level inverted reset input (active low)\n"); log("\n"); log(" -rstlen \n"); log(" number of cycles reset should stay active (default: 1)\n"); log("\n"); log(" -zinit\n"); log(" zero-initialize all uninitialized regs and memories\n"); log("\n"); log(" -timescale \n"); log(" include the specified timescale declaration in the vcd\n"); log("\n"); log(" -n \n"); log(" number of clock cycles to simulate (default: 20)\n"); log("\n"); log(" -noinitstate\n"); log(" do not activate $initstate cells during the first cycle\n"); log("\n"); log(" -a\n"); log(" use all nets in VCD/FST operations, not just those with public names\n"); log("\n"); log(" -w\n"); log(" writeback mode: use final simulation state as new init state\n"); log("\n"); log(" -r \n"); log(" read simulation or formal results file\n"); log(" File formats supported: FST, VCD, AIW, WIT and .yw\n"); log(" VCD support requires vcd2fst external tool to be present\n"); log("\n"); log(" -append \n"); log(" number of extra clock cycles to simulate for a Yosys witness input\n"); log("\n"); log(" -summary \n"); log(" write a JSON summary to the given file\n"); log("\n"); log(" -map \n"); log(" read file with port and latch symbols, needed for AIGER witness input\n"); log("\n"); log(" -scope \n"); log(" scope of simulation top model\n"); log("\n"); log(" -at