/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Claire Xenia Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/yosys.h" #include "kernel/sigtools.h" #include "kernel/celltypes.h" USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN struct EquivMakeWorker { Module *gold_mod, *gate_mod, *equiv_mod; pool wire_names, cell_names; CellTypes ct; bool inames; vector blacklists; vector encfiles; bool make_assert; pool blacklist_names; dict> encdata; pool undriven_bits; SigMap assign_map; void read_blacklists() { for (auto fn : blacklists) { std::ifstream f(fn); if (f.fail()) log_cmd_error("Can't open blacklist file '%s'!\n", fn.c_str()); string line, token; while (std::getline(f, line)) { while (1) { token = next_token(line); if (token.empty()) break; blacklist_names.insert(RTLIL::escape_id(token)); } } } } void read_encfiles() { for (auto fn : encfiles) { std::ifstream f(fn); if (f.fail()) log_cmd_error("Can't open encfile '%s'!\n", fn.c_str()); dict *ed = nullptr; string line, token; while (std::getline(f, line)) { token = next_token(line); if (token.empty() || token[0] == '#') continue; if (token == ".fsm") { IdString modname = RTLIL::escape_id(next_token(line)); IdString signame = RTLIL::escape_id(next_token(line)); if (encdata.count(signame)) log_cmd_error("Re-definition of signal '%s' in encfile '%s'!\n", signame.c_str(), fn.c_str()); encdata[signame] = dict(); ed = &encdata[signame]; continue; } if (token == ".map") { Const gold_bits = Const::from_string(next_token(line)); Const gate_bits = Const::from_string(next_token(line)); (*ed)[gold_bits] = gate_bits; continue; } log_cmd_error("Syntax error in encfile '%s'!\n", fn.c_str()); } } } void copy_to_equiv() { Module *gold_clone = gold_mod->clone(); Module *gate_clone = gate_mod->clone(); for (auto it : gold_clone->wires().to_vector()) { if ((it->name.isPublic() || inames) && blacklist_names.count(it->name) == 0) wire_names.insert(it->name); gold_clone->rename(it, it->name.str() + "_gold"); } for (auto it : gold_clone->cells().to_vector()) { if ((it->name.isPublic() || inames) && blacklist_names.count(it->name) == 0) cell_names.insert(it->name); gold_clone->rename(it, it->name.str() + "_gold"); } for (auto it : gate_clone->wires().to_vector()) { if ((it->name.isPublic() || inames) && blacklist_names.count(it->name) == 0) wire_names.insert(it->name); gate_clone->rename(it, it->name.str() + "_gate"); } for (auto it : gate_clone->cells().to_vector()) { if ((it->name.isPublic() || inames) && blacklist_names.count(it->name) == 0) cell_names.insert(it->name); gate_clone->rename(it, it->name.str() + "_gate"); } gold_clone->cloneInto(equiv_mod); gate_clone->cloneInto(equiv_mod); delete gold_clone; delete gate_clone; } void add_eq_assertion(const SigSpec &gold_sig, const SigSpec &gate_sig) { auto eq_wire = equiv_mod->Eqx(NEW_ID, gold_sig, gate_sig); equiv_mod->addAssert(NEW_ID_SUFFIX("assert"), eq_wire, State::S1); } void find_same_wires() { SigMap assign_map(equiv_mod); SigMap rd_signal_map; SigPool primary_inputs; // list of cells without added $equiv cells auto cells_list = equiv_mod->cells().to_vector(); for (auto id : wire_names) { IdString gold_id = id.str() + "_gold"; IdString gate_id = id.str() + "_gate"; Wire *gold_wire = equiv_mod->wire(gold_id); Wire *gate_wire = equiv_mod->wire(gate_id); if (encdata.count(id)) { log("Creating encoder/decoder for signal %s.\n", log_id(id)); Wire *dec_wire = equiv_mod->addWire(id.str() + "_decoded", gold_wire->width); Wire *enc_wire = equiv_mod->addWire(id.str() + "_encoded", gate_wire->width); SigSpec dec_a, dec_b, dec_s; SigSpec enc_a, enc_b, enc_s; dec_a = SigSpec(State::Sx, dec_wire->width); enc_a = SigSpec(State::Sx, enc_wire->width); for (auto &it : encdata.at(id)) { SigSpec dec_sig = gate_wire, dec_pat = it.second; SigSpec enc_sig = dec_wire, enc_pat = it.first; if (GetSize(dec_sig) != GetSize(dec_pat)) log_error("Invalid pattern %s for signal %s of size %d!\n", log_signal(dec_pat), log_signal(dec_sig), GetSize(dec_sig)); if (GetSize(enc_sig) != GetSize(enc_pat)) log_error("Invalid pattern %s for signal %s of size %d!\n", log_signal(enc_pat), log_signal(enc_sig), GetSize(enc_sig)); SigSpec reduced_dec_sig, reduced_dec_pat; for (int i = 0; i < GetSize(dec_sig); i++) if (dec_pat[i] == State::S0 || dec_pat[i] == State::S1) { reduced_dec_sig.append(dec_sig[i]); reduced_dec_pat.append(dec_pat[i]); } SigSpec reduced_enc_sig, reduced_enc_pat; for (int i = 0; i < GetSize(enc_sig); i++) if (enc_pat[i] == State::S0 || enc_pat[i] == State::S1) { reduced_enc_sig.append(enc_sig[i]); reduced_enc_pat.append(enc_pat[i]); } SigSpec dec_result = it.first; for (auto &bit : dec_result) if (bit != State::S1) bit = State::S0; SigSpec enc_result = it.second; for (auto &bit : enc_result) if (bit != State::S1) bit = State::S0; SigSpec dec_eq = equiv_mod->addWire(NEW_ID); SigSpec enc_eq = equiv_mod->addWire(NEW_ID); equiv_mod->addEq(NEW_ID, reduced_dec_sig, reduced_dec_pat, dec_eq); cells_list.push_back(equiv_mod->addEq(NEW_ID, reduced_enc_sig, reduced_enc_pat, enc_eq)); dec_s.append(dec_eq); enc_s.append(enc_eq); dec_b.append(dec_result); enc_b.append(enc_result); } equiv_mod->addPmux(NEW_ID, dec_a, dec_b, dec_s, dec_wire); equiv_mod->addPmux(NEW_ID, enc_a, enc_b, enc_s, enc_wire); rd_signal_map.add(assign_map(gate_wire), enc_wire); gate_wire = dec_wire; } if (gold_wire == nullptr || gate_wire == nullptr || gold_wire->width != gate_wire->width) { if (gold_wire && gold_wire->port_id) log_error("Can't match gold port `%s' to a gate port.\n", log_id(gold_wire)); if (gate_wire && gate_wire->port_id) log_error("Can't match gate port `%s' to a gold port.\n", log_id(gate_wire)); continue; } log("Presumably equivalent wires: %s (%s), %s (%s) -> %s\n", log_id(gold_wire), log_signal(assign_map(gold_wire)), log_id(gate_wire), log_signal(assign_map(gate_wire)), log_id(id)); if (gold_wire->port_output || gate_wire->port_output) { gold_wire->port_input = false; gate_wire->port_input = false; gold_wire->port_output = false; gate_wire->port_output = false; Wire *wire = equiv_mod->addWire(id, gold_wire->width); wire->port_output = true; if (make_assert) { add_eq_assertion(gold_wire, gate_wire); equiv_mod->connect(wire, gold_wire); } else { for (int i = 0; i < wire->width; i++) equiv_mod->addEquiv(NEW_ID, SigSpec(gold_wire, i), SigSpec(gate_wire, i), SigSpec(wire, i)); } rd_signal_map.add(assign_map(gold_wire), wire); rd_signal_map.add(assign_map(gate_wire), wire); } else if (gold_wire->port_input || gate_wire->port_input) { Wire *wire = equiv_mod->addWire(id, gold_wire->width); wire->port_input = true; gold_wire->port_input = false; gate_wire->port_input = false; equiv_mod->connect(gold_wire, wire); equiv_mod->connect(gate_wire, wire); primary_inputs.add(assign_map(gold_wire)); primary_inputs.add(assign_map(gate_wire)); primary_inputs.add(wire); } else { if (make_assert) add_eq_assertion(gold_wire, gate_wire); else { Wire *wire = equiv_mod->addWire(id, gold_wire->width); SigSpec rdmap_gold, rdmap_gate, rdmap_equiv; for (int i = 0; i < wire->width; i++) { if (undriven_bits.count(assign_map(SigBit(gold_wire, i)))) { log(" Skipping signal bit %s [%d]: undriven on gold side.\n", id2cstr(gold_wire->name), i); continue; } if (undriven_bits.count(assign_map(SigBit(gate_wire, i)))) { log(" Skipping signal bit %s [%d]: undriven on gate side.\n", id2cstr(gate_wire->name), i); continue; } equiv_mod->addEquiv(NEW_ID, SigSpec(gold_wire, i), SigSpec(gate_wire, i), SigSpec(wire, i)); rdmap_gold.append(SigBit(gold_wire, i)); rdmap_gate.append(SigBit(gate_wire, i)); rdmap_equiv.append(SigBit(wire, i)); } rd_signal_map.add(rdmap_gold, rdmap_equiv); rd_signal_map.add(rdmap_gate, rdmap_equiv); } } } for (auto c : cells_list) for (auto &conn : c->connections()) if (!ct.cell_output(c->type, conn.first)) { SigSpec old_sig = assign_map(conn.second); SigSpec new_sig = rd_signal_map(old_sig); for (int i = 0; i < GetSize(old_sig); i++) if (primary_inputs.check(old_sig[i])) new_sig[i] = old_sig[i]; if (old_sig != new_sig) { log("Changing input %s of cell %s (%s): %s -> %s\n", log_id(conn.first), log_id(c), log_id(c->type), log_signal(old_sig), log_signal(new_sig)); c->setPort(conn.first, new_sig); } } equiv_mod->fixup_ports(); } void find_same_cells() { SigMap assign_map(equiv_mod); for (auto id : cell_names) { IdString gold_id = id.str() + "_gold"; IdString gate_id = id.str() + "_gate"; Cell *gold_cell = equiv_mod->cell(gold_id); Cell *gate_cell = equiv_mod->cell(gate_id); if (gold_cell == nullptr || gate_cell == nullptr || gold_cell->type != gate_cell->type || !ct.cell_known(gold_cell->type) || gold_cell->parameters != gate_cell->parameters || GetSize(gold_cell->connections()) != GetSize(gate_cell->connections())) try_next_cell_name: continue; for (auto gold_conn : gold_cell->connections()) if (!gate_cell->connections().count(gold_conn.first)) goto try_next_cell_name; log("Presumably equivalent cells: %s %s (%s) -> %s\n", log_id(gold_cell), log_id(gate_cell), log_id(gold_cell->type), log_id(id)); for (auto gold_conn : gold_cell->connections()) { SigSpec gold_sig = assign_map(gold_conn.second); SigSpec gate_sig = assign_map(gate_cell->getPort(gold_conn.first)); if (ct.cell_output(gold_cell->type, gold_conn.first)) { equiv_mod->connect(gate_sig, gold_sig); continue; } if (make_assert) { if (gold_sig != gate_sig) add_eq_assertion(gold_sig, gate_sig); } else { for (int i = 0; i < GetSize(gold_sig); i++) if (gold_sig[i] != gate_sig[i]) { Wire *w = equiv_mod->addWire(NEW_ID); equiv_mod->addEquiv(NEW_ID, gold_sig[i], gate_sig[i], w); gold_sig[i] = w; } } gold_cell->setPort(gold_conn.first, gold_sig); } equiv_mod->remove(gate_cell); equiv_mod->rename(gold_cell, id); } } void find_undriven_nets(bool mark) { undriven_bits.clear(); assign_map.set(equiv_mod); for (auto wire : equiv_mod->wires()) { for (auto bit : assign_map(wire)) if (bit.wire) undriven_bits.insert(bit); } for (auto wire : equiv_mod->wires()) { if (wire->port_input) for (auto bit : assign_map(wire)) undriven_bits.erase(bit); } for (auto cell : equiv_mod->cells()) { for (auto &conn : cell->connections()) if (!ct.cell_known(cell->type) || ct.cell_output(cell->type, conn.first)) for (auto bit : assign_map(conn.second)) undriven_bits.erase(bit); } if (mark) { SigSpec undriven_sig(undriven_bits); undriven_sig.sort_and_unify(); for (auto chunk : undriven_sig.chunks()) { log("Setting undriven nets to undef: %s\n", log_signal(chunk)); equiv_mod->connect(chunk, SigSpec(State::Sx, chunk.width)); } } } void run() { copy_to_equiv(); find_undriven_nets(false); find_same_wires(); find_same_cells(); find_undriven_nets(true); } }; struct EquivMakePass : public Pass { EquivMakePass() : Pass("equiv_make", "prepare a circuit for equivalence checking") { } void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" equiv_make [options] gold_module gate_module equiv_module\n"); log("\n"); log("This creates a module annotated with $equiv cells from two presumably\n"); log("equivalent modules. Use commands such as 'equiv_simple' and 'equiv_status'\n"); log("to work with the created equivalent checking module.\n"); log("\n"); log(" -inames\n"); log(" Also match cells and wires with $... names.\n"); log("\n"); log(" -blacklist \n"); log(" Do not match cells or signals that match the names in the file.\n"); log("\n"); log(" -encfile \n"); log(" Match FSM encodings using the description from the file.\n"); log(" See 'help fsm_recode' for details.\n"); log("\n"); log(" -make_assert\n"); log(" Check equivalence with $assert cells instead of $equiv.\n"); log(" $eqx (===) is used to compare signals."); log("\n"); log("Note: The circuit created by this command is not a miter (with something like\n"); log("a trigger output), but instead uses $equiv cells to encode the equivalence\n"); log("checking problem. Use 'miter -equiv' if you want to create a miter circuit.\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) override { EquivMakeWorker worker; worker.ct.setup(design); worker.inames = false; worker.make_assert = false; size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-inames") { worker.inames = true; continue; } if (args[argidx] == "-blacklist" && argidx+1 < args.size()) { worker.blacklists.push_back(args[++argidx]); continue; } if (args[argidx] == "-encfile" && argidx+1 < args.size()) { worker.encfiles.push_back(args[++argidx]); continue; } if (args[argidx] == "-make_assert") { worker.make_assert = true; continue; } break; } if (argidx+3 != args.size()) log_cmd_error("Invalid number of arguments.\n"); worker.gold_mod = design->module(RTLIL::escape_id(args[argidx])); worker.gate_mod = design->module(RTLIL::escape_id(args[argidx+1])); worker.equiv_mod = design->module(RTLIL::escape_id(args[argidx+2])); if (worker.gold_mod == nullptr) log_cmd_error("Can't find gold module %s.\n", args[argidx].c_str()); if (worker.gate_mod == nullptr) log_cmd_error("Can't find gate module %s.\n", args[argidx+1].c_str()); if (worker.equiv_mod != nullptr) log_cmd_error("Equiv module %s already exists.\n", args[argidx+2].c_str()); if (worker.gold_mod->has_memories() || worker.gold_mod->has_processes()) log_cmd_error("Gold module contains memories or processes. Run 'memory' or 'proc' respectively.\n"); if (worker.gate_mod->has_memories() || worker.gate_mod->has_processes()) log_cmd_error("Gate module contains memories or processes. Run 'memory' or 'proc' respectively.\n"); worker.read_blacklists(); worker.read_encfiles(); log_header(design, "Executing EQUIV_MAKE pass (creating equiv checking module).\n"); worker.equiv_mod = design->addModule(RTLIL::escape_id(args[argidx+2])); worker.run(); } } EquivMakePass; PRIVATE_NAMESPACE_END