/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/rtlil.h" #include "kernel/satgen.h" #include "kernel/sigtools.h" #include "kernel/modwalker.h" #include "kernel/register.h" #include "kernel/log.h" #include struct ShareWorkerConfig { bool opt_force; bool opt_aggressive; bool opt_fast; std::set generic_uni_ops, generic_bin_ops, generic_cbin_ops; }; struct ShareWorker { ShareWorkerConfig config; std::set generic_ops; RTLIL::Design *design; RTLIL::Module *module; CellTypes fwd_ct, cone_ct; ModWalker modwalker; std::set cells_to_remove; std::set recursion_state; // ------------------------------------------------------------------------------ // Find terminal bits -- i.e. bits that do not (exclusively) feed into a mux tree // ------------------------------------------------------------------------------ std::set terminal_bits; void find_terminal_bits() { std::set queue_bits; std::set visited_cells; queue_bits.insert(modwalker.signal_outputs.begin(), modwalker.signal_outputs.end()); for (auto &it : module->cells) if (!fwd_ct.cell_known(it.second->type)) { std::set &bits = modwalker.cell_inputs[it.second]; queue_bits.insert(bits.begin(), bits.end()); } terminal_bits.insert(queue_bits.begin(), queue_bits.end()); while (!queue_bits.empty()) { std::set portbits; modwalker.get_drivers(portbits, queue_bits); queue_bits.clear(); for (auto &pbit : portbits) { if (pbit.cell->type == "$mux" || pbit.cell->type == "$pmux") { std::set bits = modwalker.sigmap(pbit.cell->connections.at("\\S")).to_sigbit_set(); terminal_bits.insert(bits.begin(), bits.end()); queue_bits.insert(bits.begin(), bits.end()); visited_cells.insert(pbit.cell); } if (fwd_ct.cell_known(pbit.cell->type) && visited_cells.count(pbit.cell) == 0) { std::set &bits = modwalker.cell_inputs[pbit.cell]; terminal_bits.insert(bits.begin(), bits.end()); queue_bits.insert(bits.begin(), bits.end()); visited_cells.insert(pbit.cell); } } } } // --------------------------------------------------- // Find shareable cells and compatible groups of cells // --------------------------------------------------- std::set shareable_cells; void find_shareable_cells() { for (auto &it : module->cells) { RTLIL::Cell *cell = it.second; if (!design->selected(module, cell) || !modwalker.ct.cell_known(cell->type)) continue; for (auto &bit : modwalker.cell_outputs[cell]) if (terminal_bits.count(bit)) goto not_a_muxed_cell; if (0) not_a_muxed_cell: continue; if (config.opt_force) { shareable_cells.insert(cell); continue; } if (cell->type == "$memrd") { if (!cell->parameters.at("\\CLK_ENABLE").as_bool()) shareable_cells.insert(cell); continue; } if (cell->type == "$mul" || cell->type == "$div" || cell->type == "$mod") { if (config.opt_aggressive || cell->parameters.at("\\Y_WIDTH").as_int() >= 4) shareable_cells.insert(cell); continue; } if (cell->type == "$shl" || cell->type == "$shr" || cell->type == "$sshl" || cell->type == "$sshr") { if (config.opt_aggressive || cell->parameters.at("\\Y_WIDTH").as_int() >= 8) shareable_cells.insert(cell); continue; } if (generic_ops.count(cell->type)) { if (config.opt_aggressive || cell->parameters.at("\\Y_WIDTH").as_int() >= 10) shareable_cells.insert(cell); continue; } } } bool is_shareable_pair(RTLIL::Cell *c1, RTLIL::Cell *c2) { if (c1->type != c2->type) return false; if (c1->type == "$memrd") { if (c1->parameters.at("\\MEMID").decode_string() != c2->parameters.at("\\MEMID").decode_string()) return false; return true; } if (config.generic_uni_ops.count(c1->type)) { if (!config.opt_aggressive) { int a1_width = c1->parameters.at("\\A_WIDTH").as_int(); int y1_width = c1->parameters.at("\\Y_WIDTH").as_int(); int a2_width = c2->parameters.at("\\A_WIDTH").as_int(); int y2_width = c2->parameters.at("\\Y_WIDTH").as_int(); if (std::max(a1_width, a2_width) > 2 * std::min(a1_width, a2_width)) return false; if (std::max(y1_width, y2_width) > 2 * std::min(y1_width, y2_width)) return false; } return true; } if (config.generic_bin_ops.count(c1->type)) { if (!config.opt_aggressive) { int a1_width = c1->parameters.at("\\A_WIDTH").as_int(); int b1_width = c1->parameters.at("\\B_WIDTH").as_int(); int y1_width = c1->parameters.at("\\Y_WIDTH").as_int(); int a2_width = c2->parameters.at("\\A_WIDTH").as_int(); int b2_width = c2->parameters.at("\\B_WIDTH").as_int(); int y2_width = c2->parameters.at("\\Y_WIDTH").as_int(); if (std::max(a1_width, a2_width) > 2 * std::min(a1_width, a2_width)) return false; if (std::max(b1_width, b2_width) > 2 * std::min(b1_width, b2_width)) return false; if (std::max(y1_width, y2_width) > 2 * std::min(y1_width, y2_width)) return false; } return true; } if (config.generic_cbin_ops.count(c1->type)) { if (!config.opt_aggressive) { int a1_width = c1->parameters.at("\\A_WIDTH").as_int(); int b1_width = c1->parameters.at("\\B_WIDTH").as_int(); int y1_width = c1->parameters.at("\\Y_WIDTH").as_int(); int a2_width = c2->parameters.at("\\A_WIDTH").as_int(); int b2_width = c2->parameters.at("\\B_WIDTH").as_int(); int y2_width = c2->parameters.at("\\Y_WIDTH").as_int(); int min1_width = std::min(a1_width, b1_width); int max1_width = std::max(a1_width, b1_width); int min2_width = std::min(a2_width, b2_width); int max2_width = std::max(a2_width, b2_width); if (std::max(min1_width, min2_width) > 2 * std::min(min1_width, min2_width)) return false; if (std::max(max1_width, max2_width) > 2 * std::min(max1_width, max2_width)) return false; if (std::max(y1_width, y2_width) > 2 * std::min(y1_width, y2_width)) return false; } return true; } for (auto &it : c1->parameters) if (c2->parameters.count(it.first) == 0 || c2->parameters.at(it.first) != it.second) return false; for (auto &it : c2->parameters) if (c1->parameters.count(it.first) == 0 || c1->parameters.at(it.first) != it.second) return false; return true; } void find_shareable_partners(std::vector &results, RTLIL::Cell *cell) { results.clear(); for (auto c : shareable_cells) if (c != cell && is_shareable_pair(c, cell)) results.push_back(c); } // ----------------------- // Create replacement cell // ----------------------- RTLIL::Cell *make_supercell(RTLIL::Cell *c1, RTLIL::Cell *c2, RTLIL::SigSpec act) { log_assert(c1->type == c2->type); if (config.generic_uni_ops.count(c1->type)) { if (c1->parameters.at("\\A_SIGNED").as_bool() != c2->parameters.at("\\A_SIGNED").as_bool()) { RTLIL::Cell *unsigned_cell = c1->parameters.at("\\A_SIGNED").as_bool() ? c2 : c1; if (unsigned_cell->connections.at("\\A").to_sigbit_vector().back() != RTLIL::State::S0) { unsigned_cell->parameters.at("\\A_WIDTH") = unsigned_cell->parameters.at("\\A_WIDTH").as_int() + 1; unsigned_cell->connections.at("\\A").append_bit(RTLIL::State::S0); } unsigned_cell->parameters.at("\\A_SIGNED") = true; unsigned_cell->check(); } bool a_signed = c1->parameters.at("\\A_SIGNED").as_bool(); log_assert(a_signed == c2->parameters.at("\\A_SIGNED").as_bool()); RTLIL::SigSpec a1 = c1->connections.at("\\A"); RTLIL::SigSpec y1 = c1->connections.at("\\Y"); RTLIL::SigSpec a2 = c2->connections.at("\\A"); RTLIL::SigSpec y2 = c2->connections.at("\\Y"); int a_width = std::max(a1.width, a2.width); int y_width = std::max(y1.width, y2.width); if (a1.width != a_width) a1 = module->addPos(NEW_ID, a1, module->addWire(NEW_ID, a_width), a_signed)->connections.at("\\Y"); if (a2.width != a_width) a2 = module->addPos(NEW_ID, a2, module->addWire(NEW_ID, a_width), a_signed)->connections.at("\\Y"); RTLIL::SigSpec a = module->Mux(NEW_ID, a2, a1, act); RTLIL::Wire *y = module->addWire(NEW_ID, y_width); RTLIL::Cell *supercell = new RTLIL::Cell; supercell->name = NEW_ID; supercell->type = c1->type; supercell->parameters["\\A_SIGNED"] = a_signed; supercell->parameters["\\A_WIDTH"] = a_width; supercell->parameters["\\Y_WIDTH"] = y_width; supercell->connections["\\A"] = a; supercell->connections["\\Y"] = y; module->add(supercell); RTLIL::SigSpec new_y1(y, y1.width); RTLIL::SigSpec new_y2(y, y2.width); module->connections.push_back(RTLIL::SigSig(y1, new_y1)); module->connections.push_back(RTLIL::SigSig(y2, new_y2)); return supercell; } if (config.generic_bin_ops.count(c1->type) || config.generic_cbin_ops.count(c1->type)) { bool modified_src_cells = false; if (config.generic_cbin_ops.count(c1->type)) { int score_unflipped = std::max(c1->parameters.at("\\A_WIDTH").as_int(), c2->parameters.at("\\A_WIDTH").as_int()) + std::max(c1->parameters.at("\\B_WIDTH").as_int(), c2->parameters.at("\\B_WIDTH").as_int()); int score_flipped = std::max(c1->parameters.at("\\A_WIDTH").as_int(), c2->parameters.at("\\B_WIDTH").as_int()) + std::max(c1->parameters.at("\\B_WIDTH").as_int(), c2->parameters.at("\\A_WIDTH").as_int()); if (score_flipped < score_unflipped) { std::swap(c2->connections.at("\\A"), c2->connections.at("\\B")); std::swap(c2->parameters.at("\\A_WIDTH"), c2->parameters.at("\\B_WIDTH")); std::swap(c2->parameters.at("\\A_SIGNED"), c2->parameters.at("\\B_SIGNED")); modified_src_cells = true; } } if (c1->parameters.at("\\A_SIGNED").as_bool() != c2->parameters.at("\\A_SIGNED").as_bool()) { RTLIL::Cell *unsigned_cell = c1->parameters.at("\\A_SIGNED").as_bool() ? c2 : c1; if (unsigned_cell->connections.at("\\A").to_sigbit_vector().back() != RTLIL::State::S0) { unsigned_cell->parameters.at("\\A_WIDTH") = unsigned_cell->parameters.at("\\A_WIDTH").as_int() + 1; unsigned_cell->connections.at("\\A").append_bit(RTLIL::State::S0); } unsigned_cell->parameters.at("\\A_SIGNED") = true; modified_src_cells = true; } if (c1->parameters.at("\\B_SIGNED").as_bool() != c2->parameters.at("\\B_SIGNED").as_bool()) { RTLIL::Cell *unsigned_cell = c1->parameters.at("\\B_SIGNED").as_bool() ? c2 : c1; if (unsigned_cell->connections.at("\\B").to_sigbit_vector().back() != RTLIL::State::S0) { unsigned_cell->parameters.at("\\B_WIDTH") = unsigned_cell->parameters.at("\\B_WIDTH").as_int() + 1; unsigned_cell->connections.at("\\B").append_bit(RTLIL::State::S0); } unsigned_cell->parameters.at("\\B_SIGNED") = true; modified_src_cells = true; } if (modified_src_cells) { c1->check(); c2->check(); } bool a_signed = c1->parameters.at("\\A_SIGNED").as_bool(); bool b_signed = c1->parameters.at("\\B_SIGNED").as_bool(); log_assert(a_signed == c2->parameters.at("\\A_SIGNED").as_bool()); log_assert(b_signed == c2->parameters.at("\\B_SIGNED").as_bool()); if (c1->type == "$shl" || c1->type == "$shr" || c1->type == "$sshl" || c1->type == "$sshr") b_signed = false; RTLIL::SigSpec a1 = c1->connections.at("\\A"); RTLIL::SigSpec b1 = c1->connections.at("\\B"); RTLIL::SigSpec y1 = c1->connections.at("\\Y"); RTLIL::SigSpec a2 = c2->connections.at("\\A"); RTLIL::SigSpec b2 = c2->connections.at("\\B"); RTLIL::SigSpec y2 = c2->connections.at("\\Y"); int a_width = std::max(a1.width, a2.width); int b_width = std::max(b1.width, b2.width); int y_width = std::max(y1.width, y2.width); if (c1->type == "$shr" && a_signed) { a_width = std::max(y_width, a_width); if (a1.width < y1.width) a1 = module->addPos(NEW_ID, a1, module->addWire(NEW_ID, y1.width), true)->connections.at("\\Y"); if (a2.width < y2.width) a2 = module->addPos(NEW_ID, a2, module->addWire(NEW_ID, y2.width), true)->connections.at("\\Y"); if (a1.width != a_width) a1 = module->addPos(NEW_ID, a1, module->addWire(NEW_ID, a_width), false)->connections.at("\\Y"); if (a2.width != a_width) a2 = module->addPos(NEW_ID, a2, module->addWire(NEW_ID, a_width), false)->connections.at("\\Y"); } else { if (a1.width != a_width) a1 = module->addPos(NEW_ID, a1, module->addWire(NEW_ID, a_width), a_signed)->connections.at("\\Y"); if (a2.width != a_width) a2 = module->addPos(NEW_ID, a2, module->addWire(NEW_ID, a_width), a_signed)->connections.at("\\Y"); } if (b1.width != b_width) b1 = module->addPos(NEW_ID, b1, module->addWire(NEW_ID, b_width), b_signed)->connections.at("\\Y"); if (b2.width != b_width) b2 = module->addPos(NEW_ID, b2, module->addWire(NEW_ID, b_width), b_signed)->connections.at("\\Y"); RTLIL::SigSpec a = module->Mux(NEW_ID, a2, a1, act); RTLIL::SigSpec b = module->Mux(NEW_ID, b2, b1, act); RTLIL::Wire *y = module->addWire(NEW_ID, y_width); RTLIL::Cell *supercell = module->addCell(NEW_ID, c1->type); supercell->parameters["\\A_SIGNED"] = a_signed; supercell->parameters["\\B_SIGNED"] = b_signed; supercell->parameters["\\A_WIDTH"] = a_width; supercell->parameters["\\B_WIDTH"] = b_width; supercell->parameters["\\Y_WIDTH"] = y_width; supercell->connections["\\A"] = a; supercell->connections["\\B"] = b; supercell->connections["\\Y"] = y; supercell->check(); RTLIL::SigSpec new_y1(y, y1.width); RTLIL::SigSpec new_y2(y, y2.width); module->connections.push_back(RTLIL::SigSig(y1, new_y1)); module->connections.push_back(RTLIL::SigSig(y2, new_y2)); return supercell; } log_abort(); } // ------------------------------------------- // Finding forbidden control inputs for a cell // ------------------------------------------- std::map> forbidden_controls_cache; const std::set &find_forbidden_controls(RTLIL::Cell *cell) { if (recursion_state.count(cell)) { static std::set empty_controls_set; return empty_controls_set; } if (forbidden_controls_cache.count(cell)) return forbidden_controls_cache.at(cell); std::set pbits; std::set consumer_cells; modwalker.get_consumers(pbits, modwalker.cell_outputs[cell]); for (auto &bit : pbits) { if ((bit.cell->type == "$mux" || bit.cell->type == "$pmux") && bit.port == "\\S") forbidden_controls_cache[cell].insert(bit.cell->connections.at("\\S").extract(bit.offset, 1)); consumer_cells.insert(bit.cell); } recursion_state.insert(cell); for (auto c : consumer_cells) if (fwd_ct.cell_known(c->type)) { const std::set &bits = find_forbidden_controls(c); forbidden_controls_cache[cell].insert(bits.begin(), bits.end()); } log_assert(recursion_state.count(cell)); recursion_state.erase(cell); return forbidden_controls_cache[cell]; } // -------------------------------------------------------- // Finding control inputs and activation pattern for a cell // -------------------------------------------------------- std::map>> activation_patterns_cache; bool sort_check_activation_pattern(std::pair &p) { std::map p_bits; std::vector p_first_bits = p.first; for (int i = 0; i < SIZE(p_first_bits); i++) { RTLIL::SigBit b = p_first_bits[i]; RTLIL::State v = p.second.bits[i]; if (p_bits.count(b) && p_bits.at(b) != v) return false; p_bits[b] = v; } p.first = RTLIL::SigSpec(); p.second.bits.clear(); for (auto &it : p_bits) { p.first.append_bit(it.first); p.second.bits.push_back(it.second); } return true; } void optimize_activation_patterns(std::set> & /* patterns */) { // TODO: Remove patterns that are contained in other patterns // TODO: Consolidate pairs of patterns that only differ in the value for one signal bit } const std::set> &find_cell_activation_patterns(RTLIL::Cell *cell, const char *indent) { if (recursion_state.count(cell)) { static std::set> empty_patterns_set; return empty_patterns_set; } if (activation_patterns_cache.count(cell)) return activation_patterns_cache.at(cell); const std::set &cell_out_bits = modwalker.cell_outputs[cell]; std::set driven_cells, driven_data_muxes; for (auto &bit : cell_out_bits) { if (terminal_bits.count(bit)) { // Terminal cells are always active: unconditional activation pattern activation_patterns_cache[cell].insert(std::pair()); return activation_patterns_cache.at(cell); } for (auto &pbit : modwalker.signal_consumers[bit]) { log_assert(fwd_ct.cell_known(pbit.cell->type)); if ((pbit.cell->type == "$mux" || pbit.cell->type == "$pmux") && (pbit.port == "\\A" || pbit.port == "\\B")) driven_data_muxes.insert(pbit.cell); else driven_cells.insert(pbit.cell); } } recursion_state.insert(cell); for (auto c : driven_data_muxes) { const std::set> &c_patterns = find_cell_activation_patterns(c, indent); bool used_in_a = false; std::set used_in_b_parts; int width = c->parameters.at("\\WIDTH").as_int(); std::vector sig_a = modwalker.sigmap(c->connections.at("\\A")); std::vector sig_b = modwalker.sigmap(c->connections.at("\\B")); std::vector sig_s = modwalker.sigmap(c->connections.at("\\S")); for (auto &bit : sig_a) if (cell_out_bits.count(bit)) used_in_a = true; for (int i = 0; i < SIZE(sig_b); i++) if (cell_out_bits.count(sig_b[i])) used_in_b_parts.insert(i / width); if (used_in_a) for (auto p : c_patterns) { for (int i = 0; i < SIZE(sig_s); i++) p.first.append_bit(sig_s[i]), p.second.bits.push_back(RTLIL::State::S0); if (sort_check_activation_pattern(p)) activation_patterns_cache[cell].insert(p); } for (int idx : used_in_b_parts) for (auto p : c_patterns) { p.first.append_bit(sig_s[idx]), p.second.bits.push_back(RTLIL::State::S1); if (sort_check_activation_pattern(p)) activation_patterns_cache[cell].insert(p); } } for (auto c : driven_cells) { const std::set> &c_patterns = find_cell_activation_patterns(c, indent); activation_patterns_cache[cell].insert(c_patterns.begin(), c_patterns.end()); } log_assert(recursion_state.count(cell)); recursion_state.erase(cell); optimize_activation_patterns(activation_patterns_cache[cell]); if (activation_patterns_cache[cell].empty()) { log("%sFound cell that is never activated: %s\n", indent, log_id(cell)); RTLIL::SigSpec cell_outputs = modwalker.cell_outputs[cell]; module->connections.push_back(RTLIL::SigSig(cell_outputs, RTLIL::SigSpec(RTLIL::State::Sx, cell_outputs.width))); cells_to_remove.insert(cell); } return activation_patterns_cache[cell]; } RTLIL::SigSpec bits_from_activation_patterns(const std::set> &activation_patterns) { std::set all_bits; for (auto &it : activation_patterns) { std::vector bits = it.first; all_bits.insert(bits.begin(), bits.end()); } RTLIL::SigSpec signal; for (auto &bit : all_bits) signal.append_bit(bit); return signal; } void filter_activation_patterns(std::set> &out, const std::set> &in, const std::set &filter_bits) { for (auto &p : in) { std::vector p_first = p.first; std::pair new_p; for (int i = 0; i < SIZE(p_first); i++) if (filter_bits.count(p_first[i]) == 0) { new_p.first.append_bit(p_first[i]); new_p.second.bits.push_back(p.second.bits.at(i)); } out.insert(new_p); } } RTLIL::SigSpec make_cell_activation_logic(const std::set> &activation_patterns) { RTLIL::Wire *all_cases_wire = module->addWire(NEW_ID, 0); for (auto &p : activation_patterns) { all_cases_wire->width++; module->addEq(NEW_ID, p.first, p.second, RTLIL::SigSpec(all_cases_wire, 1, all_cases_wire->width - 1)); } if (all_cases_wire->width == 1) return all_cases_wire; return module->ReduceOr(NEW_ID, all_cases_wire); } // ------------- // Setup and run // ------------- ShareWorker(ShareWorkerConfig config, RTLIL::Design *design, RTLIL::Module *module) : config(config), design(design), module(module) { generic_ops.insert(config.generic_uni_ops.begin(), config.generic_uni_ops.end()); generic_ops.insert(config.generic_bin_ops.begin(), config.generic_bin_ops.end()); generic_ops.insert(config.generic_cbin_ops.begin(), config.generic_cbin_ops.end()); fwd_ct.setup_internals(); cone_ct.setup_internals(); cone_ct.cell_types.erase("$mul"); cone_ct.cell_types.erase("$mod"); cone_ct.cell_types.erase("$div"); cone_ct.cell_types.erase("$pow"); cone_ct.cell_types.erase("$shl"); cone_ct.cell_types.erase("$shr"); cone_ct.cell_types.erase("$sshl"); cone_ct.cell_types.erase("$sshr"); modwalker.setup(design, module); find_terminal_bits(); find_shareable_cells(); if (shareable_cells.size() < 2) return; log("Found %d cells in module %s that may be considered for resource sharing.\n", SIZE(shareable_cells), log_id(module)); while (!shareable_cells.empty()) { RTLIL::Cell *cell = *shareable_cells.begin(); shareable_cells.erase(cell); log(" Analyzing resource sharing options for %s:\n", log_id(cell)); const std::set> &cell_activation_patterns = find_cell_activation_patterns(cell, " "); RTLIL::SigSpec cell_activation_signals = bits_from_activation_patterns(cell_activation_patterns); if (cell_activation_patterns.empty()) { log (" Cell is never active. Sharing is pointless, we simply remove it.\n"); continue; } if (cell_activation_patterns.count(std::pair())) { log (" Cell is always active. Therefore no sharing is possible.\n"); continue; } log(" Found %d activation_patterns using ctrl signal %s.\n", SIZE(cell_activation_patterns), log_signal(cell_activation_signals)); std::vector candidates; find_shareable_partners(candidates, cell); if (candidates.empty()) { log(" No candidates found.\n"); continue; } log(" Found %d candidates:", SIZE(candidates)); for (auto c : candidates) log(" %s", log_id(c)); log("\n"); for (auto other_cell : candidates) { log(" Analyzing resource sharing with %s:\n", log_id(other_cell)); const std::set> &other_cell_activation_patterns = find_cell_activation_patterns(other_cell, " "); RTLIL::SigSpec other_cell_activation_signals = bits_from_activation_patterns(other_cell_activation_patterns); if (other_cell_activation_patterns.empty()) { log (" Cell is never active. Sharing is pointless, we simply remove it.\n"); shareable_cells.erase(other_cell); continue; } if (other_cell_activation_patterns.count(std::pair())) { log (" Cell is always active. Therefore no sharing is possible.\n"); continue; } log(" Found %d activation_patterns using ctrl signal %s.\n", SIZE(other_cell_activation_patterns), log_signal(other_cell_activation_signals)); const std::set &cell_forbidden_controls = find_forbidden_controls(cell); const std::set &other_cell_forbidden_controls = find_forbidden_controls(other_cell); std::set union_forbidden_controls; union_forbidden_controls.insert(cell_forbidden_controls.begin(), cell_forbidden_controls.end()); union_forbidden_controls.insert(other_cell_forbidden_controls.begin(), other_cell_forbidden_controls.end()); if (!union_forbidden_controls.empty()) log(" Forbidden control signals for this pair of cells: %s\n", log_signal(union_forbidden_controls)); std::set> filtered_cell_activation_patterns; std::set> filtered_other_cell_activation_patterns; filter_activation_patterns(filtered_cell_activation_patterns, cell_activation_patterns, union_forbidden_controls); filter_activation_patterns(filtered_other_cell_activation_patterns, other_cell_activation_patterns, union_forbidden_controls); optimize_activation_patterns(filtered_cell_activation_patterns); optimize_activation_patterns(filtered_other_cell_activation_patterns); ezDefaultSAT ez; ez.non_incremental(); SatGen satgen(&ez, &modwalker.sigmap); std::set sat_cells; std::set bits_queue; std::vector cell_active, other_cell_active; RTLIL::SigSpec all_ctrl_signals; for (auto &p : filtered_cell_activation_patterns) { log(" Activation pattern for cell %s: %s = %s\n", log_id(cell), log_signal(p.first), log_signal(p.second)); cell_active.push_back(ez.vec_eq(satgen.importSigSpec(p.first), satgen.importSigSpec(p.second))); all_ctrl_signals.append(p.first); } for (auto &p : filtered_other_cell_activation_patterns) { log(" Activation pattern for cell %s: %s = %s\n", log_id(other_cell), log_signal(p.first), log_signal(p.second)); other_cell_active.push_back(ez.vec_eq(satgen.importSigSpec(p.first), satgen.importSigSpec(p.second))); all_ctrl_signals.append(p.first); } for (auto &bit : cell_activation_signals.to_sigbit_vector()) bits_queue.insert(bit); for (auto &bit : other_cell_activation_signals.to_sigbit_vector()) bits_queue.insert(bit); while (!bits_queue.empty()) { std::set portbits; modwalker.get_drivers(portbits, bits_queue); bits_queue.clear(); for (auto &pbit : portbits) if (sat_cells.count(pbit.cell) == 0 && cone_ct.cell_known(pbit.cell->type)) { if (config.opt_fast && modwalker.cell_outputs[pbit.cell].size() >= 4) continue; // log(" Adding cell %s (%s) to SAT problem.\n", log_id(pbit.cell), log_id(pbit.cell->type)); bits_queue.insert(modwalker.cell_inputs[pbit.cell].begin(), modwalker.cell_inputs[pbit.cell].end()); satgen.importCell(pbit.cell); sat_cells.insert(pbit.cell); } if (config.opt_fast && sat_cells.size() > 100) break; } all_ctrl_signals.sort_and_unify(); std::vector sat_model = satgen.importSigSpec(all_ctrl_signals); std::vector sat_model_values; ez.assume(ez.AND(ez.expression(ez.OpOr, cell_active), ez.expression(ez.OpOr, other_cell_active))); log(" Size of SAT problem: %d cells, %d variables, %d clauses\n", SIZE(sat_cells), ez.numCnfVariables(), ez.numCnfClauses()); if (ez.solve(sat_model, sat_model_values)) { log(" According to the SAT solver this pair of cells can not be shared.\n"); log(" Model from SAT solver: %s = %d'", log_signal(all_ctrl_signals), SIZE(sat_model_values)); for (int i = SIZE(sat_model_values)-1; i >= 0; i--) log("%c", sat_model_values[i] ? '1' : '0'); log("\n"); continue; } log(" According to the SAT solver this pair of cells can be shared.\n"); shareable_cells.erase(other_cell); int cell_select_score = 0; int other_cell_select_score = 0; for (auto &p : filtered_cell_activation_patterns) cell_select_score += p.first.width; for (auto &p : filtered_other_cell_activation_patterns) other_cell_select_score += p.first.width; RTLIL::Cell *supercell; if (cell_select_score <= other_cell_select_score) { RTLIL::SigSpec act = make_cell_activation_logic(filtered_cell_activation_patterns); supercell = make_supercell(cell, other_cell, act); log(" Activation signal for %s: %s\n", log_id(cell), log_signal(act)); } else { RTLIL::SigSpec act = make_cell_activation_logic(filtered_other_cell_activation_patterns); supercell = make_supercell(other_cell, cell, act); log(" Activation signal for %s: %s\n", log_id(other_cell), log_signal(act)); } log(" New cell: %s (%s)\n", log_id(supercell), log_id(supercell->type)); std::set> supercell_activation_patterns; supercell_activation_patterns.insert(filtered_cell_activation_patterns.begin(), filtered_cell_activation_patterns.end()); supercell_activation_patterns.insert(filtered_other_cell_activation_patterns.begin(), filtered_other_cell_activation_patterns.end()); optimize_activation_patterns(supercell_activation_patterns); activation_patterns_cache[supercell] = supercell_activation_patterns; shareable_cells.insert(supercell); cells_to_remove.insert(cell); cells_to_remove.insert(other_cell); break; } } if (!cells_to_remove.empty()) { log("Removing %d cells in module %s:\n", SIZE(cells_to_remove), log_id(module)); for (auto c : cells_to_remove) { log(" Removing cell %s (%s).\n", log_id(c), log_id(c->type)); module->cells.erase(c->name); delete c; } } log_assert(recursion_state.empty()); } }; struct SharePass : public Pass { SharePass() : Pass("share", "perform sat-based resource sharing") { } virtual void help() { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" share [options] [selection]\n"); log("\n"); log("This pass merges shareable resources into a single resource. A SAT solver\n"); log("is used to determine if two resources are share-able.\n"); log("\n"); log(" -force\n"); log(" Per default the selection of cells that is considered for sharing is\n"); log(" narrowed using a list of cell types. With this option all selected\n"); log(" cells are considered for resource sharing.\n"); log("\n"); log(" IMPORTANT NOTE: If the -all option is used then no cells with internal\n"); log(" state must be selected!\n"); log("\n"); log(" -aggressive\n"); log(" Per default some heuristics are used to reduce the number of cells\n"); log(" considered for resource sharing to only large resources. This options\n"); log(" turns this heuristics off, resulting in much more cells being considered\n"); log(" for resource sharing.\n"); log("\n"); log(" -fast\n"); log(" Only consider the simple part of the control logic in SAT solving, resulting\n"); log(" in much easier SAT problems at the cost of maybe missing some oportunities\n"); log(" for resource sharing.\n"); log("\n"); } virtual void execute(std::vector args, RTLIL::Design *design) { ShareWorkerConfig config; config.opt_force = false; config.opt_aggressive = false; config.opt_fast = false; config.generic_uni_ops.insert("$not"); // config.generic_uni_ops.insert("$pos"); // config.generic_uni_ops.insert("$bu0"); config.generic_uni_ops.insert("$neg"); config.generic_uni_ops.insert("$reduce_and"); config.generic_uni_ops.insert("$reduce_or"); config.generic_uni_ops.insert("$reduce_xor"); config.generic_uni_ops.insert("$reduce_xnor"); config.generic_uni_ops.insert("$reduce_bool"); config.generic_cbin_ops.insert("$and"); config.generic_cbin_ops.insert("$or"); config.generic_cbin_ops.insert("$xor"); config.generic_cbin_ops.insert("$xnor"); config.generic_bin_ops.insert("$shl"); config.generic_bin_ops.insert("$shr"); config.generic_bin_ops.insert("$sshl"); config.generic_bin_ops.insert("$sshr"); config.generic_bin_ops.insert("$lt"); config.generic_bin_ops.insert("$le"); config.generic_bin_ops.insert("$eq"); config.generic_bin_ops.insert("$ne"); config.generic_bin_ops.insert("$eqx"); config.generic_bin_ops.insert("$nex"); config.generic_bin_ops.insert("$ge"); config.generic_bin_ops.insert("$gt"); config.generic_cbin_ops.insert("$add"); config.generic_cbin_ops.insert("$mul"); config.generic_bin_ops.insert("$sub"); config.generic_bin_ops.insert("$div"); config.generic_bin_ops.insert("$mod"); // config.generic_bin_ops.insert("$pow"); config.generic_uni_ops.insert("$logic_not"); config.generic_cbin_ops.insert("$logic_and"); config.generic_cbin_ops.insert("$logic_or"); log_header("Executing SHARE pass (SAT-based resource sharing).\n"); size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-force") { config.opt_force = true; continue; } if (args[argidx] == "-aggressive") { config.opt_aggressive = true; continue; } if (args[argidx] == "-fast") { config.opt_fast = true; continue; } break; } extra_args(args, argidx, design); for (auto &mod_it : design->modules) if (design->selected(mod_it.second)) ShareWorker(config, design, mod_it.second); } } SharePass;