/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Claire Xenia Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/register.h" #include "kernel/sigtools.h" #include "kernel/log.h" #include "kernel/celltypes.h" #include #include #include USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN struct OptReduceWorker { RTLIL::Design *design; RTLIL::Module *module; SigMap assign_map; int total_count; bool did_something; void opt_reduce(pool &cells, SigSet &drivers, RTLIL::Cell *cell) { if (cells.count(cell) == 0) return; cells.erase(cell); RTLIL::SigSpec sig_a = assign_map(cell->getPort(ID::A)); sig_a.sort_and_unify(); pool new_sig_a_bits; for (auto &bit : sig_a) { if (bit == RTLIL::State::S0) { if (cell->type == ID($reduce_and)) { new_sig_a_bits.clear(); new_sig_a_bits.insert(RTLIL::State::S0); break; } continue; } if (bit == RTLIL::State::S1) { if (cell->type == ID($reduce_or)) { new_sig_a_bits.clear(); new_sig_a_bits.insert(RTLIL::State::S1); break; } continue; } if (bit.wire == NULL) { new_sig_a_bits.insert(bit); continue; } bool imported_children = false; for (auto child_cell : drivers.find(bit)) { if (child_cell->type == cell->type) { opt_reduce(cells, drivers, child_cell); if (child_cell->getPort(ID::Y)[0] == bit) { pool child_sig_a_bits = assign_map(child_cell->getPort(ID::A)).to_sigbit_pool(); new_sig_a_bits.insert(child_sig_a_bits.begin(), child_sig_a_bits.end()); } else new_sig_a_bits.insert(RTLIL::State::S0); imported_children = true; } } if (!imported_children) new_sig_a_bits.insert(bit); } RTLIL::SigSpec new_sig_a(new_sig_a_bits); new_sig_a.sort_and_unify(); if (new_sig_a != sig_a || sig_a.size() != cell->getPort(ID::A).size()) { log(" New input vector for %s cell %s: %s\n", cell->type.c_str(), cell->name.c_str(), log_signal(new_sig_a)); did_something = true; total_count++; } cell->setPort(ID::A, new_sig_a); cell->parameters[ID::A_WIDTH] = RTLIL::Const(new_sig_a.size()); return; } void opt_mux(RTLIL::Cell *cell) { RTLIL::SigSpec sig_a = assign_map(cell->getPort(ID::A)); RTLIL::SigSpec sig_b = assign_map(cell->getPort(ID::B)); RTLIL::SigSpec sig_s = assign_map(cell->getPort(ID::S)); RTLIL::SigSpec new_sig_b, new_sig_s; pool handled_sig; handled_sig.insert(sig_a); for (int i = 0; i < sig_s.size(); i++) { RTLIL::SigSpec this_b = sig_b.extract(i*sig_a.size(), sig_a.size()); if (handled_sig.count(this_b) > 0) continue; RTLIL::SigSpec this_s = sig_s.extract(i, 1); for (int j = i+1; j < sig_s.size(); j++) { RTLIL::SigSpec that_b = sig_b.extract(j*sig_a.size(), sig_a.size()); if (this_b == that_b) this_s.append(sig_s.extract(j, 1)); } if (this_s.size() > 1) { RTLIL::Cell *reduce_or_cell = module->addCell(NEW_ID, ID($reduce_or)); reduce_or_cell->setPort(ID::A, this_s); reduce_or_cell->parameters[ID::A_SIGNED] = RTLIL::Const(0); reduce_or_cell->parameters[ID::A_WIDTH] = RTLIL::Const(this_s.size()); reduce_or_cell->parameters[ID::Y_WIDTH] = RTLIL::Const(1); RTLIL::Wire *reduce_or_wire = module->addWire(NEW_ID); this_s = RTLIL::SigSpec(reduce_or_wire); reduce_or_cell->setPort(ID::Y, this_s); } new_sig_b.append(this_b); new_sig_s.append(this_s); handled_sig.insert(this_b); } if (new_sig_s.size() != sig_s.size()) { log(" New ctrl vector for %s cell %s: %s\n", cell->type.c_str(), cell->name.c_str(), log_signal(new_sig_s)); did_something = true; total_count++; } if (new_sig_s.size() == 0) { module->connect(RTLIL::SigSig(cell->getPort(ID::Y), cell->getPort(ID::A))); assign_map.add(cell->getPort(ID::Y), cell->getPort(ID::A)); module->remove(cell); } else { cell->setPort(ID::B, new_sig_b); cell->setPort(ID::S, new_sig_s); if (new_sig_s.size() > 1) { cell->parameters[ID::S_WIDTH] = RTLIL::Const(new_sig_s.size()); } else { cell->type = ID($mux); cell->parameters.erase(ID::S_WIDTH); } } } void opt_mux_bits(RTLIL::Cell *cell) { std::vector sig_a = assign_map(cell->getPort(ID::A)).to_sigbit_vector(); std::vector sig_b = assign_map(cell->getPort(ID::B)).to_sigbit_vector(); std::vector sig_y = assign_map(cell->getPort(ID::Y)).to_sigbit_vector(); std::vector new_sig_y; RTLIL::SigSig old_sig_conn; std::vector> consolidated_in_tuples; std::map, RTLIL::SigBit> consolidated_in_tuples_map; for (int i = 0; i < int(sig_y.size()); i++) { std::vector in_tuple; bool all_tuple_bits_same = true; in_tuple.push_back(sig_a.at(i)); for (int j = i; j < int(sig_b.size()); j += int(sig_a.size())) { if (sig_b.at(j) != sig_a.at(i)) all_tuple_bits_same = false; in_tuple.push_back(sig_b.at(j)); } if (all_tuple_bits_same) { old_sig_conn.first.append(sig_y.at(i)); old_sig_conn.second.append(sig_a.at(i)); } else if (consolidated_in_tuples_map.count(in_tuple)) { old_sig_conn.first.append(sig_y.at(i)); old_sig_conn.second.append(consolidated_in_tuples_map.at(in_tuple)); } else { consolidated_in_tuples_map[in_tuple] = sig_y.at(i); consolidated_in_tuples.push_back(in_tuple); new_sig_y.push_back(sig_y.at(i)); } } if (new_sig_y.size() != sig_y.size()) { log(" Consolidated identical input bits for %s cell %s:\n", cell->type.c_str(), cell->name.c_str()); log(" Old ports: A=%s, B=%s, Y=%s\n", log_signal(cell->getPort(ID::A)), log_signal(cell->getPort(ID::B)), log_signal(cell->getPort(ID::Y))); cell->setPort(ID::A, RTLIL::SigSpec()); for (auto &in_tuple : consolidated_in_tuples) { RTLIL::SigSpec new_a = cell->getPort(ID::A); new_a.append(in_tuple.at(0)); cell->setPort(ID::A, new_a); } cell->setPort(ID::B, RTLIL::SigSpec()); for (int i = 1; i <= cell->getPort(ID::S).size(); i++) for (auto &in_tuple : consolidated_in_tuples) { RTLIL::SigSpec new_b = cell->getPort(ID::B); new_b.append(in_tuple.at(i)); cell->setPort(ID::B, new_b); } cell->parameters[ID::WIDTH] = RTLIL::Const(new_sig_y.size()); cell->setPort(ID::Y, new_sig_y); log(" New ports: A=%s, B=%s, Y=%s\n", log_signal(cell->getPort(ID::A)), log_signal(cell->getPort(ID::B)), log_signal(cell->getPort(ID::Y))); log(" New connections: %s = %s\n", log_signal(old_sig_conn.first), log_signal(old_sig_conn.second)); module->connect(old_sig_conn); did_something = true; total_count++; } } OptReduceWorker(RTLIL::Design *design, RTLIL::Module *module, bool do_fine) : design(design), module(module), assign_map(module) { log(" Optimizing cells in module %s.\n", module->name.c_str()); total_count = 0; did_something = true; SigPool mem_wren_sigs; for (auto &cell_it : module->cells_) { RTLIL::Cell *cell = cell_it.second; if (cell->type.in(ID($mem), ID($mem_v2))) mem_wren_sigs.add(assign_map(cell->getPort(ID::WR_EN))); if (cell->type.in(ID($memwr), ID($memwr_v2))) mem_wren_sigs.add(assign_map(cell->getPort(ID::EN))); } for (auto &cell_it : module->cells_) { RTLIL::Cell *cell = cell_it.second; if (cell->type == ID($dff) && mem_wren_sigs.check_any(assign_map(cell->getPort(ID::Q)))) mem_wren_sigs.add(assign_map(cell->getPort(ID::D))); } bool keep_expanding_mem_wren_sigs = true; while (keep_expanding_mem_wren_sigs) { keep_expanding_mem_wren_sigs = false; for (auto &cell_it : module->cells_) { RTLIL::Cell *cell = cell_it.second; if (cell->type == ID($mux) && mem_wren_sigs.check_any(assign_map(cell->getPort(ID::Y)))) { if (!mem_wren_sigs.check_all(assign_map(cell->getPort(ID::A))) || !mem_wren_sigs.check_all(assign_map(cell->getPort(ID::B)))) keep_expanding_mem_wren_sigs = true; mem_wren_sigs.add(assign_map(cell->getPort(ID::A))); mem_wren_sigs.add(assign_map(cell->getPort(ID::B))); } } } while (did_something) { did_something = false; // merge trees of reduce_* cells to one single cell and unify input vectors // (only handle reduce_and and reduce_or for various reasons) const IdString type_list[] = { ID($reduce_or), ID($reduce_and) }; for (auto type : type_list) { SigSet drivers; pool cells; for (auto &cell_it : module->cells_) { RTLIL::Cell *cell = cell_it.second; if (cell->type != type || !design->selected(module, cell)) continue; drivers.insert(assign_map(cell->getPort(ID::Y)), cell); cells.insert(cell); } while (cells.size() > 0) { RTLIL::Cell *cell = *cells.begin(); opt_reduce(cells, drivers, cell); } } // merge identical inputs on $mux and $pmux cells std::vector cells; for (auto &it : module->cells_) if ((it.second->type == ID($mux) || it.second->type == ID($pmux)) && design->selected(module, it.second)) cells.push_back(it.second); for (auto cell : cells) { // this optimization is to aggressive for most coarse-grain applications. // but we always want it for multiplexers driving write enable ports. if (do_fine || mem_wren_sigs.check_any(assign_map(cell->getPort(ID::Y)))) opt_mux_bits(cell); opt_mux(cell); } } module->check(); } }; struct OptReducePass : public Pass { OptReducePass() : Pass("opt_reduce", "simplify large MUXes and AND/OR gates") { } void help() override { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" opt_reduce [options] [selection]\n"); log("\n"); log("This pass performs two interlinked optimizations:\n"); log("\n"); log("1. it consolidates trees of large AND gates or OR gates and eliminates\n"); log("duplicated inputs.\n"); log("\n"); log("2. it identifies duplicated inputs to MUXes and replaces them with a single\n"); log("input with the original control signals OR'ed together.\n"); log("\n"); log(" -fine\n"); log(" perform fine-grain optimizations\n"); log("\n"); log(" -full\n"); log(" alias for -fine\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) override { bool do_fine = false; log_header(design, "Executing OPT_REDUCE pass (consolidate $*mux and $reduce_* inputs).\n"); size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-fine") { do_fine = true; continue; } if (args[argidx] == "-full") { do_fine = true; continue; } break; } extra_args(args, argidx, design); int total_count = 0; for (auto module : design->selected_modules()) while (1) { OptReduceWorker worker(design, module, do_fine); total_count += worker.total_count; if (worker.total_count == 0) break; } if (total_count) design->scratchpad_set_bool("opt.did_something", true); log("Performed a total of %d changes.\n", total_count); } } OptReducePass; PRIVATE_NAMESPACE_END